Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of SPI_TFT_ILI9341_V2 by
SPI_TFT_ILI9341_NXP.cpp
- Committer:
- JackB
- Date:
- 2015-03-24
- Revision:
- 14:70665f0a182f
- Parent:
- 13:b2b3e5430f81
File content as of revision 14:70665f0a182f:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller * Copyright (c) 2014 Peter Drescher - DC2PD * Special version for NXP LPC1768 * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // 25.06.14 initial version // only include this file if target is LPC1768 #if defined TARGET_LPC1768 #include "SPI_TFT_ILI9341.h" #include "mbed.h" #if defined TARGET_LPC1768 #define use_ram #endif // some defines for the DMA use #define DMA_CHANNEL_ENABLE 1 #define DMA_TRANSFER_TYPE_M2P (1UL << 11) #define DMA_CHANNEL_TCIE (1UL << 31) #define DMA_CHANNEL_SRC_INC (1UL << 26) #define DMA_MASK_IE (1UL << 14) #define DMA_MASK_ITC (1UL << 15) #define DMA_SSP1_TX (1UL << 2) #define DMA_SSP0_TX (0) #define DMA_DEST_SSP1_TX (2UL << 6) #define DMA_DEST_SSP0_TX (0UL << 6) #define BPP 16 // Bits per pixel //extern Serial pc; //extern DigitalOut xx; // debug !! SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name) : GraphicsDisplay(name), SPI(mosi,miso,sclk), _cs(cs), _reset(reset), _dc(dc) { format(8,3); // 8 bit spi mode 3 frequency(10000000); // 10 Mhz SPI clock : result 2 / 4 = 8 orientation = 0; char_x = 0; if((int)_spi.spi == SPI_0) { // test which SPI is in use spi_num = 0; } if((int)_spi.spi == SPI_1) { spi_num = 1; } tft_reset(); } // we define a fast write to the SPI port void inline SPI_TFT_ILI9341::f_write(int data) { while(((_spi.spi->SR) & 0x02) == 0); _spi.spi->DR = data; } // wait for SPI not busy // we have to wait for the last bit to switch the cs off void inline SPI_TFT_ILI9341::spi_bsy(void) { while ((_spi.spi->SR & 0x10) == 0x10); // SPI not idle } // switch fast between 8 and 16 bit mode void SPI_TFT_ILI9341::spi_16(bool s) { if(s) _spi.spi->CR0 |= 0x08; // switch to 16 bit Mode else _spi.spi->CR0 &= ~(0x08); // switch to 8 bit Mode } int SPI_TFT_ILI9341::width() { if (orientation == 0 || orientation == 2) return 240; else return 320; } int SPI_TFT_ILI9341::height() { if (orientation == 0 || orientation == 2) return 320; else return 240; } void SPI_TFT_ILI9341::set_orientation(unsigned int o) { orientation = o; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL switch (orientation) { case 0: f_write(0x48); break; case 1: f_write(0x28); break; case 2: f_write(0x88); break; case 3: f_write(0xE8); break; } spi_bsy(); // wait for end of transfer _cs = 1; WindowMax(); } // write command to tft register // use fast command void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd) { _dc = 0; _cs = 0; f_write(cmd); spi_bsy(); _dc = 1; } void SPI_TFT_ILI9341::wr_dat(unsigned char dat) { f_write(dat); spi_bsy(); // wait for SPI send } // the ILI9341 can read char SPI_TFT_ILI9341::rd_byte(unsigned char cmd) { // has to change !! return(0); } // read 32 bit int SPI_TFT_ILI9341::rd_32(unsigned char cmd) { // has to change !!! return(0); } int SPI_TFT_ILI9341::Read_ID(void) { int r; r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); return(r); } // Init code based on MI0283QT datasheet // this code is called only at start // no need to be optimized void SPI_TFT_ILI9341::tft_reset() { _cs = 1; // cs high _dc = 1; // dc high _reset = 0; // display reset wait_us(50); _reset = 1; // end hardware reset wait_ms(5); wr_cmd(0x01); // SW reset wait_ms(5); wr_cmd(0x28); // display off /* Start Initial Sequence ----------------------------------------------------*/ wr_cmd(0xCF); f_write(0x00); f_write(0x83); f_write(0x30); spi_bsy(); _cs = 1; wr_cmd(0xED); f_write(0x64); f_write(0x03); f_write(0x12); f_write(0x81); spi_bsy(); _cs = 1; wr_cmd(0xE8); f_write(0x85); f_write(0x01); f_write(0x79); spi_bsy(); _cs = 1; wr_cmd(0xCB); f_write(0x39); f_write(0x2C); f_write(0x00); f_write(0x34); f_write(0x02); spi_bsy(); _cs = 1; wr_cmd(0xF7); f_write(0x20); spi_bsy(); _cs = 1; wr_cmd(0xEA); f_write(0x00); f_write(0x00); spi_bsy(); _cs = 1; wr_cmd(0xC0); // POWER_CONTROL_1 f_write(0x26); spi_bsy(); _cs = 1; wr_cmd(0xC1); // POWER_CONTROL_2 f_write(0x11); spi_bsy(); _cs = 1; wr_cmd(0xC5); // VCOM_CONTROL_1 f_write(0x35); f_write(0x3E); spi_bsy(); _cs = 1; wr_cmd(0xC7); // VCOM_CONTROL_2 f_write(0xBE); spi_bsy(); _cs = 1; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL f_write(0x48); spi_bsy(); _cs = 1; wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET f_write(0x55); // 16 bit pixel spi_bsy(); _cs = 1; wr_cmd(0xB1); // Frame Rate f_write(0x00); f_write(0x1B); spi_bsy(); _cs = 1; wr_cmd(0xF2); // Gamma Function Disable f_write(0x08); spi_bsy(); _cs = 1; wr_cmd(0x26); f_write(0x01); // gamma set for curve 01/2/04/08 spi_bsy(); _cs = 1; wr_cmd(0xE0); // positive gamma correction f_write(0x1F); f_write(0x1A); f_write(0x18); f_write(0x0A); f_write(0x0F); f_write(0x06); f_write(0x45); f_write(0x87); f_write(0x32); f_write(0x0A); f_write(0x07); f_write(0x02); f_write(0x07); f_write(0x05); f_write(0x00); spi_bsy(); _cs = 1; wr_cmd(0xE1); // negativ gamma correction f_write(0x00); f_write(0x25); f_write(0x27); f_write(0x05); f_write(0x10); f_write(0x09); f_write(0x3A); f_write(0x78); f_write(0x4D); f_write(0x05); f_write(0x18); f_write(0x0D); f_write(0x38); f_write(0x3A); f_write(0x1F); spi_bsy(); _cs = 1; WindowMax (); //wr_cmd(0x34); // tearing effect off //_cs = 1; //wr_cmd(0x35); // tearing effect on //_cs = 1; wr_cmd(0xB7); // entry mode f_write(0x07); spi_bsy(); _cs = 1; wr_cmd(0xB6); // display function control f_write(0x0A); f_write(0x82); f_write(0x27); f_write(0x00); spi_bsy(); _cs = 1; wr_cmd(0x11); // sleep out spi_bsy(); _cs = 1; wait_ms(100); wr_cmd(0x29); // display on spi_bsy(); _cs = 1; wait_ms(100); // setup DMA channel 0 LPC_SC->PCONP |= (1UL << 29); // Power up the GPDMA. LPC_GPDMA->DMACConfig = 1; // enable DMA controller LPC_GPDMA->DMACIntTCClear = 0x1; // Reset the Interrupt status LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCLLI = 0; } // speed optimized // write direct to SPI1 register ! void SPI_TFT_ILI9341::pixel(int x, int y, int color) { wr_cmd(0x2A); spi_16(1); // switch to 8 bit Mode f_write(x); spi_bsy(); _cs = 1; spi_16(0); // switch to 8 bit Mode wr_cmd(0x2B); spi_16(1); f_write(y); spi_bsy(); _cs = 1; spi_16(0); wr_cmd(0x2C); // send pixel spi_16(1); f_write(color); spi_bsy(); _cs = 1; spi_16(0); } // optimized // write direct to SPI1 register ! void SPI_TFT_ILI9341::window(unsigned int x, unsigned int y, unsigned int w, unsigned int h) { wr_cmd(0x2A); spi_16(1); f_write(x); f_write(x+w-1); spi_bsy(); _cs = 1; spi_16(0); wr_cmd(0x2B); spi_16(1); f_write(y) ; f_write(y+h-1); spi_bsy(); _cs = 1; spi_16(0); } void SPI_TFT_ILI9341::WindowMax(void) { window (0, 0, width(), height()); } // optimized // use DMA to transfer pixel data to the screen void SPI_TFT_ILI9341::cls (void) { // we can use the fillrect function fillrect(0,0,width()-1,height()-1,_background); } void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; pixel(x0, y0+r, color); pixel(x0, y0-r, color); pixel(x0+r, y0, color); pixel(x0-r, y0, color); while (x<y) { if (f >= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; pixel(x0 + x, y0 + y, color); pixel(x0 - x, y0 + y, color); pixel(x0 + x, y0 - y, color); pixel(x0 - x, y0 - y, color); pixel(x0 + y, y0 + x, color); pixel(x0 - y, y0 + x, color); pixel(x0 + y, y0 - x, color); pixel(x0 - y, y0 - x, color); } } void SPI_TFT_ILI9341::drawCircleHelper( int16_t x0, int16_t y0, int16_t r, uint8_t cornername, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x<y) { if (f >= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x4) { pixel(x0 + x, y0 + y, color); pixel(x0 + y, y0 + x, color); } if (cornername & 0x2) { pixel(x0 + x, y0 - y, color); pixel(x0 + y, y0 - x, color); } if (cornername & 0x8) { pixel(x0 - y, y0 + x, color); pixel(x0 - x, y0 + y, color); } if (cornername & 0x1) { pixel(x0 - y, y0 - x, color); pixel(x0 - x, y0 - y, color); } } } void SPI_TFT_ILI9341::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { fillrect(x, y, x+w-1, y+h-1, color); } // draw a rounded rectangle! void SPI_TFT_ILI9341::drawRoundRect(int16_t x, int16_t y, int16_t w, int16_t h, int16_t r, uint16_t color) { // smarter version drawFastHLine(x+r , y , w-2*r, color); // Top drawFastHLine(x+r , y+h-1, w-2*r, color); // Bottom drawFastVLine( x , y+r , h-2*r, color); // Left drawFastVLine( x+w-1, y+r , h-2*r, color); // Right // draw four corners drawCircleHelper(x+r , y+r , r, 1, color); drawCircleHelper(x+w-r-1, y+r , r, 2, color); drawCircleHelper(x+w-r-1, y+h-r-1, r, 4, color); drawCircleHelper(x+r , y+h-r-1, r, 8, color); } // fill a rounded rectangle! void SPI_TFT_ILI9341::fillRoundRect(int16_t x, int16_t y, int16_t w, int16_t h, int16_t r, uint16_t color) { // smarter version fillRect(x+r, y, w-2*r, h, color); // draw four corners fillCircleHelper(x+w-r-1, y+r, r, 1, h-2*r-1, color); fillCircleHelper(x+r , y+r, r, 2, h-2*r-1, color); } void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { vline(x0-x, y0-y, y0+y, color); vline(x0+x, y0-y, y0+y, color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } // used to do circles and roundrects! void SPI_TFT_ILI9341::fillCircleHelper(int16_t x0, int16_t y0, int16_t r, uint8_t cornername, int16_t delta, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x<y) { if (f >= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x1) { drawFastVLine(x0+x, y0-y, 2*y+1+delta, color); drawFastVLine(x0+y, y0-x, 2*x+1+delta, color); } if (cornername & 0x2) { drawFastVLine(x0-x, y0-y, 2*y+1+delta, color); drawFastVLine(x0-y, y0-x, 2*x+1+delta, color); } } } void SPI_TFT_ILI9341::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { hline(x, x+w-1, y, color); } void SPI_TFT_ILI9341::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { vline(x, y, y+h-1, color); } // optimized for speed void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color) { int w,j; w = x1 - x0 + 1; window(x0,y,w,1); _dc = 0; _cs = 0; f_write(0x2C); // send pixel spi_bsy(); _dc = 1; spi_16(1); for (j=0; j<w; j++) { f_write(color); } spi_bsy(); spi_16(0); _cs = 1; WindowMax(); return; } // optimized for speed void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color) { int h,y; h = y1 - y0 + 1; window(x,y0,1,h); _dc = 0; _cs = 0; f_write(0x2C); // send pixel spi_bsy(); _dc = 1; spi_16(1); // switch to 16 bit Mode 3 for (y=0; y<h; y++) { f_write(color); } spi_bsy(); spi_16(0); _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color) { //WindowMax(); int dx = 0, dy = 0; int dx_sym = 0, dy_sym = 0; int dx_x2 = 0, dy_x2 = 0; int di = 0; dx = x1-x0; dy = y1-y0; if (dx == 0) { /* vertical line */ if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); return; } if (dx > 0) { dx_sym = 1; } else { dx_sym = -1; } if (dy == 0) { /* horizontal line */ if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); return; } if (dy > 0) { dy_sym = 1; } else { dy_sym = -1; } dx = dx_sym*dx; dy = dy_sym*dy; dx_x2 = dx*2; dy_x2 = dy*2; if (dx >= dy) { di = dy_x2 - dx; while (x0 != x1) { pixel(x0, y0, color); x0 += dx_sym; if (di<0) { di += dy_x2; } else { di += dy_x2 - dx_x2; y0 += dy_sym; } } pixel(x0, y0, color); } else { di = dx_x2 - dy; while (y0 != y1) { pixel(x0, y0, color); y0 += dy_sym; if (di < 0) { di += dx_x2; } else { di += dx_x2 - dy_x2; x0 += dx_sym; } } pixel(x0, y0, color); } return; } // draw a triangle! void SPI_TFT_ILI9341::drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) { line(x0, y0, x1, y1, color); line(x1, y1, x2, y2, color); line(x2, y2, x0, y0, color); } // fill a triangle! void SPI_TFT_ILI9341::fillTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) { int16_t a, b, y, last; // Sort coordinates by Y order (y2 >= y1 >= y0) if (y0 > y1) swap(y0, y1); swap(x0, x1); if (y1 > y2) swap(y2, y1); swap(x2, x1); if (y0 > y1) swap(y0, y1); swap(x0, x1); if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing a = b = x0; if(x1 < a) a = x1; else if(x1 > b) b = x1; if(x2 < a) a = x2; else if(x2 > b) b = x2; drawFastHLine(a, y0, b-a+1, color); return; } int16_t dx01 = x1 - x0, dy01 = y1 - y0, dx02 = x2 - x0, dy02 = y2 - y0, dx12 = x2 - x1, dy12 = y2 - y1, sa = 0, sb = 0; // For upper part of triangle, find scanline crossings for segments // 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1 // is included here (and second loop will be skipped, avoiding a /0 // error there), otherwise scanline y1 is skipped here and handled // in the second loop...which also avoids a /0 error here if y0=y1 // (flat-topped triangle). if(y1 == y2) last = y1; // Include y1 scanline else last = y1-1; // Skip it for(y=y0; y<=last; y++) { a = x0 + sa / dy01; b = x0 + sb / dy02; sa += dx01; sb += dx02; /* longhand: a = x0 + (x1 - x0) * (y - y0) / (y1 - y0); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); drawFastHLine(a, y, b-a+1, color); } // For lower part of triangle, find scanline crossings for segments // 0-2 and 1-2. This loop is skipped if y1=y2. sa = dx12 * (y - y1); sb = dx02 * (y - y0); for(; y<=y2; y++) { a = x1 + sa / dy12; b = x0 + sb / dy02; sa += dx12; sb += dx02; /* longhand: a = x1 + (x2 - x1) * (y - y1) / (y2 - y1); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) swap(a,b); drawFastHLine(a, y, b-a+1, color); } } void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color) { if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); if (x1 > x0) hline(x0,x1,y1,color); else hline(x1,x0,y1,color); if (y1 > y0) vline(x1,y0,y1,color); else vline(x1,y1,y0,color); return; } // optimized for speed // use DMA void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color) { int h = y1 - y0 + 1; int w = x1 - x0 + 1; int pixel = h * w; unsigned int dma_count; window(x0,y0,w,h); wr_cmd(0x2C); // send pixel spi_16(1); LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color; switch(spi_num) { // decide which SPI is to use case (0): LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0 LPC_SSP0->DMACR = 0x2; break; case (1): LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1 LPC_SSP1->DMACR = 0x2; break; } // start DMA do { if (pixel > 4095) { dma_count = 4095; pixel = pixel - 4095; } else { dma_count = pixel; pixel = 0; } LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_num ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX); LPC_GPDMA->DMACSoftSReq = 0x1; // DMA request do { } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running } while (pixel > 0); spi_bsy(); // wait for end of transfer spi_16(0); _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::locate(int x, int y) { char_x = x; char_y = y; } int SPI_TFT_ILI9341::columns() { return width() / font[1]; } int SPI_TFT_ILI9341::rows() { return height() / font[2]; } int SPI_TFT_ILI9341::_putc(int value) { if (value == '\n') { // new line char_x = 0; char_y = char_y + font[2]; if (char_y >= height() - font[2]) { char_y = 0; } } else { character(char_x, char_y, value); } return value; } // speed optimized // will use dma void SPI_TFT_ILI9341::character(int x, int y, int c) { unsigned int hor,vert,offset,bpl,j,i,b; unsigned char* zeichen; unsigned char z,w; #ifdef use_ram unsigned int pixel; unsigned int p; unsigned int dma_count,dma_off; uint16_t *buffer; #endif if ((c < 31) || (c > 127)) return; // test char range // read font parameter from start of array offset = font[0]; // bytes / char hor = font[1]; // get hor size of font vert = font[2]; // get vert size of font bpl = font[3]; // bytes per line if (char_x + hor > width()) { char_x = 0; char_y = char_y + vert; if (char_y >= height() - font[2]) { char_y = 0; } } window(char_x, char_y,hor,vert); // setup char box wr_cmd(0x2C); spi_16(1); // switch to 16 bit Mode #ifdef use_ram pixel = hor * vert; // calculate buffer size buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the font if(buffer != NULL) { // there is memory space -> use dma zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char p = 0; // construct the font into the buffer for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { buffer[p] = _background; } else { buffer[p] = _foreground; } p++; } } // copy the buffer with DMA SPI to display dma_off = 0; // offset for DMA transfer switch(spi_num) { // decide which SPI is to use case (0): LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0 LPC_SSP0->DMACR = 0x2; break; case (1): LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1 LPC_SSP1->DMACR = 0x2; break; } // start DMA do { if (pixel > 4095) { // this is a giant font ! dma_count = 4095; pixel = pixel - 4095; } else { dma_count = pixel; pixel = 0; } LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + dma_off); LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_num ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX); LPC_GPDMA->DMACSoftSReq = 0x1; do { } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running dma_off = dma_off + dma_count; } while (pixel > 0); spi_bsy(); free ((uint16_t *) buffer); spi_16(0); } else { #endif zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { f_write(_background); } else { f_write(_foreground); } } } spi_bsy(); _cs = 1; spi_16(0); #ifdef use_ram } #endif _cs = 1; WindowMax(); if ((w + 2) < hor) { // x offset to next char char_x += w + 2; } else char_x += hor; } void SPI_TFT_ILI9341::set_font(unsigned char* f) { font = f; } void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap) { unsigned int j; int padd; unsigned short *bitmap_ptr = (unsigned short *)bitmap; unsigned int i; // the lines are padded to multiple of 4 bytes in a bitmap padd = -1; do { padd ++; } while (2*(w + padd)%4 != 0); window(x, y, w, h); bitmap_ptr += ((h - 1)* (w + padd)); wr_cmd(0x2C); // send pixel spi_16(1); for (j = 0; j < h; j++) { //Lines for (i = 0; i < w; i++) { // one line f_write(*bitmap_ptr); // one line bitmap_ptr++; } bitmap_ptr -= 2*w; bitmap_ptr -= padd; } spi_bsy(); _cs = 1; spi_16(0); WindowMax(); } // local filesystem is not implemented but you can add a SD card to a different SPI int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP) { #define OffsetPixelWidth 18 #define OffsetPixelHeigh 22 #define OffsetFileSize 34 #define OffsetPixData 10 #define OffsetBPP 28 char filename[50]; unsigned char BMP_Header[54]; unsigned short BPP_t; unsigned int PixelWidth,PixelHeigh,start_data; unsigned int i,off; int padd,j; unsigned short *line; // get the filename i=0; while (*Name_BMP!='\0') { filename[i++]=*Name_BMP++; } filename[i] = 0; FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file if (!Image) { return(0); // error file not found ! } fread(&BMP_Header[0],1,54,Image); // get the BMP Header if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte fclose(Image); return(-1); // error no BMP file } BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8); if (BPP_t != 0x0010) { fclose(Image); return(-2); // error no 16 bit BMP } PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24); PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24); if (PixelHeigh > height() + y || PixelWidth > width() + x) { fclose(Image); return(-3); // to big } start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24); line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line if (line == NULL) { return(-4); // error no memory } // the bmp lines are padded to multiple of 4 bytes padd = -1; do { padd ++; } while ((PixelWidth * 2 + padd)%4 != 0); window(x, y,PixelWidth ,PixelHeigh); wr_cmd(0x2C); // send pixel spi_16(1); for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up off = j * (PixelWidth * 2 + padd) + start_data; // start of line fseek(Image, off ,SEEK_SET); fread(line,1,PixelWidth * 2,Image); // read a line - slow for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT f_write(line[i]); // one 16 bit pixel } } spi_bsy(); _cs = 1; spi_16(0); free (line); fclose(Image); WindowMax(); return(1); } #endif