Simple clock program for LPC1768 Mini-DK

Dependencies:   RTC mbed

Mini_DK/SPI_TFT/SPI_TFT.cpp

Committer:
Sissors
Date:
2012-12-30
Revision:
0:ab0aec01b38e

File content as of revision 0:ab0aec01b38e:

/* mbed library for 240*320 pixel TFT with ILI9320 LCD Controller
 * Rewrite from Peter Drescher code - http://mbed.org/cookbook/SPI-driven-QVGA-TFT
 *
 * TODO : BMP routine
 */



#include "SPI_TFT.h"
#include "mbed.h"


#define BPP         16                  // Bits per pixel


SPI_TFT::SPI_TFT(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, const char *name)
    : GraphicsDisplay(name), _spi(mosi, miso, sclk), _cs(cs), _reset(reset)
{
    char_x = 0;
    tft_reset();
    set_orientation(0);
}

int SPI_TFT::width()
{
    if (orientation == 0 || orientation == 2) return 240;
    else return 320;
}

int SPI_TFT::height()
{
    if (orientation == 0 || orientation == 2) return 320;
    else return 240;
}

//
void SPI_TFT::set_orientation(unsigned int o)
{
    orientation = o;
    WindowMax();
}

// ILI9320
// Orientation is only set before a window command (registers 0x50..0x53)
// reg 03h (Entry Mode) : BGR = 1 - ORG = 1 - ID0, ID1 and AM are set according to the orientation variable.
// IMPORTANT : when ORG = 1, the GRAM writing direction follows the orientation (ID0, ID1, AM bits)
//             AND we need to use the window command (reg 50h..53h) to write to an area on the display
//             because we cannot change reg 20h and 21h to set the GRAM address (they both remain at 00h).
//             This means that the pixel routine does not work when ORG = 1.
//             Routines relying on the pixel routine first need to set reg 03h = 0x1030
//             (cls, circle and line do so) AND need to write the data according to the orientation variable.

void SPI_TFT::mod_orientation(void)
{
    switch (orientation)
    {
        case 0:
            wr_reg(0x03, 0x10b0);        // ID1 = 1, ID0 = 1, AM = 0 - Portrait
            break;
        case 1:
            wr_reg(0x03, 0x10a8);        // ID1 = 1, ID0 = 0, AM = 0 - Landscape
            break;
        case 2:
            wr_reg(0x03, 0x1080);        // ID1 = 0, ID0 = 0, AM = 1 - Portrait upside down
            break;
        case 3:
            wr_reg(0x03, 0x1098);        // ID1 = 0, ID0 = 1, AM = 1 - Landscape upside down
            break;
    }
}

void SPI_TFT::wr_cmd(unsigned char cmd)
{
    _cs = 0;
    _spi.write(0x70);
    _spi.write(0x00);
    _spi.write(cmd);
    _cs = 1;
}

void SPI_TFT::wr_dat(unsigned short dat)
{
    unsigned char u,l;
    u = (dat >> 0x08);
    l = (dat & 0xff);
    _cs = 0;
    _spi.write(0x72);
    _spi.write(u);
    _spi.write(l);
    _cs = 1;
}

void SPI_TFT::wr_dat_start(void)
{
    _spi.write(0x72);
}

void SPI_TFT::wr_dat_only(unsigned short dat)
{
    unsigned char u,l;
    u = (dat >> 0x08);
    l = (dat & 0xff);
    _spi.write(u);
    _spi.write(l);
}

unsigned short SPI_TFT::rd_dat(void)              // SPI frequency needs to be lowered on read
{
    unsigned short val = 0;
    _cs = 0;
    _spi.frequency(SPI_F_LO);
    _spi.write(0x73);
    _spi.write(0x00);
    val = _spi.write(0);                          // Dummy read
    val = _spi.write(0);                          // Read D8..D15
    val <<= 8;
    val |= _spi.write(0);                         // Read D0..D7
    _cs = 1;
    _spi.frequency(SPI_F_HI);
    return (val);
}

void SPI_TFT::wr_reg(unsigned char reg, unsigned short val)
{
    wr_cmd(reg);
    wr_dat(val);
}

unsigned short SPI_TFT::rd_reg(unsigned char reg)
{
    wr_cmd(reg);
    return(rd_dat());
}

unsigned short SPI_TFT::Read_ID(void)             // IMPORTANT : SPI frequency needs to be lowered when reading
{
    unsigned short val = 0;
    _cs = 0;
    _spi.write(0x70);
    _spi.write(0x00);
    _spi.write(0X00);
    _cs = 1;
    _spi.frequency(SPI_F_LO);
    _cs = 0;
    _spi.write(0x73);
    val = _spi.write(0x00);                       // Dummy read
    val = _spi.write(0x00);                       // Read D8..D15
    val <<= 8;
    val |= _spi.write(0x00);                      // Read D0..D7
    _cs = 1;
    _spi.frequency(SPI_F_HI);
    return (val);
}

void SPI_TFT::SetCursor( unsigned short Xpos, unsigned short Ypos )
{
    wr_reg(0x20, Xpos );
    wr_reg(0x21, Ypos );
}

void SPI_TFT::tft_reset()
{
    _spi.format(8,3);                    // 8 bit spi mode 3
    _spi.frequency(SPI_F_HI);            // 48 Mhz SPI clock

    wr_reg(0x00,0x0000);
    wr_reg(0x01,0x0100); // Driver Output Control
    wr_reg(0x02,0x0700); // LCD Driver Waveform Control
    wr_reg(0x03,0x1030); // Set the scan mode
    wr_reg(0x04,0x0000); // Scaling Control
    wr_reg(0x08,0x0202); // Display Control 2
    wr_reg(0x09,0x0000); // Display Control 3
    wr_reg(0x0a,0x0000); // Frame Cycle Contal
    wr_reg(0x0c,(1<<0)); // Extern Display Interface Control 1
    wr_reg(0x0d,0x0000); // Frame Maker Position
    wr_reg(0x0f,0x0000); // Extern Display Interface Control 2

    wait_ms(50);

    wr_reg(0x07,0x0101); // Display Control

    wait_ms(50);

    wr_reg(0x10,(1<<12)|(0<<8)|(1<<7)|(1<<6)|(0<<4)); // Power Control 1
    wr_reg(0x11,0x0007);                              // Power Control 2
    wr_reg(0x12,(1<<8)|(1<<4)|(0<<0));                // Power Control 3
    wr_reg(0x13,0x0b00);                              // Power Control 4
    wr_reg(0x29,0x0000);                              // Power Control 7
    wr_reg(0x2b,(1<<14)|(1<<4));

    wr_reg(0x50,0);      // Set X Start
    wr_reg(0x51,239);    // Set X End
    wr_reg(0x52,0);      // Set Y Start
    wr_reg(0x53,319);    // Set Y End

    wait_ms(50);

    wr_reg(0x60,0x2700); // Driver Output Control
    wr_reg(0x61,0x0001); // Driver Output Control
    wr_reg(0x6a,0x0000); // Vertical Srcoll Control

    wr_reg(0x80,0x0000); // Display Position Partial Display 1
    wr_reg(0x81,0x0000); // RAM Address Start Partial Display 1
    wr_reg(0x82,0x0000); // RAM Address End-Partial Display 1
    wr_reg(0x83,0x0000); // Displsy Position Partial Display 2
    wr_reg(0x84,0x0000); // RAM Address Start Partial Display 2
    wr_reg(0x85,0x0000); // RAM Address End Partial Display 2

    wr_reg(0x90,(0<<7)|(16<<0)); // Frame Cycle Control
    wr_reg(0x92,0x0000);         // Panel Interface Control 2
    wr_reg(0x93,0x0001);         // Panel Interface Control 3
    wr_reg(0x95,0x0110);         // Frame Cycle Control
    wr_reg(0x97,(0<<8));
    wr_reg(0x98,0x0000);         // Frame Cycle Control
    wr_reg(0x07,0x0133);

    wait_ms(100);
    WindowMax();
}


void SPI_TFT::pixel(int x, int y, int color)
{
    switch (orientation)
    {
        case 0:
            wr_reg(0x20, x);
            wr_reg(0x21, y);
            break;
        case 1:
            wr_reg(0x20, 239-y);
            wr_reg(0x21, x);
            break;
        case 2:
            wr_reg(0x20, 239-x);
            wr_reg(0x21, 319-y);
            break;
        case 3:
            wr_reg(0x20, y);
            wr_reg(0x21, 319-x);
            break;
    }
    wr_cmd(0x22);
    wr_dat(color);
}


void SPI_TFT::window(int x, int y, int w, int h)
{
    unsigned int xw1, yh1;
    xw1 = x + w - 1;
    yh1 = y + h - 1;
    wr_reg(0x20, x);
    wr_reg(0x21, y);
    switch (orientation)
    {
        case 0:
            wr_reg(0x50, x);
            wr_reg(0x51, xw1);
            wr_reg(0x52, y);
            wr_reg(0x53, yh1);
            break;
        case 1:
            wr_reg(0x50, 239 - yh1);
            wr_reg(0x51, 239 - y);
            wr_reg(0x52, x);
            wr_reg(0x53, xw1);
            break;
        case 2:
            wr_reg(0x50, 239 - xw1);
            wr_reg(0x51, 239 - x);
            wr_reg(0x52, 319 - yh1);
            wr_reg(0x53, 319 - y);
            break;
        case 3:
            wr_reg(0x50, y);
            wr_reg(0x51, yh1);
            wr_reg(0x52, 319 - xw1);
            wr_reg(0x53, 319 - x);
            break;
    }
}


void SPI_TFT::WindowMax(void)
{
    window(0, 0, width(),  height());
}


void SPI_TFT::cls (void)
{
    unsigned long int index=0;
    wr_reg(0x03, 0x1030);
    WindowMax();
    SetCursor(0,0);
    wr_cmd(0x22);
     _cs = 0;
     wr_dat_start();
     
     _spi.format(16,3);
     unsigned short dat = _background;
     
     for( index = 0; index<width()*height(); index++ )
     {
        _spi.write(dat);
     }
     
     _spi.format(8,3);
     
    /*for( index = 0; index < width() * height(); index++ )
    {
        wr_dat_only(color);
    }*/
    _cs = 1;
}

void SPI_TFT::hline(int x0, int x1, int y, int color)
{
    unsigned int index=0;
    int w;
    w = x1 - x0 + 1;
    mod_orientation();
    window(x0,y,w,1);
    wr_cmd(0x22);
     _cs = 0;
     wr_dat_start();
    for( index = 0; index < (x1 - x0); index++ )
    {
        wr_dat_only(color);
    }
    _cs = 1;
    return;
}

void SPI_TFT::vline(int x, int y0, int y1, int color)
{
    unsigned int index=0;
    int h;
    h = y1 - y0 + 1;
    mod_orientation();
    window(x,y0,1,h);
    wr_cmd(0x22);
     _cs = 0;
     wr_dat_start();
    for( index = 0; index < (y1 - y0); index++ )
    {
        wr_dat_only(color);
    }
    _cs = 1;
    return;
}

void SPI_TFT::line(int x0, int y0, int x1, int y1, int color)
{
    wr_reg(0x03, 0x1030);
    WindowMax();
    int   dx = 0, dy = 0;
    int   dx_sym = 0, dy_sym = 0;
    int   dx_x2 = 0, dy_x2 = 0;
    int   di = 0;

    dx = x1-x0;
    dy = y1-y0;

    if (dx == 0) {        /* vertical line */
        if (y1 > y0) vline(x0,y0,y1,color);
        else vline(x0,y1,y0,color);
        return;
    }

    if (dx > 0) {
        dx_sym = 1;
    } else {
        dx_sym = -1;
    }
    if (dy == 0) {        /* horizontal line */
        if (x1 > x0) hline(x0,x1,y0,color);
        else  hline(x1,x0,y0,color);
        return;
    }

    if (dy > 0) {
        dy_sym = 1;
    } else {
        dy_sym = -1;
    }

    dx = dx_sym*dx;
    dy = dy_sym*dy;

    dx_x2 = dx*2;
    dy_x2 = dy*2;

    if (dx >= dy) {
        di = dy_x2 - dx;
        while (x0 != x1) {

            pixel(x0, y0, color);
            x0 += dx_sym;
            if (di<0) {
                di += dy_x2;
            } else {
                di += dy_x2 - dx_x2;
                y0 += dy_sym;
            }
        }
        pixel(x0, y0, color);
    } else {
        di = dx_x2 - dy;
        while (y0 != y1) {
            pixel(x0, y0, color);
            y0 += dy_sym;
            if (di < 0) {
                di += dx_x2;
            } else {
                di += dx_x2 - dy_x2;
                x0 += dx_sym;
            }
        }
        pixel(x0, y0, color);
    }
    return;
}


void SPI_TFT::rect(int x0, int y0, int w, int h, int color)
{
    hline(x0,x0+w,y0,color);
    vline(x0,y0,y0+h,color);
    hline(x0,x0+w,y0+h,color);
    vline(x0+w,y0,y0+h,color);

    return;
}

void SPI_TFT::fillrect(int x0, int y0, int w, int h, int color)
{
    unsigned long int index=0;
    if (w < 0)
    {
        x0 = x0 + w;
        w = -w;
    }
    if (h < 0)
    {
        y0 = y0 + h;
        h = -h;
    }
    mod_orientation();
    window(x0,y0,w,h);
    wr_cmd(0x22);
    _cs = 0;
    wr_dat_start();

    for( index = 0; index < h * w; index++ )
    {
        wr_dat_only(color);
    }
    _cs = 1;
    return;
}

void SPI_TFT::draw_ellipse(int xc, int yc, int a, int b, unsigned int color)
{           /* e(x,y) = b^2*x^2 + a^2*y^2 - a^2*b^2 */
    wr_reg(0x03, 0x1030);
    WindowMax();
    int x = 0, y = b;
    long a2 = (long)a*a, b2 = (long)b*b;
    long crit1 = -(a2/4 + a%2 + b2);
    long crit2 = -(b2/4 + b%2 + a2);
    long crit3 = -(b2/4 + b%2);
    long t = -a2*y; /* e(x+1/2,y-1/2) - (a^2+b^2)/4 */
    long dxt = 2*b2*x, dyt = -2*a2*y;
    long d2xt = 2*b2, d2yt = 2*a2;

    while (y>=0 && x<=a)
    {
        pixel(xc+x, yc+y, color);
        if (x!=0 || y!=0)
            pixel(xc-x, yc-y, color);
        if (x!=0 && y!=0)
        {
            pixel(xc+x, yc-y, color);
            pixel(xc-x, yc+y, color);
        }
        if (t + b2*x <= crit1 ||   /* e(x+1,y-1/2) <= 0 */
            t + a2*y <= crit3)     /* e(x+1/2,y) <= 0 */
            incx();
        else if (t - a2*y > crit2) /* e(x+1/2,y-1) > 0 */
            incy();
        else
        {
            incx();
            incy();
        }
    }
}

void SPI_TFT::fill_ellipse(int xc, int yc, int a, int b, unsigned int color)
{           /* e(x,y) = b^2*x^2 + a^2*y^2 - a^2*b^2 */
    int x = 0, y = b;
    int rx = x, ry = y;
    unsigned int width = 1;
    unsigned int height = 1;
    long a2 = (long)a*a, b2 = (long)b*b;
    long crit1 = -(a2/4 + a%2 + b2);
    long crit2 = -(b2/4 + b%2 + a2);
    long crit3 = -(b2/4 + b%2);
    long t = -a2*y; /* e(x+1/2,y-1/2) - (a^2+b^2)/4 */
    long dxt = 2*b2*x, dyt = -2*a2*y;
    long d2xt = 2*b2, d2yt = 2*a2;

    if (b == 0)
    {
        fillrect(xc-a, yc, 2*a+1, 1, color);
        return;
    }

    while (y>=0 && x<=a)
    {
        if (t + b2*x <= crit1 ||    /* e(x+1,y-1/2) <= 0 */
            t + a2*y <= crit3)      /* e(x+1/2,y) <= 0 */
        {
            if (height == 1)
                ; /* draw nothing */
            else if (ry*2+1 > (height-1)*2)
            {
                fillrect(xc-rx, yc-ry, width, height-1, color);
                fillrect(xc-rx, yc+ry+1, width, 1-height, color);
                ry -= height-1;
                height = 1;
            }
            else
            {
                fillrect(xc-rx, yc-ry, width, ry*2+1, color);
                ry -= ry;
                height = 1;
            }
            incx();
            rx++;
            width += 2;
        }
        else if (t - a2*y > crit2)      /* e(x+1/2,y-1) > 0 */
        {
            incy();
            height++;
        }
        else
        {
            if (ry*2+1 > height*2)
            {
                fillrect(xc-rx, yc-ry, width, height, color);
                fillrect(xc-rx, yc+ry+1, width, -height, color);
            }
            else
            {
                fillrect(xc-rx, yc-ry, width, ry*2+1, color);
            }
            incx();
            incy();
            rx++;
            width += 2;
            ry -= height;
            height = 1;
        }
    }

    if (ry > height)
    {
        fillrect(xc-rx, yc-ry, width, height, color);
        fillrect(xc-rx, yc+ry+1, width, -height, color);
    }
    else
    {
        fillrect(xc-rx, yc-ry, width, ry*2+1, color);
    }
}


void SPI_TFT::locate(int x, int y)
{
    char_x = x;
    char_y = y;
}

int SPI_TFT::columns()
{
    return width() / font[1];
}

int SPI_TFT::rows()
{
    return height() / font[2];
}

int SPI_TFT::_putc(int value)
{
    if (value == '\n')    // new line
    {
        char_x = 0;
        char_y = char_y + font[2];
        if (char_y >= height() - font[2])
        {
            char_y = 0;
        }
    }
    else
    {
        character(char_x, char_y, value);
    }
    return value;
}

void SPI_TFT::character(int x, int y, int c)
{
    unsigned int hor,vert,offset,bpl,j,i,b;
    unsigned char* bitmap_char;
    unsigned char z,w;

    if ((c < 31) || (c > 127)) return;   // test char range

    // read font parameter from start of array
    offset = font[0];                    // bytes / char
    hor = font[1];                       // get hor size of font
    vert = font[2];                      // get vert size of font
    bpl = font[3];                       // bytes per line

    if (char_x + hor > width())
    {
        char_x = 0;
        char_y = char_y + vert;
       if (char_y >= height() - font[2])
       {
            char_y = 0;
        }
    }
    mod_orientation();
    
    bitmap_char = &font[((c -32) * offset) + 4]; // start of char bitmap
    w = bitmap_char[0];                          // width of actual char
    window(char_x, char_y,w,vert); // char box
    wr_cmd(0x22);
    _cs = 0;
    wr_dat_start();


    for (j=0; j<vert; j++)                         //  vert line
    {
        for (i=0; i<w; i++)                    //  horz line
        {
            z =  bitmap_char[bpl * i + ((j & 0xF8) >> 3)+1];
            b = 1 << (j & 0x07);
            if (( z & b ) == 0x00)
            {
                wr_dat_only(_background);
            }
            else
            {
                wr_dat_only(_foreground);
            }
        }
    }
    _cs = 1;
    if ((w + 2) < hor)                   // x offset to next char
    {
        char_x += w + 2;
    }
    else char_x += hor;
}


void SPI_TFT::set_font(unsigned char* f)
{
    font = f;
}


void SPI_TFT::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
    unsigned int    i,j;
    unsigned short *bitmap_ptr = (unsigned short *)bitmap;
    mod_orientation();
    window(x, y, w, h);
    wr_cmd(0x22);
    _cs = 0;
    wr_dat_start();
    _spi.format(16,3);
    bitmap_ptr += ((h - 1)*w);
    for (j = 0; j < h; j++)             //Lines
    {
        for (i = 0; i < w; i++)         // copy pixel data to TFT
        {
            _spi.write(*bitmap_ptr);    // one line
            bitmap_ptr++;
        }
        bitmap_ptr -= 2*w;
    }
    _spi.format(8,3);
    _cs = 1;
}

int SPI_TFT::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{
/* // Current code unusable : Rewrite without DMA is needed
#define OffsetPixelWidth    18
#define OffsetPixelHeigh    22
#define OffsetFileSize      34
#define OffsetPixData       10
#define OffsetBPP           28

    char filename[50];
    unsigned char BMP_Header[54];
    unsigned short BPP_t;
    unsigned int PixelWidth,PixelHeigh,start_data;
    unsigned int    i,off;
    int padd,j;
    unsigned short *line;

    // get the filename
    LocalFileSystem local("local");
    sprintf(&filename[0],"/local/");
    i=7;
    while (*Name_BMP!='\0') {
        filename[i++]=*Name_BMP++;
    }

    fprintf(stderr, "filename : %s \n\r",filename);

    FILE *Image = fopen((const char *)&filename[0], "rb");  // open the bmp file
    if (!Image) {
        return(0);      // error file not found !
    }

    fread(&BMP_Header[0],1,54,Image);      // get the BMP Header

    if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) {  // check magic byte
        fclose(Image);
        return(-1);     // error no BMP file
    }

    BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
    if (BPP_t != 0x0010) {
        fclose(Image);
        return(-2);     // error no 16 bit BMP
    }

    PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
    PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
    if (PixelHeigh > height() + y || PixelWidth > width() + x) {
        fclose(Image);
        return(-3);      // to big
    }

    start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);

    line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
    if (line == NULL) {
        return(-4);         // error no memory
    }

    // the bmp lines are padded to multiple of 4 bytes
    padd = -1;
    do {
        padd ++;
    } while ((PixelWidth * 2 + padd)%4 != 0);


//fseek(Image, 70 ,SEEK_SET);
    window(x, y,PixelWidth ,PixelHeigh);
    wr_cmd(0x22);
    _cs = 0;

    if (spi_port == 0) {    // TFT on SSP0
        LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
//        LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
        LPC_SSP0->DR = 0x72;        // start Data
        LPC_SSP0->CR0 |= 0x08UL;    // set to 16 bit
        // Enable SSP0 for DMA.
        LPC_SSP0->DMACR = 0x2;

    } else {
        LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
//        LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
        LPC_SSP1->DR = 0x72;        // start Data
        LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
        // Enable SSP1 for DMA.
        LPC_SSP1->DMACR = 0x2;
    }
    for (j = PixelHeigh - 1; j >= 0; j--) {               //Lines bottom up
        off = j * (PixelWidth  * 2 + padd) + start_data;   // start of line
        fseek(Image, off ,SEEK_SET);
        fread(line,1,PixelWidth * 2,Image);       // read a line - slow !

        LPC_GPDMA->DMACIntTCClear = 0x1;
        LPC_GPDMA->DMACIntErrClr = 0x1;
        LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)line;
        LPC_GPDMACH0->DMACCControl = PixelWidth | (0UL << 18) | (0UL << 21) | (1UL << 31) |  DMA_CHANNEL_SRC_INC ; // 8 bit transfer , address increment, interrupt
        LPC_GPDMACH0->DMACCConfig  = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
        LPC_GPDMA->DMACSoftSReq = 0x1;
        do {
        } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running

    }

    if (spi_port == 0) {    // TFT on SSP0
        do {
        } while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
        LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
    } else {
        do {
        } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
        LPC_SSP1->CR0 |= 0x08UL;    // set to 16 bit
    }
    _cs = 1;
    free (line);
    fclose(Image);
    WindowMax();
*/
    return(1);
}