ZBar bar code reader . http://zbar.sourceforge.net/ ZBar is licensed under the GNU LGPL 2.1 to enable development of both open source and commercial projects.

Dependents:   GR-PEACH_Camera_in_barcode levkov_ov7670

LICENSE

The ZBar Bar Code Reader is Copyright (C) 2007-2009 Jeff Brown <spadix@users.sourceforge.net> The QR Code reader is Copyright (C) 1999-2009 Timothy B. Terriberry <tterribe@xiph.org>

You can redistribute this library and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

ISAAC is based on the public domain implementation by Robert J. Jenkins Jr., and is itself public domain.

Portions of the bit stream reader are copyright (C) The Xiph.Org Foundation 1994-2008, and are licensed under a BSD-style license.

The Reed-Solomon decoder is derived from an implementation (C) 1991-1995 Henry Minsky (hqm@ua.com, hqm@ai.mit.edu), and is licensed under the LGPL with permission.

zbar/qrcode/bch15_5.c

Committer:
RyoheiHagimoto
Date:
2016-04-19
Revision:
0:56c5742b9e2b

File content as of revision 0:56c5742b9e2b:

/*Copyright (C) 2008-2009  Timothy B. Terriberry (tterribe@xiph.org)
  You can redistribute this library and/or modify it under the terms of the
   GNU Lesser General Public License as published by the Free Software
   Foundation; either version 2.1 of the License, or (at your option) any later
   version.*/
#include "bch15_5.h"

/*A cycle in GF(2**4) generated by alpha=(x**4+x+1).
  It is extended an extra 16 entries to avoid some expensive mod operations.*/
static const unsigned char gf16_exp[31]={
  1,2,4,8,3,6,12,11,5,10,7,14,15,13,9,1,2,4,8,3,6,12,11,5,10,7,14,15,13,9,1
};

/*The location of each integer 1...16 in the cycle.*/
static const signed char gf16_log[16]={
  -1,0,1,4,2,8,5,10,3,14,9,7,6,13,11,12
};

/*Multiplication in GF(2**4) using logarithms.*/
static unsigned gf16_mul(unsigned _a,unsigned _b){
  return _a==0||_b==0?0:gf16_exp[gf16_log[_a]+gf16_log[_b]];
}

/*Division in GF(2**4) using logarithms.
  The result when dividing by zero is undefined.*/
static unsigned gf16_div(unsigned _a,unsigned _b){
  return _a==0?0:gf16_exp[gf16_log[_a]+15-gf16_log[_b]];
}

/*Multiplication in GF(2**4) when the second argument is known to be non-zero
   (proven by representing it by its logarithm).*/
static unsigned gf16_hmul(unsigned _a,unsigned _logb){
  return _a==0?0:gf16_exp[gf16_log[_a]+_logb];
}

/*The syndrome normally has five values, S_1 ... S_5.
  We only calculate and store the odd ones in _s, since S_2=S_1**2 and
   S_4=S_2**2.
  Returns zero iff all the syndrome values are zero.*/
static int bch15_5_calc_syndrome(unsigned _s[3],unsigned _y){
  unsigned p;
  int      i;
  int      j;
  p=0;
  for(i=0;i<15;i++)if(_y&1<<i)p^=gf16_exp[i];
  _s[0]=p;
  p=0;
  for(i=0;i<3;i++)for(j=0;j<5;j++)if(_y&1<<5*i+j)p^=gf16_exp[j*3];
  _s[1]=p;
  p=0;
  for(i=0;i<5;i++)for(j=0;j<3;j++)if(_y&1<<3*i+j)p^=gf16_exp[j*5];
  _s[2]=p;
  return _s[0]!=0||_s[1]!=0||_s[2]!=0;
}

/*Compute the coefficients of the error-locator polynomial.
  Returns the number of errors (the degree of the polynomial).*/
static int bch15_5_calc_omega(unsigned _o[3],unsigned _s[3]){
  unsigned s02;
  unsigned tt;
  unsigned dd;
  int      d;
  _o[0]=_s[0];
  s02=gf16_mul(_s[0],_s[0]);
  dd=_s[1]^gf16_mul(_s[0],s02);
  tt=_s[2]^gf16_mul(s02,_s[1]);
  _o[1]=dd?gf16_div(tt,dd):0;
  _o[2]=dd^gf16_mul(_s[0],_o[1]);
  for(d=3;d>0&&!_o[d-1];d--);
  return d;
}

/*Find the roots of the error polynomial.
  Returns the number of roots found, or a negative value if the polynomial did
   not have enough roots, indicating a decoding error.*/
static int bch15_5_calc_epos(unsigned _epos[3],unsigned _s[3]){
  unsigned o[3];
  int      nerrors;
  int      d;
  int      i;
  d=bch15_5_calc_omega(o,_s);
  nerrors=0;
  if(d==1)_epos[nerrors++]=gf16_log[o[0]];
  else if(d>0){
    for(i=0;i<15;i++){
      int i2;
      i2=gf16_log[gf16_exp[i<<1]];
      if(!(gf16_exp[i+i2]^gf16_hmul(o[0],i2)^gf16_hmul(o[1],i)^o[2])){
        _epos[nerrors++]=i;
      }
    }
    if(nerrors<d)return -1;
  }
  return nerrors;
}

int bch15_5_correct(unsigned *_y){
  unsigned s[3];
  unsigned epos[3];
  unsigned y;
  int      nerrors;
  int      i;
  y=*_y;
  if(!bch15_5_calc_syndrome(s,y))return 0;
  nerrors=bch15_5_calc_epos(epos,s);
  if(nerrors>0){
    /*If we had a non-zero syndrome value, we should always find at least one
       error location, or we've got a decoding error.*/
    for(i=0;i<nerrors;i++)y^=1<<epos[i];
    /*If there were too many errors, we may not find enough roots to reduce the
       syndrome to zero.
      We could recompute it to check, but it's much faster just to check that
       we have a valid codeword.*/
    if(bch15_5_encode(y>>10)==y){
      /*Decoding succeeded.*/
      *_y=y;
      return nerrors;
    }
  }
  /*Decoding failed due to too many bit errors.*/
  return -1;
}

unsigned bch15_5_encode(unsigned _x){
  return (-(_x&1)&0x0537)^(-(_x>>1&1)&0x0A6E)^(-(_x>>2&1)&0x11EB)^
   (-(_x>>3&1)&0x23D6)^(-(_x>>4&1)&0x429B);
}

#if 0
#include <stdio.h>

static unsigned codes[32];

static int hamming(int _a,int _b){
  int d;
  int n;
  d=_a^_b;
  for(n=0;d;n++)d&=d-1;
  return n;
}

static int closest(int _y){
  int min_i;
  int min_d;
  int i;
  int d;
  min_i=0;
  min_d=hamming(_y,codes[0]);
  for(i=1;i<32;i++){
    d=hamming(_y,codes[i]);
    if(d<min_d){
      min_d=d;
      min_i=i;
    }
  }
  return codes[min_i];
}

int main(void){
  int i;
  /*Print a list of the valid (uncorrupt) codewords.*/
  for(i=0;i<32;i++)codes[i]=bch15_5_encode(i);
  for(i=0;i<32;i++)printf("0x%04X%s",codes[i],i+1<32?"  ":"\n");
  /*Try to decode all receivable (possibly corrupt) codewords.*/
  for(i=0;i<0x8000;i++){
    unsigned y;
    unsigned z;
    int      nerrors;
    int      j;
    y=i;
    nerrors=bch15_5_correct(&y);
    z=closest(i);
    if(nerrors<0){
      printf("0x%04X->Failed\n",i);
      if(hamming(i,z)<=3)printf("Error: 0x%04X should map to 0x%04X\n",i,z);
    }
    else{
      printf("0x%04X->0x%04X\n",i,y);
      if(z!=y)printf("Error: 0x%04X should map to 0x%04X\n",i,z);
    }
  }
  return 0;
}
#endif