Ramon Waninge / Mbed 2 deprecated Bioroboticsmerge

Dependencies:   MODSERIAL biquadFilter mbed

Fork of Kinematics by Eva Krolis

Files at this revision

API Documentation at this revision

Comitter:
Ramonwaninge
Date:
Thu Nov 01 11:00:13 2018 +0000
Parent:
25:1123d100d964
Child:
27:22bfc75f8d1a
Commit message:
Cleaner code (opgeruimd)

Changed in this revision

main.cpp Show annotated file Show diff for this revision Revisions of this file
--- a/main.cpp	Thu Nov 01 10:35:52 2018 +0000
+++ b/main.cpp	Thu Nov 01 11:00:13 2018 +0000
@@ -32,8 +32,8 @@
 float thetaflip = 0;                                           //Angle of the flipping motor
 float prefx;                                                   //Desired x velocity
 float prefy;                                                   //Desired y velocity                                                        "
-float deltat = 0.01;
-float iJ[2][2];
+float dt = 0.002;                                              //Time step of the system 
+float iJ[2][2];                                                //inverse Jacobian matrix
 //Time step (dependent on sample frequency)
 
 //Kinematics parameters for x
@@ -234,46 +234,37 @@
     SwitchState_timer.detach();                                 //Use this function once
 }*/
 
-
+//forward kinematics function , &xend and&yend are output.
 void FK(float &xend_, float &yend_, float theta1_, float theta4_)
 {
+    
+    //Below we have the forward kinematics formula. Input should be the measured angles theta1 &theta4. Output 
     float xendsum_ = lb + xbase +ll*(cos(theta1_) - cos(theta4_));
     float xendsqrt1_ = 2*sqrt(-xbase*xbase/4 + lu*lu + ll*(xbase*(cos(theta1_)+cos(theta4_))/2) -ll*(1+ cos(theta1_+theta4_)))*(-sin(theta1_)+sin(theta4_));
     float xendsqrt2_ = sqrt(pow((-xbase/ll+cos(theta1_)+cos(theta4_)),2)+ pow(sin(theta1_) - sin(theta4_),2));
     xend_ = (xendsum_ + xendsqrt1_/xendsqrt2_)/2;
-    //hieronder rekenen we yendeffector door;
+
     float yendsum_ = -le + ll/2*(sin(theta1_)+sin(theta4_));
     float yendsqrt1_ = (-xbase/ll + cos(theta1_)+cos(theta4_))*sqrt(-xbase*xbase/4 + lu*lu + ll/2*(xbase*(cos(theta1_)+cos(theta4_))- ll*(1+cos(theta1_+theta4_))));
     float yendsqrt2_ = sqrt(pow((-xbase/ll + cos(theta1_)+ cos(theta4_)),2)+ pow((sin(theta1_)-sin(theta4_)),2));
     yend_ = (yendsum_ + yendsqrt1_/yendsqrt2_);
 }
 
-//dit wordt aangeroepen in de tickerfunctie
+//Below we have the inverse kinematics function.
 void inverse(float prex, float prey)
 {
-    /*
-                                    qn = qn-1 + (jacobian^-1)*dPref/dt *deltaT
-                                    ofwel
-                                    thetai+1 = thetai +(jacobian)^-1*vector(deltaX, DeltaY)
-                                    waar Pref = emg signaal
-                                    */ //achtergrondinfo hierboven...
-    //
-
-    theta1 += (prefx*(iJ[0][0])+iJ[0][1]*prey)*deltat; //theta 1 is zichzelf plus wat hier staat (is kinematics)
-    theta4 += (prefx*iJ[1][0]+iJ[1][1]*prey)*deltat;//"                                                       "
-    //Hier worden xend en yend doorgerekend, die formules kan je overslaan
-
+    theta1 += (prefx*(iJ[0][0])+iJ[0][1]*prey)*dt;                          //theta 1 is itself + the desired speeds in x and y direction, both
+    theta4 += (prefx*iJ[1][0]+iJ[1][1]*prey)*dt;                            //multiplied with a prefactor which comes out of the motor   
+                                                                            //the iJ values are defined in the "kinematics" function
+    
+    //Calling the forward kinematics, to calculate xend and yend
     FK(xend,yend,theta1,theta4);
 
 }
 
-
-
-//deze onderstaande tickerfunctie wordt aangeroepen
 void kinematics()
 {
 
-//Hieronder rekenen we eerst de aparte dingen van de jacobiaan uit. (sla maar over)
     float xend1,xend2,xend3,yend1,yend2,yend3;
     const float dq = 0.0001;
     FK(xend1,yend1,theta1,theta4);
@@ -293,104 +284,18 @@
     iJ[0][1]= -c*Q;
     iJ[1][0] = -b*Q;
     iJ[1][1] = a*Q;
-    /*
-
-    jacobiana = (500*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-          sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
-       ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-        (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.))/
-    (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
-        ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
-      (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
-     125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
-      (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
-        ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
-
-    jacobianb = (-250*(ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-          (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-       (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
-        sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))))/
-    (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
-        ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
-      (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
-     125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
-      (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
-        ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
-
-    jacobianc = (-500*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-          sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
-       ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-        (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.))/
-    (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
-        ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
-      (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
-     125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
-      (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
-        ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
-
-    jacobiand = (250*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-          (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-       (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
-        sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))))/
-    (-125000*(-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) +
-        ((-xbase + ll*(cos(0.002 + theta1) + cos(theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(0.002 + theta1) + cos(theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. + (ll*(sin(0.002 + theta1) + sin(theta4)))/2.)*
-      (ll*(-cos(theta1) + cos(theta4)) + ll*(cos(theta1) - cos(0.002 + theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(0.002 + theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(theta1) + sin(0.002 + theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) +
-     125000*(ll*(cos(0.002 + theta1) - cos(theta4)) + ll*(-cos(theta1) + cos(theta4)) + (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(theta1 + theta4))*
-           (sin(theta1) - sin(theta4)))/sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2)) +
-        (sqrt(-pow(xbase,2) - 2*pow(ll,2) + 4*pow(lu,2) + 2*xbase*ll*cos(0.002 + theta1) + 2*xbase*ll*cos(theta4) - 2*pow(ll,2)*cos(0.002 + theta1 + theta4))*(-sin(0.002 + theta1) + sin(theta4)))/
-         sqrt(pow(-(xbase/ll) + cos(0.002 + theta1) + cos(theta4),2) + pow(sin(0.002 + theta1) - sin(theta4),2)))*
-      (-(((-(xbase/ll) + cos(theta1) + cos(theta4))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(theta4)) - ll*(1 + cos(theta1 + theta4))))/2.))/
-           sqrt(pow(-(xbase/ll) + cos(theta1) + cos(theta4),2) + pow(sin(theta1) - sin(theta4),2))) - (ll*(sin(theta1) + sin(theta4)))/2. +
-        ((-xbase + ll*(cos(theta1) + cos(0.002 + theta4)))*sqrt(-pow(xbase,2)/4. + pow(lu,2) + (ll*(xbase*(cos(theta1) + cos(0.002 + theta4)) - ll*(1 + cos(0.002 + theta1 + theta4))))/2.))/
-         (ll*sqrt(pow(-(xbase/ll) + cos(theta1) + cos(0.002 + theta4),2) + pow(sin(theta1) - sin(0.002 + theta4),2))) + (ll*(sin(theta1) + sin(0.002 + theta4)))/2.));
-            //vanaf hier weer door met lezen!
-            */
-    prefx = 1*xMove; //sw3, dit is belangrijk! prefx staat voor P_(reference) en het is de snelheid van de endeffector als
-    // de button ingedrukt wordt (als emg = boven treshold) is de prefx 1 (da's de rode 1)
-    prefy = 1*yMove; //sw2,
+    
+    
+    prefx = 1*xMove;                    //sw3, Prefx has multiplier one, but that has to become a value dependant on the motor
+    prefy = 1*yMove;                    //sw2,
     inverse(prefx, prefy);
 }
 
+// these values are printed for controlling purposes (can later be removed)
 void printvalue()
 {
-    pc.printf("X-value: %f \t Y-value: %f \n\r \t theta 1 = %f \t theta4 =  %f",xend, yend,theta1,theta4);           // in teraterm zijn de bovenste twee waardes hoeken, de onderste twee zijn de x en y coordinaat
-
-}
+    pc.printf("X-value: %f \t Y-value: %f \n\r \t theta 1 = %f \t theta4 =  %f",xend, yend,theta1,theta4);
+    }
 
 //State Machine
 void StateMachine()
@@ -411,7 +316,7 @@
                 blueled = 0;
             }
 
-            CalibrateEMG0();
+            CalibrateEMG0();   //start emg calibration every 0.005 seconds
             CalibrateEMG1();   //Start EMG calibration every 0.005 seconds
 
             if (local_timer.read() > 20) {                              //If the bool is changed
@@ -425,8 +330,6 @@
             if (StateBool) {                                    //If you start to go in this state
                 pc.printf("You are know in the working mode. \r\n");    //Print in which mode you are
                 StateBool = false;                              //Set the start of state bool to true
-                //EMGCalibration0_timer.detach();                 //Detach the the calibration
-                //EMGCalibration1_timer.detach();                 //Detach the calibration
                 //ReadUseEMG0_timer.attach(&ReadUseEMG0, 0.005);  //Start the use of EMG
                 //ReadUseEMG1_timer.attach(&ReadUseEMG1,0.005);   //Start the use of EMG
                 //kin.attach(kinematics, 0.005); // roep de ticker aan (
@@ -434,9 +337,9 @@
             }
             blueled = 1;
 
-            ReadUseEMG0();
-            ReadUseEMG1();
-            kinematics();
+            ReadUseEMG0();//Start the use of EMG
+            ReadUseEMG1();//Start the use of EMG
+            kinematics(); //Starts calculating the x and y value of the endeffector, as well as the desired values and their BIJBEHORENDE angles
 
             //motorcontroller
             //Set the blue led off
@@ -452,6 +355,7 @@
     //Initial conditions
     theta1 = PI*0.49;                                           //Angle of the left motor
     theta4 = PI*0.49;
+    FK(xend,yend,theta1,theta4);
     pc.baud(115200);
     greenled = 1;                                               //First turn the LEDs off
     blueled = 1;