Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: RFID_copy Smart_vending_machine_Project_W7500 Receive_RFID_Data_in_W750SR_and_send_RFID_andNTP_Data_to_MQTT W7500_RFid_ID_W750SR
Fork of MFRC522 by
MFRC522.h
- Committer:
- AtomX
- Date:
- 2014-01-06
- Revision:
- 1:63d729186747
- Parent:
- 0:efd786b99a72
File content as of revision 1:63d729186747:
/**
* MFRC522.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa (circuitito.com), Jan, 2012.
* Rewritten by Soren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.)
* Ported to mbed by Martin Olejar, Dec, 2013
*
* Please read this file for an overview and then MFRC522.cpp for comments on the specific functions.
* Search for "mf-rc522" on ebay.com to purchase the MF-RC522 board.
*
* There are three hardware components involved:
* 1) The micro controller: An Arduino
* 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless Reader IC
* 3) The PICC (short for Proximity Integrated Circuit Card): A card or tag using the ISO 14443A interface, eg Mifare or NTAG203.
*
* The microcontroller and card reader uses SPI for communication.
* The protocol is described in the MFRC522 datasheet: http://www.nxp.com/documents/data_sheet/MFRC522.pdf
*
* The card reader and the tags communicate using a 13.56MHz electromagnetic field.
* The protocol is defined in ISO/IEC 14443-3 Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision".
* A free version of the final draft can be found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf
* Details are found in chapter 6, Type A: Initialization and anticollision.
*
* If only the PICC UID is wanted, the above documents has all the needed information.
* To read and write from MIFARE PICCs, the MIFARE protocol is used after the PICC has been selected.
* The MIFARE Classic chips and protocol is described in the datasheets:
* 1K: http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
* 4K: http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
* Mini: http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf
* The MIFARE Ultralight chip and protocol is described in the datasheets:
* Ultralight: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
* Ultralight C: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
*
* MIFARE Classic 1K (MF1S503x):
* Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes.
* The blocks are numbered 0-63.
* Block 3 in each sector is the Sector Trailer. See http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7:
* Bytes 0-5: Key A
* Bytes 6-8: Access Bits
* Bytes 9: User data
* Bytes 10-15: Key B (or user data)
* Block 0 is read only manufacturer data.
* To access a block, an authentication using a key from the block's sector must be performed first.
* Example: To read from block 10, first authenticate using a key from sector 3 (blocks 8-11).
* All keys are set to FFFFFFFFFFFFh at chip delivery.
* Warning: Please read section 8.7 "Memory Access". It includes this text: if the PICC detects a format violation the whole sector is irreversibly blocked.
* To use a block in "value block" mode (for Increment/Decrement operations) you need to change the sector trailer. Use PICC_SetAccessBits() to calculate the bit patterns.
* MIFARE Classic 4K (MF1S703x):
* Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes.
* The blocks are numbered 0-255.
* The last block in each sector is the Sector Trailer like above.
* MIFARE Classic Mini (MF1 IC S20):
* Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes.
* The blocks are numbered 0-19.
* The last block in each sector is the Sector Trailer like above.
*
* MIFARE Ultralight (MF0ICU1):
* Has 16 pages of 4 bytes = 64 bytes.
* Pages 0 + 1 is used for the 7-byte UID.
* Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2)
* Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0.
* Pages 4-15 are read/write unless blocked by the lock bytes in page 2.
* MIFARE Ultralight C (MF0ICU2):
* Has 48 pages of 4 bytes = 64 bytes.
* Pages 0 + 1 is used for the 7-byte UID.
* Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2)
* Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0.
* Pages 4-39 are read/write unless blocked by the lock bytes in page 2.
* Page 40 Lock bytes
* Page 41 16 bit one way counter
* Pages 42-43 Authentication configuration
* Pages 44-47 Authentication key
*/
#ifndef MFRC522_h
#define MFRC522_h
#include "mbed.h"
/**
* MFRC522 example
*
* @code
* #include "mbed.h"
* #include "MFRC522.h"
*
* //KL25Z Pins for MFRC522 SPI interface
* #define SPI_MOSI PTC6
* #define SPI_MISO PTC7
* #define SPI_SCLK PTC5
* #define SPI_CS PTC4
* // KL25Z Pin for MFRC522 reset
* #define MF_RESET PTC3
* // KL25Z Pins for Debug UART port
* #define UART_RX PTA1
* #define UART_TX PTA2
*
* DigitalOut LedRed (LED_RED);
* DigitalOut LedGreen (LED_GREEN);
*
* Serial DebugUART(UART_TX, UART_RX);
* MFRC522 RfChip (SPI_MOSI, SPI_MISO, SPI_SCLK, SPI_CS, MF_RESET);
*
* int main(void) {
* // Set debug UART speed
* DebugUART.baud(115200);
*
* // Init. RC522 Chip
* RfChip.PCD_Init();
*
* while (true) {
* LedRed = 1;
* LedGreen = 1;
*
* // Look for new cards
* if ( ! RfChip.PICC_IsNewCardPresent())
* {
* wait_ms(500);
* continue;
* }
*
* LedRed = 0;
*
* // Select one of the cards
* if ( ! RfChip.PICC_ReadCardSerial())
* {
* wait_ms(500);
* continue;
* }
*
* LedRed = 1;
* LedGreen = 0;
*
* // Print Card UID
* printf("Card UID: ");
* for (uint8_t i = 0; i < RfChip.uid.size; i++)
* {
* printf(" %X02", RfChip.uid.uidByte[i]);
* }
* printf("\n\r");
*
* // Print Card type
* uint8_t piccType = RfChip.PICC_GetType(RfChip.uid.sak);
* printf("PICC Type: %s \n\r", RfChip.PICC_GetTypeName(piccType));
* wait_ms(1000);
* }
* }
* @endcode
*/
class MFRC522 {
public:
/**
* MFRC522 registers (described in chapter 9 of the datasheet).
* When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3)
*/
enum PCD_Register {
// Page 0: Command and status
// 0x00 // reserved for future use
CommandReg = 0x01 << 1, // starts and stops command execution
ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits
DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits
ComIrqReg = 0x04 << 1, // interrupt request bits
DivIrqReg = 0x05 << 1, // interrupt request bits
ErrorReg = 0x06 << 1, // error bits showing the error status of the last command executed
Status1Reg = 0x07 << 1, // communication status bits
Status2Reg = 0x08 << 1, // receiver and transmitter status bits
FIFODataReg = 0x09 << 1, // input and output of 64 byte FIFO buffer
FIFOLevelReg = 0x0A << 1, // number of bytes stored in the FIFO buffer
WaterLevelReg = 0x0B << 1, // level for FIFO underflow and overflow warning
ControlReg = 0x0C << 1, // miscellaneous control registers
BitFramingReg = 0x0D << 1, // adjustments for bit-oriented frames
CollReg = 0x0E << 1, // bit position of the first bit-collision detected on the RF interface
// 0x0F // reserved for future use
// Page 1:Command
// 0x10 // reserved for future use
ModeReg = 0x11 << 1, // defines general modes for transmitting and receiving
TxModeReg = 0x12 << 1, // defines transmission data rate and framing
RxModeReg = 0x13 << 1, // defines reception data rate and framing
TxControlReg = 0x14 << 1, // controls the logical behavior of the antenna driver pins TX1 and TX2
TxASKReg = 0x15 << 1, // controls the setting of the transmission modulation
TxSelReg = 0x16 << 1, // selects the internal sources for the antenna driver
RxSelReg = 0x17 << 1, // selects internal receiver settings
RxThresholdReg = 0x18 << 1, // selects thresholds for the bit decoder
DemodReg = 0x19 << 1, // defines demodulator settings
// 0x1A // reserved for future use
// 0x1B // reserved for future use
MfTxReg = 0x1C << 1, // controls some MIFARE communication transmit parameters
MfRxReg = 0x1D << 1, // controls some MIFARE communication receive parameters
// 0x1E // reserved for future use
SerialSpeedReg = 0x1F << 1, // selects the speed of the serial UART interface
// Page 2: Configuration
// 0x20 // reserved for future use
CRCResultRegH = 0x21 << 1, // shows the MSB and LSB values of the CRC calculation
CRCResultRegL = 0x22 << 1,
// 0x23 // reserved for future use
ModWidthReg = 0x24 << 1, // controls the ModWidth setting?
// 0x25 // reserved for future use
RFCfgReg = 0x26 << 1, // configures the receiver gain
GsNReg = 0x27 << 1, // selects the conductance of the antenna driver pins TX1 and TX2 for modulation
CWGsPReg = 0x28 << 1, // defines the conductance of the p-driver output during periods of no modulation
ModGsPReg = 0x29 << 1, // defines the conductance of the p-driver output during periods of modulation
TModeReg = 0x2A << 1, // defines settings for the internal timer
TPrescalerReg = 0x2B << 1, // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg.
TReloadRegH = 0x2C << 1, // defines the 16-bit timer reload value
TReloadRegL = 0x2D << 1,
TCntValueRegH = 0x2E << 1, // shows the 16-bit timer value
TCntValueRegL = 0x2F << 1,
// Page 3:Test Registers
// 0x30 // reserved for future use
TestSel1Reg = 0x31 << 1, // general test signal configuration
TestSel2Reg = 0x32 << 1, // general test signal configuration
TestPinEnReg = 0x33 << 1, // enables pin output driver on pins D1 to D7
TestPinValueReg = 0x34 << 1, // defines the values for D1 to D7 when it is used as an I/O bus
TestBusReg = 0x35 << 1, // shows the status of the internal test bus
AutoTestReg = 0x36 << 1, // controls the digital self test
VersionReg = 0x37 << 1, // shows the software version
AnalogTestReg = 0x38 << 1, // controls the pins AUX1 and AUX2
TestDAC1Reg = 0x39 << 1, // defines the test value for TestDAC1
TestDAC2Reg = 0x3A << 1, // defines the test value for TestDAC2
TestADCReg = 0x3B << 1 // shows the value of ADC I and Q channels
// 0x3C // reserved for production tests
// 0x3D // reserved for production tests
// 0x3E // reserved for production tests
// 0x3F // reserved for production tests
};
// MFRC522 commands Described in chapter 10 of the datasheet.
enum PCD_Command {
PCD_Idle = 0x00, // no action, cancels current command execution
PCD_Mem = 0x01, // stores 25 bytes into the internal buffer
PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number
PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self test
PCD_Transmit = 0x04, // transmits data from the FIFO buffer
PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit
PCD_Receive = 0x08, // activates the receiver circuits
PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission
PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader
PCD_SoftReset = 0x0F // resets the MFRC522
};
// Commands sent to the PICC.
enum PICC_Command {
// The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4)
PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision.
PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 1
PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT.
// The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
// Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector.
// The read/write commands can also be used for MIFARE Ultralight.
PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A
PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B
PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight.
PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight.
PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register.
PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register.
PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register.
PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block.
// The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6)
// The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC.
};
// MIFARE constants that does not fit anywhere else
enum MIFARE_Misc {
MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK.
MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes.
};
// PICC types we can detect. Remember to update PICC_GetTypeName() if you add more.
enum PICC_Type {
PICC_TYPE_UNKNOWN = 0,
PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4
PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC)
PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes
PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB
PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB
PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C
PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus
PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure
PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete.
};
// Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more.
enum StatusCode {
STATUS_OK = 1, // Success
STATUS_ERROR = 2, // Error in communication
STATUS_COLLISION = 3, // Collision detected
STATUS_TIMEOUT = 4, // Timeout in communication.
STATUS_NO_ROOM = 5, // A buffer is not big enough.
STATUS_INTERNAL_ERROR = 6, // Internal error in the code. Should not happen ;-)
STATUS_INVALID = 7, // Invalid argument.
STATUS_CRC_WRONG = 8, // The CRC_A does not match
STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK.
};
// A struct used for passing the UID of a PICC.
typedef struct {
uint8_t size; // Number of bytes in the UID. 4, 7 or 10.
uint8_t uidByte[10];
uint8_t sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
} Uid;
// A struct used for passing a MIFARE Crypto1 key
typedef struct {
uint8_t keyByte[MF_KEY_SIZE];
} MIFARE_Key;
// Member variables
Uid uid; // Used by PICC_ReadCardSerial().
// Size of the MFRC522 FIFO
static const uint8_t FIFO_SIZE = 64; // The FIFO is 64 bytes.
/**
* MFRC522 constructor
*
* @param mosi SPI MOSI pin
* @param miso SPI MISO pin
* @param sclk SPI SCLK pin
* @param cs SPI CS pin
* @param reset Reset pin
*/
MFRC522(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset);
/**
* MFRC522 destructor
*/
~MFRC522();
// ************************************************************************************
//! @name Functions for manipulating the MFRC522
// ************************************************************************************
//@{
/**
* Initializes the MFRC522 chip.
*/
void PCD_Init (void);
/**
* Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
*/
void PCD_Reset (void);
/**
* Turns the antenna on by enabling pins TX1 and TX2.
* After a reset these pins disabled.
*/
void PCD_AntennaOn (void);
/**
* Writes a byte to the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*
* @param reg The register to write to. One of the PCD_Register enums.
* @param value The value to write.
*/
void PCD_WriteRegister (uint8_t reg, uint8_t value);
/**
* Writes a number of bytes to the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*
* @param reg The register to write to. One of the PCD_Register enums.
* @param count The number of bytes to write to the register
* @param values The values to write. Byte array.
*/
void PCD_WriteRegister (uint8_t reg, uint8_t count, uint8_t *values);
/**
* Reads a byte from the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*
* @param reg The register to read from. One of the PCD_Register enums.
* @returns Register value
*/
uint8_t PCD_ReadRegister (uint8_t reg);
/**
* Reads a number of bytes from the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*
* @param reg The register to read from. One of the PCD_Register enums.
* @param count The number of bytes to read.
* @param values Byte array to store the values in.
* @param rxAlign Only bit positions rxAlign..7 in values[0] are updated.
*/
void PCD_ReadRegister (uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign = 0);
/**
* Sets the bits given in mask in register reg.
*
* @param reg The register to update. One of the PCD_Register enums.
* @param mask The bits to set.
*/
void PCD_SetRegisterBits(uint8_t reg, uint8_t mask);
/**
* Clears the bits given in mask from register reg.
*
* @param reg The register to update. One of the PCD_Register enums.
* @param mask The bits to clear.
*/
void PCD_ClrRegisterBits(uint8_t reg, uint8_t mask);
/**
* Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
*
* @param data Pointer to the data to transfer to the FIFO for CRC calculation.
* @param length The number of bytes to transfer.
* @param result Pointer to result buffer. Result is written to result[0..1], low byte first.
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PCD_CalculateCRC (uint8_t *data, uint8_t length, uint8_t *result);
/**
* Executes the Transceive command.
* CRC validation can only be done if backData and backLen are specified.
*
* @param sendData Pointer to the data to transfer to the FIFO.
* @param sendLen Number of bytes to transfer to the FIFO.
* @param backData NULL or pointer to buffer if data should be read back after executing the command.
* @param backLen Max number of bytes to write to *backData. Out: The number of bytes returned.
* @param validBits The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL.
* @param rxAlign Defines the bit position in backData[0] for the first bit received. Default 0.
* @param checkCRC True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PCD_TransceiveData (uint8_t *sendData,
uint8_t sendLen,
uint8_t *backData,
uint8_t *backLen,
uint8_t *validBits = NULL,
uint8_t rxAlign = 0,
bool checkCRC = false);
/**
* Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO.
* CRC validation can only be done if backData and backLen are specified.
*
* @param command The command to execute. One of the PCD_Command enums.
* @param waitIRq The bits in the ComIrqReg register that signals successful completion of the command.
* @param sendData Pointer to the data to transfer to the FIFO.
* @param sendLen Number of bytes to transfer to the FIFO.
* @param backData NULL or pointer to buffer if data should be read back after executing the command.
* @param backLen In: Max number of bytes to write to *backData. Out: The number of bytes returned.
* @param validBits In/Out: The number of valid bits in the last byte. 0 for 8 valid bits.
* @param rxAlign In: Defines the bit position in backData[0] for the first bit received. Default 0.
* @param checkCRC In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PCD_CommunicateWithPICC(uint8_t command,
uint8_t waitIRq,
uint8_t *sendData,
uint8_t sendLen,
uint8_t *backData = NULL,
uint8_t *backLen = NULL,
uint8_t *validBits = NULL,
uint8_t rxAlign = 0,
bool checkCRC = false);
/**
* Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @param bufferATQA The buffer to store the ATQA (Answer to request) in
* @param bufferSize Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PICC_RequestA (uint8_t *bufferATQA, uint8_t *bufferSize);
/**
* Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @param bufferATQA The buffer to store the ATQA (Answer to request) in
* @param bufferSize Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PICC_WakeupA (uint8_t *bufferATQA, uint8_t *bufferSize);
/**
* Transmits REQA or WUPA commands.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @param command The command to send - PICC_CMD_REQA or PICC_CMD_WUPA
* @param bufferATQA The buffer to store the ATQA (Answer to request) in
* @param bufferSize Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PICC_REQA_or_WUPA (uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize);
/**
* Transmits SELECT/ANTICOLLISION commands to select a single PICC.
* Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA().
* On success:
* - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)
* - The UID size and value of the chosen PICC is returned in *uid along with the SAK.
*
* A PICC UID consists of 4, 7 or 10 bytes.
* Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used:
*
* UID size Number of UID bytes Cascade levels Example of PICC
* ======== =================== ============== ===============
* single 4 1 MIFARE Classic
* double 7 2 MIFARE Ultralight
* triple 10 3 Not currently in use?
*
*
* @param uid Pointer to Uid struct. Normally output, but can also be used to supply a known UID.
* @param validBits The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PICC_Select (Uid *uid, uint8_t validBits = 0);
/**
* Instructs a PICC in state ACTIVE(*) to go to state HALT.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PICC_HaltA (void);
// ************************************************************************************
//@}
// ************************************************************************************
//! @name Functions for communicating with MIFARE PICCs
// ************************************************************************************
//@{
/**
* Executes the MFRC522 MFAuthent command.
* This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card.
* The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1.
* For use with MIFARE Classic PICCs.
* The PICC must be selected - ie in state ACTIVE(*) - before calling this function.
* Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start.
*
* All keys are set to FFFFFFFFFFFFh at chip delivery.
*
* @param command PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B
* @param blockAddr The block number. See numbering in the comments in the .h file.
* @param key Pointer to the Crypteo1 key to use (6 bytes)
* @param uid Pointer to Uid struct. The first 4 bytes of the UID is used.
*
* @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key.
*/
uint8_t PCD_Authenticate (uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid);
/**
* Used to exit the PCD from its authenticated state.
* Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
*/
void PCD_StopCrypto1 (void);
/**
* Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
*
* For MIFARE Classic the sector containing the block must be authenticated before calling this function.
*
* For MIFARE Ultralight only addresses 00h to 0Fh are decoded.
* The MF0ICU1 returns a NAK for higher addresses.
* The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument.
* For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned.
* A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned.
*
* The buffer must be at least 18 bytes because a CRC_A is also returned.
* Checks the CRC_A before returning STATUS_OK.
*
* @param blockAddr MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from.
* @param buffer The buffer to store the data in
* @param bufferSize Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_Read (uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize);
/**
* Writes 16 bytes to the active PICC.
*
* For MIFARE Classic the sector containing the block must be authenticated before calling this function.
*
* For MIFARE Ultralight the opretaion is called "COMPATIBILITY WRITE".
* Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3)
* are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0.
*
* @param blockAddr MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to.
* @param buffer The 16 bytes to write to the PICC
* @param bufferSize Buffer size, must be at least 16 bytes. Exactly 16 bytes are written.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_Write (uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize);
/**
* Writes a 4 byte page to the active MIFARE Ultralight PICC.
*
* @param page The page (2-15) to write to.
* @param buffer The 4 bytes to write to the PICC
* @param bufferSize Buffer size, must be at least 4 bytes. Exactly 4 bytes are written.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize);
/**
* MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @param blockAddr The block (0-0xff) number.
* @param delta This number is subtracted from the value of block blockAddr.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_Decrement (uint8_t blockAddr, uint32_t delta);
/**
* MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @param blockAddr The block (0-0xff) number.
* @param delta This number is added to the value of block blockAddr.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_Increment (uint8_t blockAddr, uint32_t delta);
/**
* MIFARE Restore copies the value of the addressed block into a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @param blockAddr The block (0-0xff) number.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_Restore (uint8_t blockAddr);
/**
* MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
*
* @param blockAddr The block (0-0xff) number.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_Transfer (uint8_t blockAddr);
// ************************************************************************************
//@}
// ************************************************************************************
//! @name Support functions
// ************************************************************************************
//@{
/**
* Wrapper for MIFARE protocol communication.
* Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout.
*
* @param sendData Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A.
* @param sendLen Number of bytes in sendData.
* @param acceptTimeout True => A timeout is also success
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout = false);
/**
* Translates the SAK (Select Acknowledge) to a PICC type.
*
* @param sak The SAK byte returned from PICC_Select().
*
* @return PICC_Type
*/
uint8_t PICC_GetType (uint8_t sak);
/**
* Returns a string pointer to the PICC type name.
*
* @param type One of the PICC_Type enums.
*
* @return A string pointer to the PICC type name.
*/
char* PICC_GetTypeName (uint8_t type);
/**
* Returns a string pointer to a status code name.
*
* @param code One of the StatusCode enums.
*
* @return A string pointer to a status code name.
*/
char* GetStatusCodeName (uint8_t code);
/**
* Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1).
*
* @param accessBitBuffer Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set.
* @param g0 Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39)
* @param g1 Access bits [C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39)
* @param g2 Access bits [C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39)
* @param g3 Access bits [C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39)
*/
void MIFARE_SetAccessBits (uint8_t *accessBitBuffer,
uint8_t g0,
uint8_t g1,
uint8_t g2,
uint8_t g3);
// ************************************************************************************
//@}
// ************************************************************************************
//! @name Convenience functions - does not add extra functionality
// ************************************************************************************
//@{
/**
* Returns true if a PICC responds to PICC_CMD_REQA.
* Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
*
* @return bool
*/
bool PICC_IsNewCardPresent(void);
/**
* Simple wrapper around PICC_Select.
* Returns true if a UID could be read.
* Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first.
* The read UID is available in the class variable uid.
*
* @return bool
*/
bool PICC_ReadCardSerial (void);
// ************************************************************************************
//@}
private:
SPI m_SPI;
DigitalOut m_CS;
DigitalOut m_RESET;
/**
* Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
*
* @param command The command to use
* @param blockAddr The block (0-0xff) number.
* @param data The data to transfer in step 2
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
uint8_t MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data);
};
#endif
