get an input from RFID to control the LCD

Dependencies:   mbed

Fork of LCD4884 by Dan Ghiciulescu

Committer:
Pinmanee
Date:
Mon Dec 11 15:10:01 2017 +0000
Revision:
4:5977fe753a55
Parent:
1:baf91b6482eb
LCD that can show graph

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Pinmanee 1:baf91b6482eb 1 /*
Pinmanee 1:baf91b6482eb 2 * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
Pinmanee 1:baf91b6482eb 3 * _Please_ see the comments in MFRC522.h - they give useful hints and background.
Pinmanee 1:baf91b6482eb 4 * Released into the public domain.
Pinmanee 1:baf91b6482eb 5 */
Pinmanee 1:baf91b6482eb 6
Pinmanee 1:baf91b6482eb 7 #include "MFRC522.h"
Pinmanee 1:baf91b6482eb 8
Pinmanee 1:baf91b6482eb 9 static const char* const _TypeNamePICC[] =
Pinmanee 1:baf91b6482eb 10 {
Pinmanee 1:baf91b6482eb 11 "Unknown type",
Pinmanee 1:baf91b6482eb 12 "PICC compliant with ISO/IEC 14443-4",
Pinmanee 1:baf91b6482eb 13 "PICC compliant with ISO/IEC 18092 (NFC)",
Pinmanee 1:baf91b6482eb 14 "MIFARE Mini, 320 bytes",
Pinmanee 1:baf91b6482eb 15 "MIFARE 1KB",
Pinmanee 1:baf91b6482eb 16 "MIFARE 4KB",
Pinmanee 1:baf91b6482eb 17 "MIFARE Ultralight or Ultralight C",
Pinmanee 1:baf91b6482eb 18 "MIFARE Plus",
Pinmanee 1:baf91b6482eb 19 "MIFARE TNP3XXX",
Pinmanee 1:baf91b6482eb 20
Pinmanee 1:baf91b6482eb 21 /* not complete UID */
Pinmanee 1:baf91b6482eb 22 "SAK indicates UID is not complete"
Pinmanee 1:baf91b6482eb 23 };
Pinmanee 1:baf91b6482eb 24
Pinmanee 1:baf91b6482eb 25 static const char* const _ErrorMessage[] =
Pinmanee 1:baf91b6482eb 26 {
Pinmanee 1:baf91b6482eb 27 "Unknown error",
Pinmanee 1:baf91b6482eb 28 "Success",
Pinmanee 1:baf91b6482eb 29 "Error in communication",
Pinmanee 1:baf91b6482eb 30 "Collision detected",
Pinmanee 1:baf91b6482eb 31 "Timeout in communication",
Pinmanee 1:baf91b6482eb 32 "A buffer is not big enough",
Pinmanee 1:baf91b6482eb 33 "Internal error in the code, should not happen",
Pinmanee 1:baf91b6482eb 34 "Invalid argument",
Pinmanee 1:baf91b6482eb 35 "The CRC_A does not match",
Pinmanee 1:baf91b6482eb 36 "A MIFARE PICC responded with NAK"
Pinmanee 1:baf91b6482eb 37 };
Pinmanee 1:baf91b6482eb 38
Pinmanee 1:baf91b6482eb 39 #define MFRC522_MaxPICCs (sizeof(_TypeNamePICC)/sizeof(_TypeNamePICC[0]))
Pinmanee 1:baf91b6482eb 40 #define MFRC522_MaxError (sizeof(_ErrorMessage)/sizeof(_ErrorMessage[0]))
Pinmanee 1:baf91b6482eb 41
Pinmanee 1:baf91b6482eb 42 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 43 // Functions for setting up the driver
Pinmanee 1:baf91b6482eb 44 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 45
Pinmanee 1:baf91b6482eb 46 /**
Pinmanee 1:baf91b6482eb 47 * Constructor.
Pinmanee 1:baf91b6482eb 48 * Prepares the output pins.
Pinmanee 1:baf91b6482eb 49 */
Pinmanee 1:baf91b6482eb 50 MFRC522::MFRC522(PinName mosi,
Pinmanee 1:baf91b6482eb 51 PinName miso,
Pinmanee 1:baf91b6482eb 52 PinName sclk,
Pinmanee 1:baf91b6482eb 53 PinName cs,
Pinmanee 1:baf91b6482eb 54 PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset)
Pinmanee 1:baf91b6482eb 55 {
Pinmanee 1:baf91b6482eb 56 /* Configure SPI bus */
Pinmanee 1:baf91b6482eb 57 m_SPI.format(8, 0);
Pinmanee 1:baf91b6482eb 58 m_SPI.frequency(8000000);
Pinmanee 1:baf91b6482eb 59
Pinmanee 1:baf91b6482eb 60 /* Release SPI-CS pin */
Pinmanee 1:baf91b6482eb 61 m_CS = 1;
Pinmanee 1:baf91b6482eb 62
Pinmanee 1:baf91b6482eb 63 /* Release RESET pin */
Pinmanee 1:baf91b6482eb 64 m_RESET = 1;
Pinmanee 1:baf91b6482eb 65 } // End constructor
Pinmanee 1:baf91b6482eb 66
Pinmanee 1:baf91b6482eb 67
Pinmanee 1:baf91b6482eb 68 /**
Pinmanee 1:baf91b6482eb 69 * Destructor.
Pinmanee 1:baf91b6482eb 70 */
Pinmanee 1:baf91b6482eb 71 MFRC522::~MFRC522()
Pinmanee 1:baf91b6482eb 72 {
Pinmanee 1:baf91b6482eb 73
Pinmanee 1:baf91b6482eb 74 }
Pinmanee 1:baf91b6482eb 75
Pinmanee 1:baf91b6482eb 76
Pinmanee 1:baf91b6482eb 77 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 78 // Basic interface functions for communicating with the MFRC522
Pinmanee 1:baf91b6482eb 79 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 80
Pinmanee 1:baf91b6482eb 81 /**
Pinmanee 1:baf91b6482eb 82 * Writes a byte to the specified register in the MFRC522 chip.
Pinmanee 1:baf91b6482eb 83 * The interface is described in the datasheet section 8.1.2.
Pinmanee 1:baf91b6482eb 84 */
Pinmanee 1:baf91b6482eb 85 void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value)
Pinmanee 1:baf91b6482eb 86 {
Pinmanee 1:baf91b6482eb 87 m_CS = 0; /* Select SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 88
Pinmanee 1:baf91b6482eb 89 // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
Pinmanee 1:baf91b6482eb 90 (void) m_SPI.write(reg & 0x7E);
Pinmanee 1:baf91b6482eb 91 (void) m_SPI.write(value);
Pinmanee 1:baf91b6482eb 92
Pinmanee 1:baf91b6482eb 93 m_CS = 1; /* Release SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 94 } // End PCD_WriteRegister()
Pinmanee 1:baf91b6482eb 95
Pinmanee 1:baf91b6482eb 96 /**
Pinmanee 1:baf91b6482eb 97 * Writes a number of bytes to the specified register in the MFRC522 chip.
Pinmanee 1:baf91b6482eb 98 * The interface is described in the datasheet section 8.1.2.
Pinmanee 1:baf91b6482eb 99 */
Pinmanee 1:baf91b6482eb 100 void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values)
Pinmanee 1:baf91b6482eb 101 {
Pinmanee 1:baf91b6482eb 102 m_CS = 0; /* Select SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 103
Pinmanee 1:baf91b6482eb 104 // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
Pinmanee 1:baf91b6482eb 105 (void) m_SPI.write(reg & 0x7E);
Pinmanee 1:baf91b6482eb 106 for (uint8_t index = 0; index < count; index++)
Pinmanee 1:baf91b6482eb 107 {
Pinmanee 1:baf91b6482eb 108 (void) m_SPI.write(values[index]);
Pinmanee 1:baf91b6482eb 109 }
Pinmanee 1:baf91b6482eb 110
Pinmanee 1:baf91b6482eb 111 m_CS = 1; /* Release SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 112 } // End PCD_WriteRegister()
Pinmanee 1:baf91b6482eb 113
Pinmanee 1:baf91b6482eb 114 /**
Pinmanee 1:baf91b6482eb 115 * Reads a byte from the specified register in the MFRC522 chip.
Pinmanee 1:baf91b6482eb 116 * The interface is described in the datasheet section 8.1.2.
Pinmanee 1:baf91b6482eb 117 */
Pinmanee 1:baf91b6482eb 118 uint8_t MFRC522::PCD_ReadRegister(uint8_t reg)
Pinmanee 1:baf91b6482eb 119 {
Pinmanee 1:baf91b6482eb 120 uint8_t value;
Pinmanee 1:baf91b6482eb 121 m_CS = 0; /* Select SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 122
Pinmanee 1:baf91b6482eb 123 // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
Pinmanee 1:baf91b6482eb 124 (void) m_SPI.write(0x80 | reg);
Pinmanee 1:baf91b6482eb 125
Pinmanee 1:baf91b6482eb 126 // Read the value back. Send 0 to stop reading.
Pinmanee 1:baf91b6482eb 127 value = m_SPI.write(0);
Pinmanee 1:baf91b6482eb 128
Pinmanee 1:baf91b6482eb 129 m_CS = 1; /* Release SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 130
Pinmanee 1:baf91b6482eb 131 return value;
Pinmanee 1:baf91b6482eb 132 } // End PCD_ReadRegister()
Pinmanee 1:baf91b6482eb 133
Pinmanee 1:baf91b6482eb 134 /**
Pinmanee 1:baf91b6482eb 135 * Reads a number of bytes from the specified register in the MFRC522 chip.
Pinmanee 1:baf91b6482eb 136 * The interface is described in the datasheet section 8.1.2.
Pinmanee 1:baf91b6482eb 137 */
Pinmanee 1:baf91b6482eb 138 void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign)
Pinmanee 1:baf91b6482eb 139 {
Pinmanee 1:baf91b6482eb 140 if (count == 0) { return; }
Pinmanee 1:baf91b6482eb 141
Pinmanee 1:baf91b6482eb 142 uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
Pinmanee 1:baf91b6482eb 143 uint8_t index = 0; // Index in values array.
Pinmanee 1:baf91b6482eb 144
Pinmanee 1:baf91b6482eb 145 m_CS = 0; /* Select SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 146 count--; // One read is performed outside of the loop
Pinmanee 1:baf91b6482eb 147 (void) m_SPI.write(address); // Tell MFRC522 which address we want to read
Pinmanee 1:baf91b6482eb 148
Pinmanee 1:baf91b6482eb 149 while (index < count)
Pinmanee 1:baf91b6482eb 150 {
Pinmanee 1:baf91b6482eb 151 if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0]
Pinmanee 1:baf91b6482eb 152 {
Pinmanee 1:baf91b6482eb 153 // Create bit mask for bit positions rxAlign..7
Pinmanee 1:baf91b6482eb 154 uint8_t mask = 0;
Pinmanee 1:baf91b6482eb 155 for (uint8_t i = rxAlign; i <= 7; i++)
Pinmanee 1:baf91b6482eb 156 {
Pinmanee 1:baf91b6482eb 157 mask |= (1 << i);
Pinmanee 1:baf91b6482eb 158 }
Pinmanee 1:baf91b6482eb 159
Pinmanee 1:baf91b6482eb 160 // Read value and tell that we want to read the same address again.
Pinmanee 1:baf91b6482eb 161 uint8_t value = m_SPI.write(address);
Pinmanee 1:baf91b6482eb 162
Pinmanee 1:baf91b6482eb 163 // Apply mask to both current value of values[0] and the new data in value.
Pinmanee 1:baf91b6482eb 164 values[0] = (values[index] & ~mask) | (value & mask);
Pinmanee 1:baf91b6482eb 165 }
Pinmanee 1:baf91b6482eb 166 else
Pinmanee 1:baf91b6482eb 167 {
Pinmanee 1:baf91b6482eb 168 // Read value and tell that we want to read the same address again.
Pinmanee 1:baf91b6482eb 169 values[index] = m_SPI.write(address);
Pinmanee 1:baf91b6482eb 170 }
Pinmanee 1:baf91b6482eb 171
Pinmanee 1:baf91b6482eb 172 index++;
Pinmanee 1:baf91b6482eb 173 }
Pinmanee 1:baf91b6482eb 174
Pinmanee 1:baf91b6482eb 175 values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading.
Pinmanee 1:baf91b6482eb 176
Pinmanee 1:baf91b6482eb 177 m_CS = 1; /* Release SPI Chip MFRC522 */
Pinmanee 1:baf91b6482eb 178 } // End PCD_ReadRegister()
Pinmanee 1:baf91b6482eb 179
Pinmanee 1:baf91b6482eb 180 /**
Pinmanee 1:baf91b6482eb 181 * Sets the bits given in mask in register reg.
Pinmanee 1:baf91b6482eb 182 */
Pinmanee 1:baf91b6482eb 183 void MFRC522::PCD_SetRegisterBits(uint8_t reg, uint8_t mask)
Pinmanee 1:baf91b6482eb 184 {
Pinmanee 1:baf91b6482eb 185 uint8_t tmp = PCD_ReadRegister(reg);
Pinmanee 1:baf91b6482eb 186 PCD_WriteRegister(reg, tmp | mask); // set bit mask
Pinmanee 1:baf91b6482eb 187 } // End PCD_SetRegisterBitMask()
Pinmanee 1:baf91b6482eb 188
Pinmanee 1:baf91b6482eb 189 /**
Pinmanee 1:baf91b6482eb 190 * Clears the bits given in mask from register reg.
Pinmanee 1:baf91b6482eb 191 */
Pinmanee 1:baf91b6482eb 192 void MFRC522::PCD_ClrRegisterBits(uint8_t reg, uint8_t mask)
Pinmanee 1:baf91b6482eb 193 {
Pinmanee 1:baf91b6482eb 194 uint8_t tmp = PCD_ReadRegister(reg);
Pinmanee 1:baf91b6482eb 195 PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask
Pinmanee 1:baf91b6482eb 196 } // End PCD_ClearRegisterBitMask()
Pinmanee 1:baf91b6482eb 197
Pinmanee 1:baf91b6482eb 198
Pinmanee 1:baf91b6482eb 199 /**
Pinmanee 1:baf91b6482eb 200 * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
Pinmanee 1:baf91b6482eb 201 */
Pinmanee 1:baf91b6482eb 202 uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result)
Pinmanee 1:baf91b6482eb 203 {
Pinmanee 1:baf91b6482eb 204 PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
Pinmanee 1:baf91b6482eb 205 PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit
Pinmanee 1:baf91b6482eb 206 PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
Pinmanee 1:baf91b6482eb 207 PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO
Pinmanee 1:baf91b6482eb 208 PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation
Pinmanee 1:baf91b6482eb 209
Pinmanee 1:baf91b6482eb 210 // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us.
Pinmanee 1:baf91b6482eb 211 uint16_t i = 5000;
Pinmanee 1:baf91b6482eb 212 uint8_t n;
Pinmanee 1:baf91b6482eb 213 while (1)
Pinmanee 1:baf91b6482eb 214 {
Pinmanee 1:baf91b6482eb 215 n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
Pinmanee 1:baf91b6482eb 216 if (n & 0x04)
Pinmanee 1:baf91b6482eb 217 {
Pinmanee 1:baf91b6482eb 218 // CRCIRq bit set - calculation done
Pinmanee 1:baf91b6482eb 219 break;
Pinmanee 1:baf91b6482eb 220 }
Pinmanee 1:baf91b6482eb 221
Pinmanee 1:baf91b6482eb 222 if (--i == 0)
Pinmanee 1:baf91b6482eb 223 {
Pinmanee 1:baf91b6482eb 224 // The emergency break. We will eventually terminate on this one after 89ms.
Pinmanee 1:baf91b6482eb 225 // Communication with the MFRC522 might be down.
Pinmanee 1:baf91b6482eb 226 return STATUS_TIMEOUT;
Pinmanee 1:baf91b6482eb 227 }
Pinmanee 1:baf91b6482eb 228 }
Pinmanee 1:baf91b6482eb 229
Pinmanee 1:baf91b6482eb 230 // Stop calculating CRC for new content in the FIFO.
Pinmanee 1:baf91b6482eb 231 PCD_WriteRegister(CommandReg, PCD_Idle);
Pinmanee 1:baf91b6482eb 232
Pinmanee 1:baf91b6482eb 233 // Transfer the result from the registers to the result buffer
Pinmanee 1:baf91b6482eb 234 result[0] = PCD_ReadRegister(CRCResultRegL);
Pinmanee 1:baf91b6482eb 235 result[1] = PCD_ReadRegister(CRCResultRegH);
Pinmanee 1:baf91b6482eb 236 return STATUS_OK;
Pinmanee 1:baf91b6482eb 237 } // End PCD_CalculateCRC()
Pinmanee 1:baf91b6482eb 238
Pinmanee 1:baf91b6482eb 239
Pinmanee 1:baf91b6482eb 240 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 241 // Functions for manipulating the MFRC522
Pinmanee 1:baf91b6482eb 242 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 243
Pinmanee 1:baf91b6482eb 244 /**
Pinmanee 1:baf91b6482eb 245 * Initializes the MFRC522 chip.
Pinmanee 1:baf91b6482eb 246 */
Pinmanee 1:baf91b6482eb 247 void MFRC522::PCD_Init()
Pinmanee 1:baf91b6482eb 248 {
Pinmanee 1:baf91b6482eb 249 /* Reset MFRC522 */
Pinmanee 1:baf91b6482eb 250 m_RESET = 0;
Pinmanee 1:baf91b6482eb 251 wait_ms(10);
Pinmanee 1:baf91b6482eb 252 m_RESET = 1;
Pinmanee 1:baf91b6482eb 253
Pinmanee 1:baf91b6482eb 254 // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms.
Pinmanee 1:baf91b6482eb 255 wait_ms(50);
Pinmanee 1:baf91b6482eb 256
Pinmanee 1:baf91b6482eb 257 // When communicating with a PICC we need a timeout if something goes wrong.
Pinmanee 1:baf91b6482eb 258 // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo].
Pinmanee 1:baf91b6482eb 259 // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
Pinmanee 1:baf91b6482eb 260 PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds
Pinmanee 1:baf91b6482eb 261 PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25us.
Pinmanee 1:baf91b6482eb 262 PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout.
Pinmanee 1:baf91b6482eb 263 PCD_WriteRegister(TReloadRegL, 0xE8);
Pinmanee 1:baf91b6482eb 264
Pinmanee 1:baf91b6482eb 265 PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
Pinmanee 1:baf91b6482eb 266 PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
Pinmanee 1:baf91b6482eb 267
Pinmanee 1:baf91b6482eb 268 PCD_WriteRegister(RFCfgReg, (0x07<<4)); // Set Rx Gain to max
Pinmanee 1:baf91b6482eb 269
Pinmanee 1:baf91b6482eb 270 PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset)
Pinmanee 1:baf91b6482eb 271 } // End PCD_Init()
Pinmanee 1:baf91b6482eb 272
Pinmanee 1:baf91b6482eb 273 /**
Pinmanee 1:baf91b6482eb 274 * Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
Pinmanee 1:baf91b6482eb 275 */
Pinmanee 1:baf91b6482eb 276 void MFRC522::PCD_Reset()
Pinmanee 1:baf91b6482eb 277 {
Pinmanee 1:baf91b6482eb 278 PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command.
Pinmanee 1:baf91b6482eb 279 // The datasheet does not mention how long the SoftRest command takes to complete.
Pinmanee 1:baf91b6482eb 280 // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg)
Pinmanee 1:baf91b6482eb 281 // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74us. Let us be generous: 50ms.
Pinmanee 1:baf91b6482eb 282 wait_ms(50);
Pinmanee 1:baf91b6482eb 283
Pinmanee 1:baf91b6482eb 284 // Wait for the PowerDown bit in CommandReg to be cleared
Pinmanee 1:baf91b6482eb 285 while (PCD_ReadRegister(CommandReg) & (1<<4))
Pinmanee 1:baf91b6482eb 286 {
Pinmanee 1:baf91b6482eb 287 // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry.
Pinmanee 1:baf91b6482eb 288 }
Pinmanee 1:baf91b6482eb 289 } // End PCD_Reset()
Pinmanee 1:baf91b6482eb 290
Pinmanee 1:baf91b6482eb 291 /**
Pinmanee 1:baf91b6482eb 292 * Turns the antenna on by enabling pins TX1 and TX2.
Pinmanee 1:baf91b6482eb 293 * After a reset these pins disabled.
Pinmanee 1:baf91b6482eb 294 */
Pinmanee 1:baf91b6482eb 295 void MFRC522::PCD_AntennaOn()
Pinmanee 1:baf91b6482eb 296 {
Pinmanee 1:baf91b6482eb 297 uint8_t value = PCD_ReadRegister(TxControlReg);
Pinmanee 1:baf91b6482eb 298 if ((value & 0x03) != 0x03)
Pinmanee 1:baf91b6482eb 299 {
Pinmanee 1:baf91b6482eb 300 PCD_WriteRegister(TxControlReg, value | 0x03);
Pinmanee 1:baf91b6482eb 301 }
Pinmanee 1:baf91b6482eb 302 } // End PCD_AntennaOn()
Pinmanee 1:baf91b6482eb 303
Pinmanee 1:baf91b6482eb 304 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 305 // Functions for communicating with PICCs
Pinmanee 1:baf91b6482eb 306 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 307
Pinmanee 1:baf91b6482eb 308 /**
Pinmanee 1:baf91b6482eb 309 * Executes the Transceive command.
Pinmanee 1:baf91b6482eb 310 * CRC validation can only be done if backData and backLen are specified.
Pinmanee 1:baf91b6482eb 311 */
Pinmanee 1:baf91b6482eb 312 uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData,
Pinmanee 1:baf91b6482eb 313 uint8_t sendLen,
Pinmanee 1:baf91b6482eb 314 uint8_t *backData,
Pinmanee 1:baf91b6482eb 315 uint8_t *backLen,
Pinmanee 1:baf91b6482eb 316 uint8_t *validBits,
Pinmanee 1:baf91b6482eb 317 uint8_t rxAlign,
Pinmanee 1:baf91b6482eb 318 bool checkCRC)
Pinmanee 1:baf91b6482eb 319 {
Pinmanee 1:baf91b6482eb 320 uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
Pinmanee 1:baf91b6482eb 321 return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC);
Pinmanee 1:baf91b6482eb 322 } // End PCD_TransceiveData()
Pinmanee 1:baf91b6482eb 323
Pinmanee 1:baf91b6482eb 324 /**
Pinmanee 1:baf91b6482eb 325 * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO.
Pinmanee 1:baf91b6482eb 326 * CRC validation can only be done if backData and backLen are specified.
Pinmanee 1:baf91b6482eb 327 */
Pinmanee 1:baf91b6482eb 328 uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command,
Pinmanee 1:baf91b6482eb 329 uint8_t waitIRq,
Pinmanee 1:baf91b6482eb 330 uint8_t *sendData,
Pinmanee 1:baf91b6482eb 331 uint8_t sendLen,
Pinmanee 1:baf91b6482eb 332 uint8_t *backData,
Pinmanee 1:baf91b6482eb 333 uint8_t *backLen,
Pinmanee 1:baf91b6482eb 334 uint8_t *validBits,
Pinmanee 1:baf91b6482eb 335 uint8_t rxAlign,
Pinmanee 1:baf91b6482eb 336 bool checkCRC)
Pinmanee 1:baf91b6482eb 337 {
Pinmanee 1:baf91b6482eb 338 uint8_t n, _validBits = 0;
Pinmanee 1:baf91b6482eb 339 uint32_t i;
Pinmanee 1:baf91b6482eb 340
Pinmanee 1:baf91b6482eb 341 // Prepare values for BitFramingReg
Pinmanee 1:baf91b6482eb 342 uint8_t txLastBits = validBits ? *validBits : 0;
Pinmanee 1:baf91b6482eb 343 uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
Pinmanee 1:baf91b6482eb 344
Pinmanee 1:baf91b6482eb 345 PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
Pinmanee 1:baf91b6482eb 346 PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits
Pinmanee 1:baf91b6482eb 347 PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
Pinmanee 1:baf91b6482eb 348 PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO
Pinmanee 1:baf91b6482eb 349 PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments
Pinmanee 1:baf91b6482eb 350 PCD_WriteRegister(CommandReg, command); // Execute the command
Pinmanee 1:baf91b6482eb 351 if (command == PCD_Transceive)
Pinmanee 1:baf91b6482eb 352 {
Pinmanee 1:baf91b6482eb 353 PCD_SetRegisterBits(BitFramingReg, 0x80); // StartSend=1, transmission of data starts
Pinmanee 1:baf91b6482eb 354 }
Pinmanee 1:baf91b6482eb 355
Pinmanee 1:baf91b6482eb 356 // Wait for the command to complete.
Pinmanee 1:baf91b6482eb 357 // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting.
Pinmanee 1:baf91b6482eb 358 // Each iteration of the do-while-loop takes 17.86us.
Pinmanee 1:baf91b6482eb 359 i = 2000;
Pinmanee 1:baf91b6482eb 360 while (1)
Pinmanee 1:baf91b6482eb 361 {
Pinmanee 1:baf91b6482eb 362 n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
Pinmanee 1:baf91b6482eb 363 if (n & waitIRq)
Pinmanee 1:baf91b6482eb 364 { // One of the interrupts that signal success has been set.
Pinmanee 1:baf91b6482eb 365 break;
Pinmanee 1:baf91b6482eb 366 }
Pinmanee 1:baf91b6482eb 367
Pinmanee 1:baf91b6482eb 368 if (n & 0x01)
Pinmanee 1:baf91b6482eb 369 { // Timer interrupt - nothing received in 25ms
Pinmanee 1:baf91b6482eb 370 return STATUS_TIMEOUT;
Pinmanee 1:baf91b6482eb 371 }
Pinmanee 1:baf91b6482eb 372
Pinmanee 1:baf91b6482eb 373 if (--i == 0)
Pinmanee 1:baf91b6482eb 374 { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down.
Pinmanee 1:baf91b6482eb 375 return STATUS_TIMEOUT;
Pinmanee 1:baf91b6482eb 376 }
Pinmanee 1:baf91b6482eb 377 }
Pinmanee 1:baf91b6482eb 378
Pinmanee 1:baf91b6482eb 379 // Stop now if any errors except collisions were detected.
Pinmanee 1:baf91b6482eb 380 uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
Pinmanee 1:baf91b6482eb 381 if (errorRegValue & 0x13)
Pinmanee 1:baf91b6482eb 382 { // BufferOvfl ParityErr ProtocolErr
Pinmanee 1:baf91b6482eb 383 return STATUS_ERROR;
Pinmanee 1:baf91b6482eb 384 }
Pinmanee 1:baf91b6482eb 385
Pinmanee 1:baf91b6482eb 386 // If the caller wants data back, get it from the MFRC522.
Pinmanee 1:baf91b6482eb 387 if (backData && backLen)
Pinmanee 1:baf91b6482eb 388 {
Pinmanee 1:baf91b6482eb 389 n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO
Pinmanee 1:baf91b6482eb 390 if (n > *backLen)
Pinmanee 1:baf91b6482eb 391 {
Pinmanee 1:baf91b6482eb 392 return STATUS_NO_ROOM;
Pinmanee 1:baf91b6482eb 393 }
Pinmanee 1:baf91b6482eb 394
Pinmanee 1:baf91b6482eb 395 *backLen = n; // Number of bytes returned
Pinmanee 1:baf91b6482eb 396 PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO
Pinmanee 1:baf91b6482eb 397 _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid.
Pinmanee 1:baf91b6482eb 398 if (validBits)
Pinmanee 1:baf91b6482eb 399 {
Pinmanee 1:baf91b6482eb 400 *validBits = _validBits;
Pinmanee 1:baf91b6482eb 401 }
Pinmanee 1:baf91b6482eb 402 }
Pinmanee 1:baf91b6482eb 403
Pinmanee 1:baf91b6482eb 404 // Tell about collisions
Pinmanee 1:baf91b6482eb 405 if (errorRegValue & 0x08)
Pinmanee 1:baf91b6482eb 406 { // CollErr
Pinmanee 1:baf91b6482eb 407 return STATUS_COLLISION;
Pinmanee 1:baf91b6482eb 408 }
Pinmanee 1:baf91b6482eb 409
Pinmanee 1:baf91b6482eb 410 // Perform CRC_A validation if requested.
Pinmanee 1:baf91b6482eb 411 if (backData && backLen && checkCRC)
Pinmanee 1:baf91b6482eb 412 {
Pinmanee 1:baf91b6482eb 413 // In this case a MIFARE Classic NAK is not OK.
Pinmanee 1:baf91b6482eb 414 if ((*backLen == 1) && (_validBits == 4))
Pinmanee 1:baf91b6482eb 415 {
Pinmanee 1:baf91b6482eb 416 return STATUS_MIFARE_NACK;
Pinmanee 1:baf91b6482eb 417 }
Pinmanee 1:baf91b6482eb 418
Pinmanee 1:baf91b6482eb 419 // We need at least the CRC_A value and all 8 bits of the last byte must be received.
Pinmanee 1:baf91b6482eb 420 if ((*backLen < 2) || (_validBits != 0))
Pinmanee 1:baf91b6482eb 421 {
Pinmanee 1:baf91b6482eb 422 return STATUS_CRC_WRONG;
Pinmanee 1:baf91b6482eb 423 }
Pinmanee 1:baf91b6482eb 424
Pinmanee 1:baf91b6482eb 425 // Verify CRC_A - do our own calculation and store the control in controlBuffer.
Pinmanee 1:baf91b6482eb 426 uint8_t controlBuffer[2];
Pinmanee 1:baf91b6482eb 427 n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]);
Pinmanee 1:baf91b6482eb 428 if (n != STATUS_OK)
Pinmanee 1:baf91b6482eb 429 {
Pinmanee 1:baf91b6482eb 430 return n;
Pinmanee 1:baf91b6482eb 431 }
Pinmanee 1:baf91b6482eb 432
Pinmanee 1:baf91b6482eb 433 if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1]))
Pinmanee 1:baf91b6482eb 434 {
Pinmanee 1:baf91b6482eb 435 return STATUS_CRC_WRONG;
Pinmanee 1:baf91b6482eb 436 }
Pinmanee 1:baf91b6482eb 437 }
Pinmanee 1:baf91b6482eb 438
Pinmanee 1:baf91b6482eb 439 return STATUS_OK;
Pinmanee 1:baf91b6482eb 440 } // End PCD_CommunicateWithPICC()
Pinmanee 1:baf91b6482eb 441
Pinmanee 1:baf91b6482eb 442 /*
Pinmanee 1:baf91b6482eb 443 * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
Pinmanee 1:baf91b6482eb 444 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
Pinmanee 1:baf91b6482eb 445 */
Pinmanee 1:baf91b6482eb 446 uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize)
Pinmanee 1:baf91b6482eb 447 {
Pinmanee 1:baf91b6482eb 448 return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize);
Pinmanee 1:baf91b6482eb 449 } // End PICC_RequestA()
Pinmanee 1:baf91b6482eb 450
Pinmanee 1:baf91b6482eb 451 /**
Pinmanee 1:baf91b6482eb 452 * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
Pinmanee 1:baf91b6482eb 453 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
Pinmanee 1:baf91b6482eb 454 */
Pinmanee 1:baf91b6482eb 455 uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize)
Pinmanee 1:baf91b6482eb 456 {
Pinmanee 1:baf91b6482eb 457 return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize);
Pinmanee 1:baf91b6482eb 458 } // End PICC_WakeupA()
Pinmanee 1:baf91b6482eb 459
Pinmanee 1:baf91b6482eb 460 /*
Pinmanee 1:baf91b6482eb 461 * Transmits REQA or WUPA commands.
Pinmanee 1:baf91b6482eb 462 * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
Pinmanee 1:baf91b6482eb 463 */
Pinmanee 1:baf91b6482eb 464 uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize)
Pinmanee 1:baf91b6482eb 465 {
Pinmanee 1:baf91b6482eb 466 uint8_t validBits;
Pinmanee 1:baf91b6482eb 467 uint8_t status;
Pinmanee 1:baf91b6482eb 468
Pinmanee 1:baf91b6482eb 469 if (bufferATQA == NULL || *bufferSize < 2)
Pinmanee 1:baf91b6482eb 470 { // The ATQA response is 2 bytes long.
Pinmanee 1:baf91b6482eb 471 return STATUS_NO_ROOM;
Pinmanee 1:baf91b6482eb 472 }
Pinmanee 1:baf91b6482eb 473
Pinmanee 1:baf91b6482eb 474 // ValuesAfterColl=1 => Bits received after collision are cleared.
Pinmanee 1:baf91b6482eb 475 PCD_ClrRegisterBits(CollReg, 0x80);
Pinmanee 1:baf91b6482eb 476
Pinmanee 1:baf91b6482eb 477 // For REQA and WUPA we need the short frame format
Pinmanee 1:baf91b6482eb 478 // - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
Pinmanee 1:baf91b6482eb 479 validBits = 7;
Pinmanee 1:baf91b6482eb 480
Pinmanee 1:baf91b6482eb 481 status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits);
Pinmanee 1:baf91b6482eb 482 if (status != STATUS_OK)
Pinmanee 1:baf91b6482eb 483 {
Pinmanee 1:baf91b6482eb 484 return status;
Pinmanee 1:baf91b6482eb 485 }
Pinmanee 1:baf91b6482eb 486
Pinmanee 1:baf91b6482eb 487 if ((*bufferSize != 2) || (validBits != 0))
Pinmanee 1:baf91b6482eb 488 { // ATQA must be exactly 16 bits.
Pinmanee 1:baf91b6482eb 489 return STATUS_ERROR;
Pinmanee 1:baf91b6482eb 490 }
Pinmanee 1:baf91b6482eb 491
Pinmanee 1:baf91b6482eb 492 return STATUS_OK;
Pinmanee 1:baf91b6482eb 493 } // End PICC_REQA_or_WUPA()
Pinmanee 1:baf91b6482eb 494
Pinmanee 1:baf91b6482eb 495 /*
Pinmanee 1:baf91b6482eb 496 * Transmits SELECT/ANTICOLLISION commands to select a single PICC.
Pinmanee 1:baf91b6482eb 497 */
Pinmanee 1:baf91b6482eb 498 uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits)
Pinmanee 1:baf91b6482eb 499 {
Pinmanee 1:baf91b6482eb 500 bool uidComplete;
Pinmanee 1:baf91b6482eb 501 bool selectDone;
Pinmanee 1:baf91b6482eb 502 bool useCascadeTag;
Pinmanee 1:baf91b6482eb 503 uint8_t cascadeLevel = 1;
Pinmanee 1:baf91b6482eb 504 uint8_t result;
Pinmanee 1:baf91b6482eb 505 uint8_t count;
Pinmanee 1:baf91b6482eb 506 uint8_t index;
Pinmanee 1:baf91b6482eb 507 uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
Pinmanee 1:baf91b6482eb 508 uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
Pinmanee 1:baf91b6482eb 509 uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
Pinmanee 1:baf91b6482eb 510 uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
Pinmanee 1:baf91b6482eb 511 uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
Pinmanee 1:baf91b6482eb 512 uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
Pinmanee 1:baf91b6482eb 513 uint8_t *responseBuffer;
Pinmanee 1:baf91b6482eb 514 uint8_t responseLength;
Pinmanee 1:baf91b6482eb 515
Pinmanee 1:baf91b6482eb 516 // Description of buffer structure:
Pinmanee 1:baf91b6482eb 517 // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
Pinmanee 1:baf91b6482eb 518 // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
Pinmanee 1:baf91b6482eb 519 // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
Pinmanee 1:baf91b6482eb 520 // Byte 3: UID-data
Pinmanee 1:baf91b6482eb 521 // Byte 4: UID-data
Pinmanee 1:baf91b6482eb 522 // Byte 5: UID-data
Pinmanee 1:baf91b6482eb 523 // Byte 6: BCC Block Check Character - XOR of bytes 2-5
Pinmanee 1:baf91b6482eb 524 // Byte 7: CRC_A
Pinmanee 1:baf91b6482eb 525 // Byte 8: CRC_A
Pinmanee 1:baf91b6482eb 526 // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level.
Pinmanee 1:baf91b6482eb 527 //
Pinmanee 1:baf91b6482eb 528 // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
Pinmanee 1:baf91b6482eb 529 // UID size Cascade level Byte2 Byte3 Byte4 Byte5
Pinmanee 1:baf91b6482eb 530 // ======== ============= ===== ===== ===== =====
Pinmanee 1:baf91b6482eb 531 // 4 bytes 1 uid0 uid1 uid2 uid3
Pinmanee 1:baf91b6482eb 532 // 7 bytes 1 CT uid0 uid1 uid2
Pinmanee 1:baf91b6482eb 533 // 2 uid3 uid4 uid5 uid6
Pinmanee 1:baf91b6482eb 534 // 10 bytes 1 CT uid0 uid1 uid2
Pinmanee 1:baf91b6482eb 535 // 2 CT uid3 uid4 uid5
Pinmanee 1:baf91b6482eb 536 // 3 uid6 uid7 uid8 uid9
Pinmanee 1:baf91b6482eb 537
Pinmanee 1:baf91b6482eb 538 // Sanity checks
Pinmanee 1:baf91b6482eb 539 if (validBits > 80)
Pinmanee 1:baf91b6482eb 540 {
Pinmanee 1:baf91b6482eb 541 return STATUS_INVALID;
Pinmanee 1:baf91b6482eb 542 }
Pinmanee 1:baf91b6482eb 543
Pinmanee 1:baf91b6482eb 544 // Prepare MFRC522
Pinmanee 1:baf91b6482eb 545 // ValuesAfterColl=1 => Bits received after collision are cleared.
Pinmanee 1:baf91b6482eb 546 PCD_ClrRegisterBits(CollReg, 0x80);
Pinmanee 1:baf91b6482eb 547
Pinmanee 1:baf91b6482eb 548 // Repeat Cascade Level loop until we have a complete UID.
Pinmanee 1:baf91b6482eb 549 uidComplete = false;
Pinmanee 1:baf91b6482eb 550 while ( ! uidComplete)
Pinmanee 1:baf91b6482eb 551 {
Pinmanee 1:baf91b6482eb 552 // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
Pinmanee 1:baf91b6482eb 553 switch (cascadeLevel)
Pinmanee 1:baf91b6482eb 554 {
Pinmanee 1:baf91b6482eb 555 case 1:
Pinmanee 1:baf91b6482eb 556 buffer[0] = PICC_CMD_SEL_CL1;
Pinmanee 1:baf91b6482eb 557 uidIndex = 0;
Pinmanee 1:baf91b6482eb 558 useCascadeTag = validBits && (uid->size > 4); // When we know that the UID has more than 4 bytes
Pinmanee 1:baf91b6482eb 559 break;
Pinmanee 1:baf91b6482eb 560
Pinmanee 1:baf91b6482eb 561 case 2:
Pinmanee 1:baf91b6482eb 562 buffer[0] = PICC_CMD_SEL_CL2;
Pinmanee 1:baf91b6482eb 563 uidIndex = 3;
Pinmanee 1:baf91b6482eb 564 useCascadeTag = validBits && (uid->size > 7); // When we know that the UID has more than 7 bytes
Pinmanee 1:baf91b6482eb 565 break;
Pinmanee 1:baf91b6482eb 566
Pinmanee 1:baf91b6482eb 567 case 3:
Pinmanee 1:baf91b6482eb 568 buffer[0] = PICC_CMD_SEL_CL3;
Pinmanee 1:baf91b6482eb 569 uidIndex = 6;
Pinmanee 1:baf91b6482eb 570 useCascadeTag = false; // Never used in CL3.
Pinmanee 1:baf91b6482eb 571 break;
Pinmanee 1:baf91b6482eb 572
Pinmanee 1:baf91b6482eb 573 default:
Pinmanee 1:baf91b6482eb 574 return STATUS_INTERNAL_ERROR;
Pinmanee 1:baf91b6482eb 575 //break;
Pinmanee 1:baf91b6482eb 576 }
Pinmanee 1:baf91b6482eb 577
Pinmanee 1:baf91b6482eb 578 // How many UID bits are known in this Cascade Level?
Pinmanee 1:baf91b6482eb 579 if(validBits > (8 * uidIndex))
Pinmanee 1:baf91b6482eb 580 {
Pinmanee 1:baf91b6482eb 581 currentLevelKnownBits = validBits - (8 * uidIndex);
Pinmanee 1:baf91b6482eb 582 }
Pinmanee 1:baf91b6482eb 583 else
Pinmanee 1:baf91b6482eb 584 {
Pinmanee 1:baf91b6482eb 585 currentLevelKnownBits = 0;
Pinmanee 1:baf91b6482eb 586 }
Pinmanee 1:baf91b6482eb 587
Pinmanee 1:baf91b6482eb 588 // Copy the known bits from uid->uidByte[] to buffer[]
Pinmanee 1:baf91b6482eb 589 index = 2; // destination index in buffer[]
Pinmanee 1:baf91b6482eb 590 if (useCascadeTag)
Pinmanee 1:baf91b6482eb 591 {
Pinmanee 1:baf91b6482eb 592 buffer[index++] = PICC_CMD_CT;
Pinmanee 1:baf91b6482eb 593 }
Pinmanee 1:baf91b6482eb 594
Pinmanee 1:baf91b6482eb 595 uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
Pinmanee 1:baf91b6482eb 596 if (bytesToCopy)
Pinmanee 1:baf91b6482eb 597 {
Pinmanee 1:baf91b6482eb 598 // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
Pinmanee 1:baf91b6482eb 599 uint8_t maxBytes = useCascadeTag ? 3 : 4;
Pinmanee 1:baf91b6482eb 600 if (bytesToCopy > maxBytes)
Pinmanee 1:baf91b6482eb 601 {
Pinmanee 1:baf91b6482eb 602 bytesToCopy = maxBytes;
Pinmanee 1:baf91b6482eb 603 }
Pinmanee 1:baf91b6482eb 604
Pinmanee 1:baf91b6482eb 605 for (count = 0; count < bytesToCopy; count++)
Pinmanee 1:baf91b6482eb 606 {
Pinmanee 1:baf91b6482eb 607 buffer[index++] = uid->uidByte[uidIndex + count];
Pinmanee 1:baf91b6482eb 608 }
Pinmanee 1:baf91b6482eb 609 }
Pinmanee 1:baf91b6482eb 610
Pinmanee 1:baf91b6482eb 611 // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
Pinmanee 1:baf91b6482eb 612 if (useCascadeTag)
Pinmanee 1:baf91b6482eb 613 {
Pinmanee 1:baf91b6482eb 614 currentLevelKnownBits += 8;
Pinmanee 1:baf91b6482eb 615 }
Pinmanee 1:baf91b6482eb 616
Pinmanee 1:baf91b6482eb 617 // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
Pinmanee 1:baf91b6482eb 618 selectDone = false;
Pinmanee 1:baf91b6482eb 619 while ( ! selectDone)
Pinmanee 1:baf91b6482eb 620 {
Pinmanee 1:baf91b6482eb 621 // Find out how many bits and bytes to send and receive.
Pinmanee 1:baf91b6482eb 622 if (currentLevelKnownBits >= 32)
Pinmanee 1:baf91b6482eb 623 { // All UID bits in this Cascade Level are known. This is a SELECT.
Pinmanee 1:baf91b6482eb 624 //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC);
Pinmanee 1:baf91b6482eb 625 buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
Pinmanee 1:baf91b6482eb 626
Pinmanee 1:baf91b6482eb 627 // Calulate BCC - Block Check Character
Pinmanee 1:baf91b6482eb 628 buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
Pinmanee 1:baf91b6482eb 629
Pinmanee 1:baf91b6482eb 630 // Calculate CRC_A
Pinmanee 1:baf91b6482eb 631 result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
Pinmanee 1:baf91b6482eb 632 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 633 {
Pinmanee 1:baf91b6482eb 634 return result;
Pinmanee 1:baf91b6482eb 635 }
Pinmanee 1:baf91b6482eb 636
Pinmanee 1:baf91b6482eb 637 txLastBits = 0; // 0 => All 8 bits are valid.
Pinmanee 1:baf91b6482eb 638 bufferUsed = 9;
Pinmanee 1:baf91b6482eb 639
Pinmanee 1:baf91b6482eb 640 // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
Pinmanee 1:baf91b6482eb 641 responseBuffer = &buffer[6];
Pinmanee 1:baf91b6482eb 642 responseLength = 3;
Pinmanee 1:baf91b6482eb 643 }
Pinmanee 1:baf91b6482eb 644 else
Pinmanee 1:baf91b6482eb 645 { // This is an ANTICOLLISION.
Pinmanee 1:baf91b6482eb 646 //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC);
Pinmanee 1:baf91b6482eb 647 txLastBits = currentLevelKnownBits % 8;
Pinmanee 1:baf91b6482eb 648 count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
Pinmanee 1:baf91b6482eb 649 index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
Pinmanee 1:baf91b6482eb 650 buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
Pinmanee 1:baf91b6482eb 651 bufferUsed = index + (txLastBits ? 1 : 0);
Pinmanee 1:baf91b6482eb 652
Pinmanee 1:baf91b6482eb 653 // Store response in the unused part of buffer
Pinmanee 1:baf91b6482eb 654 responseBuffer = &buffer[index];
Pinmanee 1:baf91b6482eb 655 responseLength = sizeof(buffer) - index;
Pinmanee 1:baf91b6482eb 656 }
Pinmanee 1:baf91b6482eb 657
Pinmanee 1:baf91b6482eb 658 // Set bit adjustments
Pinmanee 1:baf91b6482eb 659 rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read.
Pinmanee 1:baf91b6482eb 660 PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
Pinmanee 1:baf91b6482eb 661
Pinmanee 1:baf91b6482eb 662 // Transmit the buffer and receive the response.
Pinmanee 1:baf91b6482eb 663 result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
Pinmanee 1:baf91b6482eb 664 if (result == STATUS_COLLISION)
Pinmanee 1:baf91b6482eb 665 { // More than one PICC in the field => collision.
Pinmanee 1:baf91b6482eb 666 result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
Pinmanee 1:baf91b6482eb 667 if (result & 0x20)
Pinmanee 1:baf91b6482eb 668 { // CollPosNotValid
Pinmanee 1:baf91b6482eb 669 return STATUS_COLLISION; // Without a valid collision position we cannot continue
Pinmanee 1:baf91b6482eb 670 }
Pinmanee 1:baf91b6482eb 671
Pinmanee 1:baf91b6482eb 672 uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32.
Pinmanee 1:baf91b6482eb 673 if (collisionPos == 0)
Pinmanee 1:baf91b6482eb 674 {
Pinmanee 1:baf91b6482eb 675 collisionPos = 32;
Pinmanee 1:baf91b6482eb 676 }
Pinmanee 1:baf91b6482eb 677
Pinmanee 1:baf91b6482eb 678 if (collisionPos <= currentLevelKnownBits)
Pinmanee 1:baf91b6482eb 679 { // No progress - should not happen
Pinmanee 1:baf91b6482eb 680 return STATUS_INTERNAL_ERROR;
Pinmanee 1:baf91b6482eb 681 }
Pinmanee 1:baf91b6482eb 682
Pinmanee 1:baf91b6482eb 683 // Choose the PICC with the bit set.
Pinmanee 1:baf91b6482eb 684 currentLevelKnownBits = collisionPos;
Pinmanee 1:baf91b6482eb 685 count = (currentLevelKnownBits - 1) % 8; // The bit to modify
Pinmanee 1:baf91b6482eb 686 index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
Pinmanee 1:baf91b6482eb 687 buffer[index] |= (1 << count);
Pinmanee 1:baf91b6482eb 688 }
Pinmanee 1:baf91b6482eb 689 else if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 690 {
Pinmanee 1:baf91b6482eb 691 return result;
Pinmanee 1:baf91b6482eb 692 }
Pinmanee 1:baf91b6482eb 693 else
Pinmanee 1:baf91b6482eb 694 { // STATUS_OK
Pinmanee 1:baf91b6482eb 695 if (currentLevelKnownBits >= 32)
Pinmanee 1:baf91b6482eb 696 { // This was a SELECT.
Pinmanee 1:baf91b6482eb 697 selectDone = true; // No more anticollision
Pinmanee 1:baf91b6482eb 698 // We continue below outside the while.
Pinmanee 1:baf91b6482eb 699 }
Pinmanee 1:baf91b6482eb 700 else
Pinmanee 1:baf91b6482eb 701 { // This was an ANTICOLLISION.
Pinmanee 1:baf91b6482eb 702 // We now have all 32 bits of the UID in this Cascade Level
Pinmanee 1:baf91b6482eb 703 currentLevelKnownBits = 32;
Pinmanee 1:baf91b6482eb 704 // Run loop again to do the SELECT.
Pinmanee 1:baf91b6482eb 705 }
Pinmanee 1:baf91b6482eb 706 }
Pinmanee 1:baf91b6482eb 707 } // End of while ( ! selectDone)
Pinmanee 1:baf91b6482eb 708
Pinmanee 1:baf91b6482eb 709 // We do not check the CBB - it was constructed by us above.
Pinmanee 1:baf91b6482eb 710
Pinmanee 1:baf91b6482eb 711 // Copy the found UID bytes from buffer[] to uid->uidByte[]
Pinmanee 1:baf91b6482eb 712 index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
Pinmanee 1:baf91b6482eb 713 bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
Pinmanee 1:baf91b6482eb 714 for (count = 0; count < bytesToCopy; count++)
Pinmanee 1:baf91b6482eb 715 {
Pinmanee 1:baf91b6482eb 716 uid->uidByte[uidIndex + count] = buffer[index++];
Pinmanee 1:baf91b6482eb 717 }
Pinmanee 1:baf91b6482eb 718
Pinmanee 1:baf91b6482eb 719 // Check response SAK (Select Acknowledge)
Pinmanee 1:baf91b6482eb 720 if (responseLength != 3 || txLastBits != 0)
Pinmanee 1:baf91b6482eb 721 { // SAK must be exactly 24 bits (1 byte + CRC_A).
Pinmanee 1:baf91b6482eb 722 return STATUS_ERROR;
Pinmanee 1:baf91b6482eb 723 }
Pinmanee 1:baf91b6482eb 724
Pinmanee 1:baf91b6482eb 725 // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
Pinmanee 1:baf91b6482eb 726 result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
Pinmanee 1:baf91b6482eb 727 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 728 {
Pinmanee 1:baf91b6482eb 729 return result;
Pinmanee 1:baf91b6482eb 730 }
Pinmanee 1:baf91b6482eb 731
Pinmanee 1:baf91b6482eb 732 if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2]))
Pinmanee 1:baf91b6482eb 733 {
Pinmanee 1:baf91b6482eb 734 return STATUS_CRC_WRONG;
Pinmanee 1:baf91b6482eb 735 }
Pinmanee 1:baf91b6482eb 736
Pinmanee 1:baf91b6482eb 737 if (responseBuffer[0] & 0x04)
Pinmanee 1:baf91b6482eb 738 { // Cascade bit set - UID not complete yes
Pinmanee 1:baf91b6482eb 739 cascadeLevel++;
Pinmanee 1:baf91b6482eb 740 }
Pinmanee 1:baf91b6482eb 741 else
Pinmanee 1:baf91b6482eb 742 {
Pinmanee 1:baf91b6482eb 743 uidComplete = true;
Pinmanee 1:baf91b6482eb 744 uid->sak = responseBuffer[0];
Pinmanee 1:baf91b6482eb 745 }
Pinmanee 1:baf91b6482eb 746 } // End of while ( ! uidComplete)
Pinmanee 1:baf91b6482eb 747
Pinmanee 1:baf91b6482eb 748 // Set correct uid->size
Pinmanee 1:baf91b6482eb 749 uid->size = 3 * cascadeLevel + 1;
Pinmanee 1:baf91b6482eb 750
Pinmanee 1:baf91b6482eb 751 return STATUS_OK;
Pinmanee 1:baf91b6482eb 752 } // End PICC_Select()
Pinmanee 1:baf91b6482eb 753
Pinmanee 1:baf91b6482eb 754 /*
Pinmanee 1:baf91b6482eb 755 * Instructs a PICC in state ACTIVE(*) to go to state HALT.
Pinmanee 1:baf91b6482eb 756 */
Pinmanee 1:baf91b6482eb 757 uint8_t MFRC522::PICC_HaltA()
Pinmanee 1:baf91b6482eb 758 {
Pinmanee 1:baf91b6482eb 759 uint8_t result;
Pinmanee 1:baf91b6482eb 760 uint8_t buffer[4];
Pinmanee 1:baf91b6482eb 761
Pinmanee 1:baf91b6482eb 762 // Build command buffer
Pinmanee 1:baf91b6482eb 763 buffer[0] = PICC_CMD_HLTA;
Pinmanee 1:baf91b6482eb 764 buffer[1] = 0;
Pinmanee 1:baf91b6482eb 765
Pinmanee 1:baf91b6482eb 766 // Calculate CRC_A
Pinmanee 1:baf91b6482eb 767 result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
Pinmanee 1:baf91b6482eb 768 if (result == STATUS_OK)
Pinmanee 1:baf91b6482eb 769 {
Pinmanee 1:baf91b6482eb 770 // Send the command.
Pinmanee 1:baf91b6482eb 771 // The standard says:
Pinmanee 1:baf91b6482eb 772 // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
Pinmanee 1:baf91b6482eb 773 // HLTA command, this response shall be interpreted as 'not acknowledge'.
Pinmanee 1:baf91b6482eb 774 // We interpret that this way: Only STATUS_TIMEOUT is an success.
Pinmanee 1:baf91b6482eb 775 result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0);
Pinmanee 1:baf91b6482eb 776 if (result == STATUS_TIMEOUT)
Pinmanee 1:baf91b6482eb 777 {
Pinmanee 1:baf91b6482eb 778 result = STATUS_OK;
Pinmanee 1:baf91b6482eb 779 }
Pinmanee 1:baf91b6482eb 780 else if (result == STATUS_OK)
Pinmanee 1:baf91b6482eb 781 { // That is ironically NOT ok in this case ;-)
Pinmanee 1:baf91b6482eb 782 result = STATUS_ERROR;
Pinmanee 1:baf91b6482eb 783 }
Pinmanee 1:baf91b6482eb 784 }
Pinmanee 1:baf91b6482eb 785
Pinmanee 1:baf91b6482eb 786 return result;
Pinmanee 1:baf91b6482eb 787 } // End PICC_HaltA()
Pinmanee 1:baf91b6482eb 788
Pinmanee 1:baf91b6482eb 789
Pinmanee 1:baf91b6482eb 790 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 791 // Functions for communicating with MIFARE PICCs
Pinmanee 1:baf91b6482eb 792 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 793
Pinmanee 1:baf91b6482eb 794 /*
Pinmanee 1:baf91b6482eb 795 * Executes the MFRC522 MFAuthent command.
Pinmanee 1:baf91b6482eb 796 */
Pinmanee 1:baf91b6482eb 797 uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid)
Pinmanee 1:baf91b6482eb 798 {
Pinmanee 1:baf91b6482eb 799 uint8_t i, waitIRq = 0x10; // IdleIRq
Pinmanee 1:baf91b6482eb 800
Pinmanee 1:baf91b6482eb 801 // Build command buffer
Pinmanee 1:baf91b6482eb 802 uint8_t sendData[12];
Pinmanee 1:baf91b6482eb 803 sendData[0] = command;
Pinmanee 1:baf91b6482eb 804 sendData[1] = blockAddr;
Pinmanee 1:baf91b6482eb 805
Pinmanee 1:baf91b6482eb 806 for (i = 0; i < MF_KEY_SIZE; i++)
Pinmanee 1:baf91b6482eb 807 { // 6 key bytes
Pinmanee 1:baf91b6482eb 808 sendData[2+i] = key->keyByte[i];
Pinmanee 1:baf91b6482eb 809 }
Pinmanee 1:baf91b6482eb 810
Pinmanee 1:baf91b6482eb 811 for (i = 0; i < 4; i++)
Pinmanee 1:baf91b6482eb 812 { // The first 4 bytes of the UID
Pinmanee 1:baf91b6482eb 813 sendData[8+i] = uid->uidByte[i];
Pinmanee 1:baf91b6482eb 814 }
Pinmanee 1:baf91b6482eb 815
Pinmanee 1:baf91b6482eb 816 // Start the authentication.
Pinmanee 1:baf91b6482eb 817 return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData));
Pinmanee 1:baf91b6482eb 818 } // End PCD_Authenticate()
Pinmanee 1:baf91b6482eb 819
Pinmanee 1:baf91b6482eb 820 /*
Pinmanee 1:baf91b6482eb 821 * Used to exit the PCD from its authenticated state.
Pinmanee 1:baf91b6482eb 822 * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
Pinmanee 1:baf91b6482eb 823 */
Pinmanee 1:baf91b6482eb 824 void MFRC522::PCD_StopCrypto1()
Pinmanee 1:baf91b6482eb 825 {
Pinmanee 1:baf91b6482eb 826 // Clear MFCrypto1On bit
Pinmanee 1:baf91b6482eb 827 PCD_ClrRegisterBits(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0]
Pinmanee 1:baf91b6482eb 828 } // End PCD_StopCrypto1()
Pinmanee 1:baf91b6482eb 829
Pinmanee 1:baf91b6482eb 830 /*
Pinmanee 1:baf91b6482eb 831 * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
Pinmanee 1:baf91b6482eb 832 */
Pinmanee 1:baf91b6482eb 833 uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize)
Pinmanee 1:baf91b6482eb 834 {
Pinmanee 1:baf91b6482eb 835 uint8_t result = STATUS_NO_ROOM;
Pinmanee 1:baf91b6482eb 836
Pinmanee 1:baf91b6482eb 837 // Sanity check
Pinmanee 1:baf91b6482eb 838 if ((buffer == NULL) || (*bufferSize < 18))
Pinmanee 1:baf91b6482eb 839 {
Pinmanee 1:baf91b6482eb 840 return result;
Pinmanee 1:baf91b6482eb 841 }
Pinmanee 1:baf91b6482eb 842
Pinmanee 1:baf91b6482eb 843 // Build command buffer
Pinmanee 1:baf91b6482eb 844 buffer[0] = PICC_CMD_MF_READ;
Pinmanee 1:baf91b6482eb 845 buffer[1] = blockAddr;
Pinmanee 1:baf91b6482eb 846
Pinmanee 1:baf91b6482eb 847 // Calculate CRC_A
Pinmanee 1:baf91b6482eb 848 result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
Pinmanee 1:baf91b6482eb 849 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 850 {
Pinmanee 1:baf91b6482eb 851 return result;
Pinmanee 1:baf91b6482eb 852 }
Pinmanee 1:baf91b6482eb 853
Pinmanee 1:baf91b6482eb 854 // Transmit the buffer and receive the response, validate CRC_A.
Pinmanee 1:baf91b6482eb 855 return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true);
Pinmanee 1:baf91b6482eb 856 } // End MIFARE_Read()
Pinmanee 1:baf91b6482eb 857
Pinmanee 1:baf91b6482eb 858 /*
Pinmanee 1:baf91b6482eb 859 * Writes 16 bytes to the active PICC.
Pinmanee 1:baf91b6482eb 860 */
Pinmanee 1:baf91b6482eb 861 uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize)
Pinmanee 1:baf91b6482eb 862 {
Pinmanee 1:baf91b6482eb 863 uint8_t result;
Pinmanee 1:baf91b6482eb 864
Pinmanee 1:baf91b6482eb 865 // Sanity check
Pinmanee 1:baf91b6482eb 866 if (buffer == NULL || bufferSize < 16)
Pinmanee 1:baf91b6482eb 867 {
Pinmanee 1:baf91b6482eb 868 return STATUS_INVALID;
Pinmanee 1:baf91b6482eb 869 }
Pinmanee 1:baf91b6482eb 870
Pinmanee 1:baf91b6482eb 871 // Mifare Classic protocol requires two communications to perform a write.
Pinmanee 1:baf91b6482eb 872 // Step 1: Tell the PICC we want to write to block blockAddr.
Pinmanee 1:baf91b6482eb 873 uint8_t cmdBuffer[2];
Pinmanee 1:baf91b6482eb 874 cmdBuffer[0] = PICC_CMD_MF_WRITE;
Pinmanee 1:baf91b6482eb 875 cmdBuffer[1] = blockAddr;
Pinmanee 1:baf91b6482eb 876 // Adds CRC_A and checks that the response is MF_ACK.
Pinmanee 1:baf91b6482eb 877 result = PCD_MIFARE_Transceive(cmdBuffer, 2);
Pinmanee 1:baf91b6482eb 878 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 879 {
Pinmanee 1:baf91b6482eb 880 return result;
Pinmanee 1:baf91b6482eb 881 }
Pinmanee 1:baf91b6482eb 882
Pinmanee 1:baf91b6482eb 883 // Step 2: Transfer the data
Pinmanee 1:baf91b6482eb 884 // Adds CRC_A and checks that the response is MF_ACK.
Pinmanee 1:baf91b6482eb 885 result = PCD_MIFARE_Transceive(buffer, bufferSize);
Pinmanee 1:baf91b6482eb 886 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 887 {
Pinmanee 1:baf91b6482eb 888 return result;
Pinmanee 1:baf91b6482eb 889 }
Pinmanee 1:baf91b6482eb 890
Pinmanee 1:baf91b6482eb 891 return STATUS_OK;
Pinmanee 1:baf91b6482eb 892 } // End MIFARE_Write()
Pinmanee 1:baf91b6482eb 893
Pinmanee 1:baf91b6482eb 894 /*
Pinmanee 1:baf91b6482eb 895 * Writes a 4 byte page to the active MIFARE Ultralight PICC.
Pinmanee 1:baf91b6482eb 896 */
Pinmanee 1:baf91b6482eb 897 uint8_t MFRC522::MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize)
Pinmanee 1:baf91b6482eb 898 {
Pinmanee 1:baf91b6482eb 899 uint8_t result;
Pinmanee 1:baf91b6482eb 900
Pinmanee 1:baf91b6482eb 901 // Sanity check
Pinmanee 1:baf91b6482eb 902 if (buffer == NULL || bufferSize < 4)
Pinmanee 1:baf91b6482eb 903 {
Pinmanee 1:baf91b6482eb 904 return STATUS_INVALID;
Pinmanee 1:baf91b6482eb 905 }
Pinmanee 1:baf91b6482eb 906
Pinmanee 1:baf91b6482eb 907 // Build commmand buffer
Pinmanee 1:baf91b6482eb 908 uint8_t cmdBuffer[6];
Pinmanee 1:baf91b6482eb 909 cmdBuffer[0] = PICC_CMD_UL_WRITE;
Pinmanee 1:baf91b6482eb 910 cmdBuffer[1] = page;
Pinmanee 1:baf91b6482eb 911 memcpy(&cmdBuffer[2], buffer, 4);
Pinmanee 1:baf91b6482eb 912
Pinmanee 1:baf91b6482eb 913 // Perform the write
Pinmanee 1:baf91b6482eb 914 result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK.
Pinmanee 1:baf91b6482eb 915 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 916 {
Pinmanee 1:baf91b6482eb 917 return result;
Pinmanee 1:baf91b6482eb 918 }
Pinmanee 1:baf91b6482eb 919
Pinmanee 1:baf91b6482eb 920 return STATUS_OK;
Pinmanee 1:baf91b6482eb 921 } // End MIFARE_Ultralight_Write()
Pinmanee 1:baf91b6482eb 922
Pinmanee 1:baf91b6482eb 923 /*
Pinmanee 1:baf91b6482eb 924 * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
Pinmanee 1:baf91b6482eb 925 */
Pinmanee 1:baf91b6482eb 926 uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta)
Pinmanee 1:baf91b6482eb 927 {
Pinmanee 1:baf91b6482eb 928 return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta);
Pinmanee 1:baf91b6482eb 929 } // End MIFARE_Decrement()
Pinmanee 1:baf91b6482eb 930
Pinmanee 1:baf91b6482eb 931 /*
Pinmanee 1:baf91b6482eb 932 * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
Pinmanee 1:baf91b6482eb 933 */
Pinmanee 1:baf91b6482eb 934 uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta)
Pinmanee 1:baf91b6482eb 935 {
Pinmanee 1:baf91b6482eb 936 return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta);
Pinmanee 1:baf91b6482eb 937 } // End MIFARE_Increment()
Pinmanee 1:baf91b6482eb 938
Pinmanee 1:baf91b6482eb 939 /**
Pinmanee 1:baf91b6482eb 940 * MIFARE Restore copies the value of the addressed block into a volatile memory.
Pinmanee 1:baf91b6482eb 941 */
Pinmanee 1:baf91b6482eb 942 uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr)
Pinmanee 1:baf91b6482eb 943 {
Pinmanee 1:baf91b6482eb 944 // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2.
Pinmanee 1:baf91b6482eb 945 // Doing only a single step does not work, so I chose to transfer 0L in step two.
Pinmanee 1:baf91b6482eb 946 return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L);
Pinmanee 1:baf91b6482eb 947 } // End MIFARE_Restore()
Pinmanee 1:baf91b6482eb 948
Pinmanee 1:baf91b6482eb 949 /*
Pinmanee 1:baf91b6482eb 950 * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
Pinmanee 1:baf91b6482eb 951 */
Pinmanee 1:baf91b6482eb 952 uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data)
Pinmanee 1:baf91b6482eb 953 {
Pinmanee 1:baf91b6482eb 954 uint8_t result;
Pinmanee 1:baf91b6482eb 955 uint8_t cmdBuffer[2]; // We only need room for 2 bytes.
Pinmanee 1:baf91b6482eb 956
Pinmanee 1:baf91b6482eb 957 // Step 1: Tell the PICC the command and block address
Pinmanee 1:baf91b6482eb 958 cmdBuffer[0] = command;
Pinmanee 1:baf91b6482eb 959 cmdBuffer[1] = blockAddr;
Pinmanee 1:baf91b6482eb 960
Pinmanee 1:baf91b6482eb 961 // Adds CRC_A and checks that the response is MF_ACK.
Pinmanee 1:baf91b6482eb 962 result = PCD_MIFARE_Transceive(cmdBuffer, 2);
Pinmanee 1:baf91b6482eb 963 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 964 {
Pinmanee 1:baf91b6482eb 965 return result;
Pinmanee 1:baf91b6482eb 966 }
Pinmanee 1:baf91b6482eb 967
Pinmanee 1:baf91b6482eb 968 // Step 2: Transfer the data
Pinmanee 1:baf91b6482eb 969 // Adds CRC_A and accept timeout as success.
Pinmanee 1:baf91b6482eb 970 result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true);
Pinmanee 1:baf91b6482eb 971 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 972 {
Pinmanee 1:baf91b6482eb 973 return result;
Pinmanee 1:baf91b6482eb 974 }
Pinmanee 1:baf91b6482eb 975
Pinmanee 1:baf91b6482eb 976 return STATUS_OK;
Pinmanee 1:baf91b6482eb 977 } // End MIFARE_TwoStepHelper()
Pinmanee 1:baf91b6482eb 978
Pinmanee 1:baf91b6482eb 979 /*
Pinmanee 1:baf91b6482eb 980 * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block.
Pinmanee 1:baf91b6482eb 981 */
Pinmanee 1:baf91b6482eb 982 uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr)
Pinmanee 1:baf91b6482eb 983 {
Pinmanee 1:baf91b6482eb 984 uint8_t cmdBuffer[2]; // We only need room for 2 bytes.
Pinmanee 1:baf91b6482eb 985
Pinmanee 1:baf91b6482eb 986 // Tell the PICC we want to transfer the result into block blockAddr.
Pinmanee 1:baf91b6482eb 987 cmdBuffer[0] = PICC_CMD_MF_TRANSFER;
Pinmanee 1:baf91b6482eb 988 cmdBuffer[1] = blockAddr;
Pinmanee 1:baf91b6482eb 989
Pinmanee 1:baf91b6482eb 990 // Adds CRC_A and checks that the response is MF_ACK.
Pinmanee 1:baf91b6482eb 991 return PCD_MIFARE_Transceive(cmdBuffer, 2);
Pinmanee 1:baf91b6482eb 992 } // End MIFARE_Transfer()
Pinmanee 1:baf91b6482eb 993
Pinmanee 1:baf91b6482eb 994
Pinmanee 1:baf91b6482eb 995 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 996 // Support functions
Pinmanee 1:baf91b6482eb 997 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 998
Pinmanee 1:baf91b6482eb 999 /*
Pinmanee 1:baf91b6482eb 1000 * Wrapper for MIFARE protocol communication.
Pinmanee 1:baf91b6482eb 1001 * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout.
Pinmanee 1:baf91b6482eb 1002 */
Pinmanee 1:baf91b6482eb 1003 uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout)
Pinmanee 1:baf91b6482eb 1004 {
Pinmanee 1:baf91b6482eb 1005 uint8_t result;
Pinmanee 1:baf91b6482eb 1006 uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
Pinmanee 1:baf91b6482eb 1007
Pinmanee 1:baf91b6482eb 1008 // Sanity check
Pinmanee 1:baf91b6482eb 1009 if (sendData == NULL || sendLen > 16)
Pinmanee 1:baf91b6482eb 1010 {
Pinmanee 1:baf91b6482eb 1011 return STATUS_INVALID;
Pinmanee 1:baf91b6482eb 1012 }
Pinmanee 1:baf91b6482eb 1013
Pinmanee 1:baf91b6482eb 1014 // Copy sendData[] to cmdBuffer[] and add CRC_A
Pinmanee 1:baf91b6482eb 1015 memcpy(cmdBuffer, sendData, sendLen);
Pinmanee 1:baf91b6482eb 1016 result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]);
Pinmanee 1:baf91b6482eb 1017 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 1018 {
Pinmanee 1:baf91b6482eb 1019 return result;
Pinmanee 1:baf91b6482eb 1020 }
Pinmanee 1:baf91b6482eb 1021
Pinmanee 1:baf91b6482eb 1022 sendLen += 2;
Pinmanee 1:baf91b6482eb 1023
Pinmanee 1:baf91b6482eb 1024 // Transceive the data, store the reply in cmdBuffer[]
Pinmanee 1:baf91b6482eb 1025 uint8_t waitIRq = 0x30; // RxIRq and IdleIRq
Pinmanee 1:baf91b6482eb 1026 uint8_t cmdBufferSize = sizeof(cmdBuffer);
Pinmanee 1:baf91b6482eb 1027 uint8_t validBits = 0;
Pinmanee 1:baf91b6482eb 1028 result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits);
Pinmanee 1:baf91b6482eb 1029 if (acceptTimeout && result == STATUS_TIMEOUT)
Pinmanee 1:baf91b6482eb 1030 {
Pinmanee 1:baf91b6482eb 1031 return STATUS_OK;
Pinmanee 1:baf91b6482eb 1032 }
Pinmanee 1:baf91b6482eb 1033
Pinmanee 1:baf91b6482eb 1034 if (result != STATUS_OK)
Pinmanee 1:baf91b6482eb 1035 {
Pinmanee 1:baf91b6482eb 1036 return result;
Pinmanee 1:baf91b6482eb 1037 }
Pinmanee 1:baf91b6482eb 1038
Pinmanee 1:baf91b6482eb 1039 // The PICC must reply with a 4 bit ACK
Pinmanee 1:baf91b6482eb 1040 if (cmdBufferSize != 1 || validBits != 4)
Pinmanee 1:baf91b6482eb 1041 {
Pinmanee 1:baf91b6482eb 1042 return STATUS_ERROR;
Pinmanee 1:baf91b6482eb 1043 }
Pinmanee 1:baf91b6482eb 1044
Pinmanee 1:baf91b6482eb 1045 if (cmdBuffer[0] != MF_ACK)
Pinmanee 1:baf91b6482eb 1046 {
Pinmanee 1:baf91b6482eb 1047 return STATUS_MIFARE_NACK;
Pinmanee 1:baf91b6482eb 1048 }
Pinmanee 1:baf91b6482eb 1049
Pinmanee 1:baf91b6482eb 1050 return STATUS_OK;
Pinmanee 1:baf91b6482eb 1051 } // End PCD_MIFARE_Transceive()
Pinmanee 1:baf91b6482eb 1052
Pinmanee 1:baf91b6482eb 1053
Pinmanee 1:baf91b6482eb 1054 /*
Pinmanee 1:baf91b6482eb 1055 * Translates the SAK (Select Acknowledge) to a PICC type.
Pinmanee 1:baf91b6482eb 1056 */
Pinmanee 1:baf91b6482eb 1057 uint8_t MFRC522::PICC_GetType(uint8_t sak)
Pinmanee 1:baf91b6482eb 1058 {
Pinmanee 1:baf91b6482eb 1059 uint8_t retType = PICC_TYPE_UNKNOWN;
Pinmanee 1:baf91b6482eb 1060
Pinmanee 1:baf91b6482eb 1061 if (sak & 0x04)
Pinmanee 1:baf91b6482eb 1062 { // UID not complete
Pinmanee 1:baf91b6482eb 1063 retType = PICC_TYPE_NOT_COMPLETE;
Pinmanee 1:baf91b6482eb 1064 }
Pinmanee 1:baf91b6482eb 1065 else
Pinmanee 1:baf91b6482eb 1066 {
Pinmanee 1:baf91b6482eb 1067 switch (sak)
Pinmanee 1:baf91b6482eb 1068 {
Pinmanee 1:baf91b6482eb 1069 case 0x09: retType = PICC_TYPE_MIFARE_MINI; break;
Pinmanee 1:baf91b6482eb 1070 case 0x08: retType = PICC_TYPE_MIFARE_1K; break;
Pinmanee 1:baf91b6482eb 1071 case 0x18: retType = PICC_TYPE_MIFARE_4K; break;
Pinmanee 1:baf91b6482eb 1072 case 0x00: retType = PICC_TYPE_MIFARE_UL; break;
Pinmanee 1:baf91b6482eb 1073 case 0x10:
Pinmanee 1:baf91b6482eb 1074 case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break;
Pinmanee 1:baf91b6482eb 1075 case 0x01: retType = PICC_TYPE_TNP3XXX; break;
Pinmanee 1:baf91b6482eb 1076 default:
Pinmanee 1:baf91b6482eb 1077 if (sak & 0x20)
Pinmanee 1:baf91b6482eb 1078 {
Pinmanee 1:baf91b6482eb 1079 retType = PICC_TYPE_ISO_14443_4;
Pinmanee 1:baf91b6482eb 1080 }
Pinmanee 1:baf91b6482eb 1081 else if (sak & 0x40)
Pinmanee 1:baf91b6482eb 1082 {
Pinmanee 1:baf91b6482eb 1083 retType = PICC_TYPE_ISO_18092;
Pinmanee 1:baf91b6482eb 1084 }
Pinmanee 1:baf91b6482eb 1085 break;
Pinmanee 1:baf91b6482eb 1086 }
Pinmanee 1:baf91b6482eb 1087 }
Pinmanee 1:baf91b6482eb 1088
Pinmanee 1:baf91b6482eb 1089 return (retType);
Pinmanee 1:baf91b6482eb 1090 } // End PICC_GetType()
Pinmanee 1:baf91b6482eb 1091
Pinmanee 1:baf91b6482eb 1092 /*
Pinmanee 1:baf91b6482eb 1093 * Returns a string pointer to the PICC type name.
Pinmanee 1:baf91b6482eb 1094 */
Pinmanee 1:baf91b6482eb 1095 char* MFRC522::PICC_GetTypeName(uint8_t piccType)
Pinmanee 1:baf91b6482eb 1096 {
Pinmanee 1:baf91b6482eb 1097 if(piccType == PICC_TYPE_NOT_COMPLETE)
Pinmanee 1:baf91b6482eb 1098 {
Pinmanee 1:baf91b6482eb 1099 piccType = MFRC522_MaxPICCs - 1;
Pinmanee 1:baf91b6482eb 1100 }
Pinmanee 1:baf91b6482eb 1101
Pinmanee 1:baf91b6482eb 1102 return((char *) _TypeNamePICC[piccType]);
Pinmanee 1:baf91b6482eb 1103 } // End PICC_GetTypeName()
Pinmanee 1:baf91b6482eb 1104
Pinmanee 1:baf91b6482eb 1105 /*
Pinmanee 1:baf91b6482eb 1106 * Returns a string pointer to a status code name.
Pinmanee 1:baf91b6482eb 1107 */
Pinmanee 1:baf91b6482eb 1108 char* MFRC522::GetStatusCodeName(uint8_t code)
Pinmanee 1:baf91b6482eb 1109 {
Pinmanee 1:baf91b6482eb 1110 return((char *) _ErrorMessage[code]);
Pinmanee 1:baf91b6482eb 1111 } // End GetStatusCodeName()
Pinmanee 1:baf91b6482eb 1112
Pinmanee 1:baf91b6482eb 1113 /*
Pinmanee 1:baf91b6482eb 1114 * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1).
Pinmanee 1:baf91b6482eb 1115 */
Pinmanee 1:baf91b6482eb 1116 void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer,
Pinmanee 1:baf91b6482eb 1117 uint8_t g0,
Pinmanee 1:baf91b6482eb 1118 uint8_t g1,
Pinmanee 1:baf91b6482eb 1119 uint8_t g2,
Pinmanee 1:baf91b6482eb 1120 uint8_t g3)
Pinmanee 1:baf91b6482eb 1121 {
Pinmanee 1:baf91b6482eb 1122 uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2);
Pinmanee 1:baf91b6482eb 1123 uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1);
Pinmanee 1:baf91b6482eb 1124 uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0);
Pinmanee 1:baf91b6482eb 1125
Pinmanee 1:baf91b6482eb 1126 accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF);
Pinmanee 1:baf91b6482eb 1127 accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF);
Pinmanee 1:baf91b6482eb 1128 accessBitBuffer[2] = c3 << 4 | c2;
Pinmanee 1:baf91b6482eb 1129 } // End MIFARE_SetAccessBits()
Pinmanee 1:baf91b6482eb 1130
Pinmanee 1:baf91b6482eb 1131 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 1132 // Convenience functions - does not add extra functionality
Pinmanee 1:baf91b6482eb 1133 /////////////////////////////////////////////////////////////////////////////////////
Pinmanee 1:baf91b6482eb 1134
Pinmanee 1:baf91b6482eb 1135 /*
Pinmanee 1:baf91b6482eb 1136 * Returns true if a PICC responds to PICC_CMD_REQA.
Pinmanee 1:baf91b6482eb 1137 * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
Pinmanee 1:baf91b6482eb 1138 */
Pinmanee 1:baf91b6482eb 1139 bool MFRC522::PICC_IsNewCardPresent(void)
Pinmanee 1:baf91b6482eb 1140 {
Pinmanee 1:baf91b6482eb 1141 uint8_t bufferATQA[2];
Pinmanee 1:baf91b6482eb 1142 uint8_t bufferSize = sizeof(bufferATQA);
Pinmanee 1:baf91b6482eb 1143 uint8_t result = PICC_RequestA(bufferATQA, &bufferSize);
Pinmanee 1:baf91b6482eb 1144 return ((result == STATUS_OK) || (result == STATUS_COLLISION));
Pinmanee 1:baf91b6482eb 1145 } // End PICC_IsNewCardPresent()
Pinmanee 1:baf91b6482eb 1146
Pinmanee 1:baf91b6482eb 1147 /*
Pinmanee 1:baf91b6482eb 1148 * Simple wrapper around PICC_Select.
Pinmanee 1:baf91b6482eb 1149 */
Pinmanee 1:baf91b6482eb 1150 bool MFRC522::PICC_ReadCardSerial(void)
Pinmanee 1:baf91b6482eb 1151 {
Pinmanee 1:baf91b6482eb 1152 uint8_t result = PICC_Select(&uid);
Pinmanee 1:baf91b6482eb 1153 return (result == STATUS_OK);
Pinmanee 1:baf91b6482eb 1154 } // End PICC_ReadCardSerial()