Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of F401RE-USBHost by
USBHost/USBHALHost_LPC4088.cpp
- Committer:
- Ownasaurus
- Date:
- 2016-12-28
- Revision:
- 26:78b505e6e49c
- Parent:
- 18:61554f238584
File content as of revision 26:78b505e6e49c:
/* mbed USBHost Library
* Copyright (c) 2006-2013 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(TARGET_LPC4088)||defined(TARGET_LPC1768)
#include "USBHALHost.h"
#ifndef CTASSERT
template <bool>struct CtAssert;
template <>struct CtAssert<true> {};
#define CTASSERT(A) CtAssert<A>();
#endif
#ifdef _USB_DBG
#define USB_DBG(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0);
#define USB_DBG_HEX(A,B) debug_hex(A,B)
#define USB_DBG_ED(A) while(0)
#define USB_DBG_TD(A) while(0)
#define USB_DBG_ED_IF(A,B) while(0)
void debug_hex(uint8_t* buf, int size);
#else
#define USB_DBG(...) while(0)
#define USB_DBG_ED(A) while(0)
#define USB_DBG_TD(A) while(0)
#define USB_DBG_ED_IF(A,B) while(0)
#define USB_DBG_HEX(A,B) while(0)
#endif
#define USB_TRACE1(A) while(0)
#ifdef _USB_TEST
#undef USB_TEST_ASSERT
void usb_test_assert_internal(const char *expr, const char *file, int line);
#define USB_TEST_ASSERT(EXPR) while(!(EXPR)){usb_test_assert_internal(#EXPR,__FILE__,__LINE__);}
#else
#define USB_TEST_ASSERT(EXPR) while(0)
#endif
#define USB_INFO(...) do{fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");}while(0);
// bits of the USB/OTG clock control register
#define HOST_CLK_EN (1<<0)
#define DEV_CLK_EN (1<<1)
#define PORTSEL_CLK_EN (1<<3)
#define AHB_CLK_EN (1<<4)
// bits of the USB/OTG clock status register
#define HOST_CLK_ON (1<<0)
#define DEV_CLK_ON (1<<1)
#define PORTSEL_CLK_ON (1<<3)
#define AHB_CLK_ON (1<<4)
// we need host clock, OTG/portsel clock and AHB clock
#define CLOCK_MASK (HOST_CLK_EN | PORTSEL_CLK_EN | AHB_CLK_EN)
#define FI 0x2EDF /* 12000 bits per frame (-1) */
#define DEFAULT_FMINTERVAL ((((6 * (FI - 210)) / 7) << 16) | FI)
USBHALHost* USBHALHost::instHost;
USBHALHost::USBHALHost() {
instHost = this;
}
void USBHALHost::init() {
NVIC_DisableIRQ(USB_IRQn);
m_pHcca = new HCCA();
init_hw_ohci(m_pHcca);
ResetRootHub();
NVIC_SetVector(USB_IRQn, (uint32_t)_usbisr);
NVIC_SetPriority(USB_IRQn, 0);
NVIC_EnableIRQ(USB_IRQn);
USB_INFO("Simple USBHost Library for LPC4088/LPC1768");
bool lowSpeed = wait_attach();
addDevice(NULL, 0, lowSpeed);
}
void USBHALHost::init_hw_ohci(HCCA* pHcca) {
LPC_SC->PCONP &= ~(1UL<<31); //Cut power
wait_ms(1000);
LPC_SC->PCONP |= (1UL<<31); // turn on power for USB
LPC_USB->USBClkCtrl |= CLOCK_MASK; // Enable USB host clock, port selection and AHB clock
// Wait for clocks to become available
while ((LPC_USB->USBClkSt & CLOCK_MASK) != CLOCK_MASK)
;
LPC_USB->OTGStCtrl |= 1;
LPC_USB->USBClkCtrl &= ~PORTSEL_CLK_EN;
#if defined(TARGET_LPC1768)
LPC_PINCON->PINSEL1 &= ~((3<<26) | (3<<28));
LPC_PINCON->PINSEL1 |= ((1<<26)|(1<<28)); // 0x14000000
#elif defined(TARGET_LPC4088)
LPC_IOCON->P0_29 = 0x01; // USB_D+1
LPC_IOCON->P0_30 = 0x01; // USB_D-1
// DO NOT CHANGE P1_19.
#else
#error "target error"
#endif
USB_DBG("initialize OHCI\n");
wait_ms(100); /* Wait 50 ms before apply reset */
USB_TEST_ASSERT((LPC_USB->HcRevision&0xff) == 0x10); // check revision
LPC_USB->HcControl = 0; /* HARDWARE RESET */
LPC_USB->HcControlHeadED = 0; /* Initialize Control list head to Zero */
LPC_USB->HcBulkHeadED = 0; /* Initialize Bulk list head to Zero */
/* SOFTWARE RESET */
LPC_USB->HcCommandStatus = OR_CMD_STATUS_HCR;
LPC_USB->HcFmInterval = DEFAULT_FMINTERVAL; /* Write Fm Interval and Largest Data Packet Counter */
LPC_USB->HcPeriodicStart = FI*90/100;
/* Put HC in operational state */
LPC_USB->HcControl = (LPC_USB->HcControl & (~OR_CONTROL_HCFS)) | OR_CONTROL_HC_OPER;
LPC_USB->HcRhStatus = OR_RH_STATUS_LPSC; /* Set Global Power */
USB_TEST_ASSERT(pHcca);
for (int i = 0; i < 32; i++) {
pHcca->InterruptTable[i] = NULL;
}
LPC_USB->HcHCCA = reinterpret_cast<uint32_t>(pHcca);
LPC_USB->HcInterruptStatus |= LPC_USB->HcInterruptStatus; /* Clear Interrrupt Status */
LPC_USB->HcInterruptEnable = OR_INTR_ENABLE_MIE|OR_INTR_ENABLE_WDH|OR_INTR_ENABLE_FNO;
LPC_USB->HcRhPortStatus1 = OR_RH_PORT_CSC;
LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC;
}
void USBHALHost::ResetRootHub() {
wait_ms(100); /* USB 2.0 spec says at least 50ms delay before port reset */
LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRS; // Initiate port reset
USB_DBG("Before loop\n");
while (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_PRS)
;
LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC; // ...and clear port reset signal
USB_DBG("After loop\n");
wait_ms(200); /* Wait for 100 MS after port reset */
}
bool USBHALHost::wait_attach() {
bool lowSpeed = false;
uint32_t status = LPC_USB->HcRhPortStatus1;
if (status & OR_RH_PORT_LSDA) { // lowSpeedDeviceAttached
lowSpeed = true;
}
return lowSpeed;
}
void enable(ENDPOINT_TYPE type) {
switch(type) {
case CONTROL_ENDPOINT:
LPC_USB->HcCommandStatus |= OR_CMD_STATUS_CLF;
LPC_USB->HcControl |= OR_CONTROL_CLE;
break;
case ISOCHRONOUS_ENDPOINT:
LPC_USB->HcControl |= OR_CONTROL_PLE;
break;
case BULK_ENDPOINT:
LPC_USB->HcCommandStatus |= OR_CMD_STATUS_BLF;
LPC_USB->HcControl |= OR_CONTROL_BLE;
break;
case INTERRUPT_ENDPOINT:
LPC_USB->HcControl |= OR_CONTROL_PLE;
break;
}
}
void USBHALHost::token_init(USBEndpoint* ep) {
HCED* ed = ep->getHALData<HCED*>();
if (ed == NULL) {
ed = new HCED(ep);
ep->setHALData<HCED*>(ed);
}
USBDeviceConnected* dev = ep->getDevice();
USB_TEST_ASSERT(dev);
if (dev) {
uint8_t devAddr = dev->getAddress();
USB_DBG("devAddr=%02x", devAddr);
ed->setFunctionAddress(devAddr);
}
uint16_t size = ep->getSize();
USB_DBG("MaxPacketSize=%d", size);
ed->setMaxPacketSize(size);
if (ed->HeadTd == NULL) {
HCTD* td = new HCTD(ed);
ed->TailTd = td;
ed->HeadTd = td;
switch(ep->getType()) {
case CONTROL_ENDPOINT:
ed->Next = reinterpret_cast<HCED*>(LPC_USB->HcControlHeadED);
LPC_USB->HcControlHeadED = reinterpret_cast<uint32_t>(ed);
break;
case BULK_ENDPOINT:
ed->Next = reinterpret_cast<HCED*>(LPC_USB->HcBulkHeadED);
LPC_USB->HcBulkHeadED = reinterpret_cast<uint32_t>(ed);
break;
case INTERRUPT_ENDPOINT:
HCCA* pHcca = reinterpret_cast<HCCA*>(LPC_USB->HcHCCA);
ed->Next = pHcca->InterruptTable[0];
pHcca->InterruptTable[0] = ed;
break;
}
}
}
int USBHALHost::token_setup(USBEndpoint* ep, SETUP_PACKET* setup, uint16_t wLength) {
token_init(ep);
HCED* ed = ep->getHALData<HCED*>();
HCTD* td = ed->TailTd;
setup->wLength = wLength;
TBUF* tbuf = new(sizeof(SETUP_PACKET))TBUF(setup, sizeof(SETUP_PACKET));
td->transfer(tbuf, sizeof(SETUP_PACKET));
td->Control |= TD_TOGGLE_0|TD_SETUP; // DATA0
HCTD* blank = new HCTD(ed);
ed->enqueue(blank);
//DBG_ED(ed);
enable(ep->getType());
td = ed->get_queue_HCTD();
USB_TEST_ASSERT(td);
int result = td->getLengthTransferred();
USB_DBG_TD(td);
delete tbuf;
delete td;
return result;
}
static HCED* getHCED_iso(USBEndpoint* ep) {
HCED* ed = ep->getHALData<HCED*>();
if (ed != NULL) {
return ed;
}
ed = new HCED(ep);
ep->setHALData<HCED*>(ed);
ed->setFormat(); // F Format ITD
ed->iso.FrameCount = ep->ohci.frameCount;
ed->iso.queue_limit = ep->ohci.queueLimit;
ed->iso.queue_count = 0;
ed->iso.Current_FrameCount = 0;
ed->iso.Current_itd = NULL;
ed->iso.FrameNumber = LPC_USB->HcFmNumber + 10; // after 10msec
HCITD* itd = ed->new_HCITD();
ed->init_queue(reinterpret_cast<HCTD*>(itd));
HCCA* hcca = reinterpret_cast<HCCA*>(LPC_USB->HcHCCA);
hcca->enqueue(ed);
LPC_USB->HcControl |= OR_CONTROL_PLE; // PeriodicListEnable
LPC_USB->HcControl |= OR_CONTROL_IE; // IsochronousEnable
return ed;
}
static void enablePeriodic() {
LPC_USB->HcControl |= OR_CONTROL_PLE;
}
HCITD* isochronousReceive(USBEndpoint* ep) {
HCED* ed = getHCED_iso(ep);
USB_TEST_ASSERT(ed);
while(ed->iso.queue_count < ed->iso.queue_limit) {
HCITD* blank_itd = ed->new_HCITD();
if (ed->enqueue(reinterpret_cast<HCTD*>(blank_itd))) {
ed->iso.queue_count++;
}
enablePeriodic();
}
HCITD* itd = ed->get_queue_HCITD();
if (itd) {
ed->iso.queue_count--;
}
return itd;
}
int USBHALHost::token_iso_in(USBEndpoint* ep, uint8_t* data, int size) {
HCED* ed = getHCED_iso(ep);
if (ed->iso.Current_FrameCount == 0) {
HCITD* itd = isochronousReceive(ep);
if (itd == NULL) {
return -1;
}
if (itd->ConditionCode() != 0) {
delete itd;
return -1;
}
ed->iso.Current_itd = itd;
}
HCITD* itd = ed->iso.Current_itd;
int fc = ed->iso.Current_FrameCount;
int result = -1;
uint8_t cc = itd->ConditionCode(fc);
if (cc == 0 || cc == 9) {
result = itd->Length(fc);
memcpy(data, itd->Buffer(fc), result);
}
if (++ed->iso.Current_FrameCount >= itd->FrameCount()) {
ed->iso.Current_FrameCount = 0;
delete ed->iso.Current_itd;
}
return result;
}
int USBHALHost::multi_token_in(USBEndpoint* ep, uint8_t* data, int size) {
token_init(ep);
HCED* ed = ep->getHALData<HCED*>();
HCTD* td = ed->TailTd;
TBUF* tbuf = NULL;
if (data != NULL) {
tbuf = new(size)TBUF();
td->transfer(tbuf, size);
}
td->Control |= TD_IN;
HCTD* blank = new HCTD(ed);
ed->enqueue(blank);
USB_DBG_ED_IF(ed->EndpointNumber()==0, ed); // control transfer
enable(ep->getType());
td = ed->get_queue_HCTD();
USB_TEST_ASSERT(td);
if (data != NULL) {
memcpy(data, tbuf->buf, size);
delete tbuf;
}
int result = td->getLengthTransferred();
delete td;
return result;
}
int USBHALHost::multi_token_out(USBEndpoint* ep, const uint8_t* data, int size) {
token_init(ep);
HCED* ed = ep->getHALData<HCED*>();
HCTD* td = ed->TailTd;
TBUF* tbuf = NULL;
if (data != NULL) {
tbuf = new(size)TBUF(data, size);
td->transfer(tbuf, size);
}
td->Control |= TD_OUT;
HCTD* blank = new HCTD(ed);
ed->enqueue(blank);
USB_DBG_ED(ed);
enable(ep->getType());
td = ed->get_queue_HCTD();
USB_TEST_ASSERT(td);
if (data != NULL) {
delete tbuf;
}
int result = td->getLengthTransferred();
delete td;
return result;
}
void USBHALHost::multi_token_inNB(USBEndpoint* ep, uint8_t* data, int size) {
token_init(ep);
HCED* ed = ep->getHALData<HCED*>();
HCTD* td = ed->TailTd;
TBUF* tbuf = new(size)TBUF();
td->transfer(tbuf, size);
td->Control |= TD_IN;
HCTD* blank = new HCTD(ed);
ed->enqueue(blank);
enable(ep->getType());
}
USB_TYPE USBHALHost::multi_token_inNB_result(USBEndpoint* ep) {
HCED* ed = ep->getHALData<HCED*>();
if (ed == NULL) {
return USB_TYPE_ERROR;
}
HCTD* td = ed->get_queue_HCTD(0);
if (td) {
int len = td->getLengthTransferred();
TBUF* tbuf = (TBUF*)td->buf_top;
memcpy(ep->getBufStart(), tbuf->buf, len);
ep->setLengthTransferred(len);
ep->setState((USB_TYPE)td->ConditionCode());
delete td;
delete tbuf;
return USB_TYPE_OK;
}
return USB_TYPE_PROCESSING;
}
void USBHALHost::setToggle(USBEndpoint* ep, uint8_t toggle) {
USB_TEST_ASSERT(toggle == 1);
HCED* ed = ep->getHALData<HCED*>();
ed->setToggle(toggle);
}
void USBHALHost::_usbisr(void) {
if (instHost) {
instHost->UsbIrqhandler();
}
}
HCTD* td_reverse(HCTD* td)
{
HCTD* result = NULL;
HCTD* next;
while(td) {
next = const_cast<HCTD*>(td->Next);
td->Next = result;
result = td;
td = next;
}
return result;
}
void USBHALHost::UsbIrqhandler() {
if (!(LPC_USB->HcInterruptStatus & LPC_USB->HcInterruptEnable)) {
return;
}
m_report_irq++;
uint32_t status = LPC_USB->HcInterruptStatus;
if (status & OR_INTR_STATUS_FNO) {
m_report_FNO++;
}
if (status & OR_INTR_STATUS_WDH) {
union {
HCTD* done_td;
uint32_t lsb;
};
done_td = const_cast<HCTD*>(m_pHcca->DoneHead);
USB_TEST_ASSERT(done_td);
m_pHcca->DoneHead = NULL; // reset
if (lsb & 1) { // error ?
lsb &= ~1;
}
HCTD* td = td_reverse(done_td);
while(td) {
HCED* ed = td->parent;
USB_TEST_ASSERT(ed);
if (ed) {
ed->irqWdhHandler(td);
}
td = td->Next;
}
m_report_WDH++;
}
LPC_USB->HcInterruptStatus = status; // Clear Interrrupt Status
}
TBUF::TBUF(const void* data, int size) {
if (size > 0) {
memcpy(buf, data, size);
}
}
HCTD::HCTD(HCED* obj) {
CTASSERT(sizeof(HCTD) == 36);
USB_TEST_ASSERT(obj);
Control = TD_CC|TD_ROUNDING;
CurrBufPtr = NULL;
Next = NULL;
BufEnd = NULL;
buf_top = NULL;
buf_size = 0;
parent = obj;
}
HCITD::HCITD(HCED* obj, uint16_t FrameNumber, int FrameCount, uint16_t PacketSize) {
Control = 0xe0000000 | // CC ConditionCode NOT ACCESSED
((FrameCount-1) << 24)| // FC FrameCount
TD_DELAY_INT(0) | // DI DelayInterrupt
FrameNumber; // SF StartingFrame
BufferPage0 = const_cast<uint8_t*>(buf);
BufferEnd = const_cast<uint8_t*>(buf) + PacketSize * FrameCount - 1;
Next = NULL;
parent = obj;
uint32_t addr = reinterpret_cast<uint32_t>(buf);
for(int i = 0; i < FrameCount; i++) {
uint16_t offset = addr & 0x0fff;
if ((addr&0xfffff000) == (reinterpret_cast<uint32_t>(BufferEnd)&0xfffff000)) {
offset |= 0x1000;
}
OffsetPSW[i] = 0xe000|offset;
addr += PacketSize;
}
}
uint8_t* HCITD::Buffer(int fc) {
int offset = fc * parent->getMaxPacketSize();
return const_cast<uint8_t*>(buf) + offset;
}
HCED::HCED(USBEndpoint* ep) {
CTASSERT(sizeof(HCED) <= (64*2));
USBDeviceConnected* dev = ep->getDevice();
int devAddr = 0;
bool lowSpeed = false;
if (dev) {
devAddr = dev->getAddress();
lowSpeed = dev->getSpeed();
}
int ep_number = ep->getAddress();
int MaxPacketSize = ep->getSize();
Control = devAddr | /* USB address */
((ep_number & 0x7F) << 7) | /* Endpoint address */
(ep_number!=0?(((ep_number&0x80)?2:1) << 11):0)| /* direction : Out = 1, 2 = In */
((lowSpeed?1:0) << 13) | /* speed full=0 low=1 */
(MaxPacketSize << 16); /* MaxPkt Size */
TailTd = NULL;
HeadTd = NULL;
Next = NULL;
}
bool HCED::enqueue(HCTD* td) {
if (td) {
HCTD* tail = reinterpret_cast<HCTD*>(TailTd);
if (tail) {
tail->Next = td;
TailTd = reinterpret_cast<HCTD*>(td);
return true;
}
}
return false;
}
void HCED::init_queue(HCTD* td) {
TailTd = reinterpret_cast<HCTD*>(td);
HeadTd = reinterpret_cast<HCTD*>(td);
}
void HCED::setToggle(uint8_t toggle) {
uint32_t c = reinterpret_cast<uint32_t>(HeadTd);
if (toggle == 0) { // DATA0
c &= ~0x02;
} else { // DATA1
c |= 0x02;
}
HeadTd = reinterpret_cast<HCTD*>(c);
}
uint8_t HCED::getToggle() {
uint32_t c = reinterpret_cast<uint32_t>(HeadTd);
return (c&0x02) ? 1 : 0;
}
HCTD* HCED::get_queue_HCTD(uint32_t millisec)
{
for(int i = 0; i < 16; i++) {
osEvent evt = done_queue_get(millisec);
if (evt.status == osEventMessage) {
HCTD* td = reinterpret_cast<HCTD*>(evt.value.p);
USB_TEST_ASSERT(td);
uint8_t cc = td->ConditionCode();
if (cc != 0) {
m_ConditionCode = cc;
USB_DBG_TD(td);
}
return td;
} else if (evt.status == osOK) {
continue;
} else if (evt.status == osEventTimeout) {
return NULL;
} else {
USB_DBG("evt.status: %02x\n", evt.status);
USB_TEST_ASSERT(evt.status == osEventMessage);
}
}
return NULL;
}
HCITD* HCED::get_queue_HCITD() {
osEvent evt = done_queue_get(0);
if (evt.status == osEventMessage) {
HCITD* itd = reinterpret_cast<HCITD*>(evt.value.p);
USB_TEST_ASSERT(itd);
return itd;
}
return NULL;
}
HCITD* HCED::new_HCITD() {
uint16_t mps = getMaxPacketSize();
int total_size = mps * iso.FrameCount;
HCITD* itd = new(total_size)HCITD(this, iso.FrameNumber, iso.FrameCount, mps);
iso.FrameNumber += iso.FrameCount;
return itd;
}
void HCCA::enqueue(HCED* ed) {
for(int i = 0; i < 32; i++) {
if (InterruptTable[i] == NULL) {
InterruptTable[i] = ed;
} else {
HCED* nextEd = InterruptTable[i];
while(nextEd->Next && nextEd->Next != ed) {
nextEd = nextEd->Next;
}
nextEd->Next = ed;
}
}
}
#endif // defined(TARGET_LPC4088)||defined(TARGET_LPC1768)
