blablabla

Dependencies:   MAG3110 MMA8451Q SLCD- TSI USBDevice mbed

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers USBHAL_STM32F4.cpp Source File

USBHAL_STM32F4.cpp

00001 /* Copyright (c) 2010-2011 mbed.org, MIT License
00002 *
00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
00004 * and associated documentation files (the "Software"), to deal in the Software without
00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
00007 * Software is furnished to do so, subject to the following conditions:
00008 *
00009 * The above copyright notice and this permission notice shall be included in all copies or
00010 * substantial portions of the Software.
00011 *
00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
00017 */
00018 
00019 #if defined(TARGET_STM32F4XX)
00020 
00021 #include "USBHAL.h"
00022 #include "USBRegs_STM32.h"
00023 #include "pinmap.h"
00024 
00025 USBHAL * USBHAL::instance;
00026 
00027 static volatile int epComplete = 0;
00028 
00029 static uint32_t bufferEnd = 0;
00030 static const uint32_t rxFifoSize = 512;
00031 static uint32_t rxFifoCount = 0;
00032 
00033 static uint32_t setupBuffer[MAX_PACKET_SIZE_EP0 >> 2];
00034 
00035 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
00036     return 0;
00037 }
00038 
00039 USBHAL::USBHAL(void) {    
00040     NVIC_DisableIRQ(OTG_FS_IRQn);
00041     epCallback[0] = &USBHAL::EP1_OUT_callback;
00042     epCallback[1] = &USBHAL::EP1_IN_callback;
00043     epCallback[2] = &USBHAL::EP2_OUT_callback;
00044     epCallback[3] = &USBHAL::EP2_IN_callback;
00045     epCallback[4] = &USBHAL::EP3_OUT_callback;
00046     epCallback[5] = &USBHAL::EP3_IN_callback;
00047 
00048     // Enable power and clocking
00049     RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;
00050 
00051     pin_function(PA_8, STM_PIN_DATA(2, 10));
00052     pin_function(PA_9, STM_PIN_DATA(0, 0));
00053     pin_function(PA_10, STM_PIN_DATA(2, 10));
00054     pin_function(PA_11, STM_PIN_DATA(2, 10));
00055     pin_function(PA_12, STM_PIN_DATA(2, 10));
00056 
00057     // Set ID pin to open drain with pull-up resistor
00058     pin_mode(PA_10, OpenDrain);
00059     GPIOA->PUPDR &= ~(0x3 << 20);
00060     GPIOA->PUPDR |= 1 << 20;
00061 
00062     // Set VBUS pin to open drain
00063     pin_mode(PA_9, OpenDrain);
00064 
00065     RCC->AHB2ENR |= RCC_AHB2ENR_OTGFSEN;
00066     
00067     // Enable interrupts
00068     OTG_FS->GREGS.GAHBCFG |= (1 << 0);
00069 
00070     // Turnaround time to maximum value - too small causes packet loss
00071     OTG_FS->GREGS.GUSBCFG |= (0xF << 10);
00072 
00073     // Unmask global interrupts
00074     OTG_FS->GREGS.GINTMSK |= (1 << 3) | // SOF
00075                              (1 << 4) | // RX FIFO not empty
00076                              (1 << 12); // USB reset
00077 
00078     OTG_FS->DREGS.DCFG |= (0x3 << 0) | // Full speed
00079                           (1 << 2); // Non-zero-length status OUT handshake
00080 
00081     OTG_FS->GREGS.GCCFG |= (1 << 19) | // Enable VBUS sensing
00082                            (1 << 16); // Power Up
00083 
00084     instance = this;
00085     NVIC_SetVector(OTG_FS_IRQn, (uint32_t)&_usbisr);
00086     NVIC_SetPriority(OTG_FS_IRQn, 1);
00087 }
00088 
00089 USBHAL::~USBHAL(void) {
00090 }
00091 
00092 void USBHAL::connect(void) {
00093     NVIC_EnableIRQ(OTG_FS_IRQn);
00094 }
00095 
00096 void USBHAL::disconnect(void) {
00097     NVIC_DisableIRQ(OTG_FS_IRQn);
00098 }
00099 
00100 void USBHAL::configureDevice(void) {
00101     // Not needed
00102 }
00103 
00104 void USBHAL::unconfigureDevice(void) {
00105     // Not needed
00106 }
00107 
00108 void USBHAL::setAddress(uint8_t address) {
00109     OTG_FS->DREGS.DCFG |= (address << 4);
00110     EP0write(0, 0);
00111 }
00112 
00113 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket,
00114                              uint32_t flags) {
00115     uint32_t epIndex = endpoint >> 1;
00116 
00117     uint32_t type;
00118     switch (endpoint) {
00119         case EP0IN:  
00120         case EP0OUT:
00121             type = 0;
00122             break;   
00123         case EPISO_IN:
00124         case EPISO_OUT:
00125             type = 1; 
00126         case EPBULK_IN:
00127         case EPBULK_OUT:
00128             type = 2;  
00129             break;   
00130         case EPINT_IN:
00131         case EPINT_OUT:
00132             type = 3; 
00133             break;   
00134     }
00135 
00136     // Generic in or out EP controls
00137     uint32_t control = (maxPacket << 0) | // Packet size
00138                        (1 << 15) | // Active endpoint
00139                        (type << 18); // Endpoint type
00140 
00141     if (endpoint & 0x1) { // In Endpoint
00142         // Set up the Tx FIFO
00143         if (endpoint == EP0IN) {
00144             OTG_FS->GREGS.DIEPTXF0_HNPTXFSIZ = ((maxPacket >> 2) << 16) |
00145                                                (bufferEnd << 0);
00146         }
00147         else {
00148             OTG_FS->GREGS.DIEPTXF[epIndex - 1] = ((maxPacket >> 2) << 16) |
00149                                                  (bufferEnd << 0);
00150         }
00151         bufferEnd += maxPacket >> 2;
00152 
00153         // Set the In EP specific control settings
00154         if (endpoint != EP0IN) {
00155             control |= (1 << 28); // SD0PID
00156         }
00157         
00158         control |= (epIndex << 22) | // TxFIFO index
00159                    (1 << 27); // SNAK
00160         OTG_FS->INEP_REGS[epIndex].DIEPCTL = control;
00161 
00162         // Unmask the interrupt
00163         OTG_FS->DREGS.DAINTMSK |= (1 << epIndex);
00164     }
00165     else { // Out endpoint
00166         // Set the out EP specific control settings
00167         control |= (1 << 26); // CNAK
00168         OTG_FS->OUTEP_REGS[epIndex].DOEPCTL = control;
00169         
00170         // Unmask the interrupt
00171         OTG_FS->DREGS.DAINTMSK |= (1 << (epIndex + 16));
00172     }
00173     return true;
00174 }
00175 
00176 // read setup packet
00177 void USBHAL::EP0setup(uint8_t *buffer) {
00178     memcpy(buffer, setupBuffer, MAX_PACKET_SIZE_EP0);
00179 }
00180 
00181 void USBHAL::EP0readStage(void) {
00182 }
00183 
00184 void USBHAL::EP0read(void) {
00185 }
00186 
00187 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
00188     uint32_t* buffer32 = (uint32_t *) buffer;
00189     uint32_t length = rxFifoCount;
00190     for (uint32_t i = 0; i < length; i += 4) {
00191         buffer32[i >> 2] = OTG_FS->FIFO[0][0];
00192     }
00193                         
00194     rxFifoCount = 0;
00195     return length;
00196 }
00197 
00198 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
00199     endpointWrite(0, buffer, size);
00200 }
00201 
00202 void USBHAL::EP0getWriteResult(void) {
00203 }
00204 
00205 void USBHAL::EP0stall(void) {
00206     // If we stall the out endpoint here then we have problems transferring
00207     // and setup requests after the (stalled) get device qualifier requests.
00208     // TODO: Find out if this is correct behavior, or whether we are doing
00209     // something else wrong
00210     stallEndpoint(EP0IN);
00211 //    stallEndpoint(EP0OUT);
00212 }
00213 
00214 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
00215     uint32_t epIndex = endpoint >> 1;
00216     uint32_t size = (1 << 19) | // 1 packet
00217                     (maximumSize << 0); // Packet size
00218 //    if (endpoint == EP0OUT) {
00219         size |= (1 << 29); // 1 setup packet
00220 //    }
00221     OTG_FS->OUTEP_REGS[epIndex].DOEPTSIZ = size;
00222     OTG_FS->OUTEP_REGS[epIndex].DOEPCTL |= (1 << 31) | // Enable endpoint
00223                                            (1 << 26); // Clear NAK
00224 
00225     epComplete &= ~(1 << endpoint);
00226     return EP_PENDING;
00227 }
00228 
00229 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
00230     if (!(epComplete & (1 << endpoint))) {
00231         return EP_PENDING;
00232     }
00233 
00234     uint32_t* buffer32 = (uint32_t *) buffer;
00235     uint32_t length = rxFifoCount;
00236     for (uint32_t i = 0; i < length; i += 4) {
00237         buffer32[i >> 2] = OTG_FS->FIFO[endpoint >> 1][0];
00238     }
00239     rxFifoCount = 0;
00240     *bytesRead = length;
00241     return EP_COMPLETED;
00242 }
00243 
00244 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
00245     uint32_t epIndex = endpoint >> 1;
00246     OTG_FS->INEP_REGS[epIndex].DIEPTSIZ = (1 << 19) | // 1 packet
00247                                           (size << 0); // Size of packet
00248     OTG_FS->INEP_REGS[epIndex].DIEPCTL |= (1 << 31) | // Enable endpoint
00249                                           (1 << 26); // CNAK
00250     OTG_FS->DREGS.DIEPEMPMSK = (1 << epIndex);
00251 
00252     while ((OTG_FS->INEP_REGS[epIndex].DTXFSTS & 0XFFFF) < ((size + 3) >> 2));
00253 
00254     for (uint32_t i=0; i<(size + 3) >> 2; i++, data+=4) {
00255         OTG_FS->FIFO[epIndex][0] = *(uint32_t *)data;
00256     }
00257 
00258     epComplete &= ~(1 << endpoint);
00259 
00260     return EP_PENDING;
00261 }
00262 
00263 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
00264     if (epComplete & (1 << endpoint)) {
00265         epComplete &= ~(1 << endpoint);
00266         return EP_COMPLETED;
00267     }
00268 
00269     return EP_PENDING; 
00270 }
00271 
00272 void USBHAL::stallEndpoint(uint8_t endpoint) {
00273     if (endpoint & 0x1) { // In EP
00274         OTG_FS->INEP_REGS[endpoint >> 1].DIEPCTL |= (1 << 30) | // Disable
00275                                                     (1 << 21); // Stall
00276     }
00277     else {  // Out EP
00278         OTG_FS->DREGS.DCTL |= (1 << 9); // Set global out NAK
00279         OTG_FS->OUTEP_REGS[endpoint >> 1].DOEPCTL |= (1 << 30) | // Disable
00280                                                      (1 << 21); // Stall
00281     }
00282 }
00283 
00284 void USBHAL::unstallEndpoint(uint8_t endpoint) {
00285     
00286 }
00287 
00288 bool USBHAL::getEndpointStallState(uint8_t endpoint) {
00289     return false;
00290 }
00291 
00292 void USBHAL::remoteWakeup(void) {
00293 }
00294 
00295 
00296 void USBHAL::_usbisr(void) {
00297     instance->usbisr();
00298 }
00299 
00300 
00301 void USBHAL::usbisr(void) {
00302     if (OTG_FS->GREGS.GINTSTS & (1 << 12)) { // USB Reset
00303         // Set SNAK bits
00304         OTG_FS->OUTEP_REGS[0].DOEPCTL |= (1 << 27);
00305         OTG_FS->OUTEP_REGS[1].DOEPCTL |= (1 << 27);
00306         OTG_FS->OUTEP_REGS[2].DOEPCTL |= (1 << 27);
00307         OTG_FS->OUTEP_REGS[3].DOEPCTL |= (1 << 27);
00308 
00309         OTG_FS->DREGS.DIEPMSK = (1 << 0);
00310 
00311         bufferEnd = 0;
00312 
00313         // Set the receive FIFO size
00314         OTG_FS->GREGS.GRXFSIZ = rxFifoSize >> 2;
00315         bufferEnd += rxFifoSize >> 2;
00316 
00317         // Create the endpoints, and wait for setup packets on out EP0
00318         realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
00319         realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
00320         endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
00321 
00322         OTG_FS->GREGS.GINTSTS = (1 << 12);
00323     }
00324 
00325     if (OTG_FS->GREGS.GINTSTS & (1 << 4)) { // RX FIFO not empty
00326         uint32_t status = OTG_FS->GREGS.GRXSTSP;
00327 
00328         uint32_t endpoint = (status & 0xF) << 1;
00329         uint32_t length = (status >> 4) & 0x7FF;
00330         uint32_t type = (status >> 17) & 0xF;
00331 
00332         rxFifoCount = length;
00333 
00334         if (type == 0x6) {
00335             // Setup packet
00336             for (uint32_t i=0; i<length; i+=4) {
00337                 setupBuffer[i >> 2] = OTG_FS->FIFO[0][i >> 2];
00338             }
00339             rxFifoCount = 0;
00340         }
00341 
00342         if (type == 0x4) {
00343             // Setup complete
00344             EP0setupCallback();
00345             endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
00346         }
00347 
00348         if (type == 0x2) {
00349             // Out packet
00350             if (endpoint == EP0OUT) {
00351                 EP0out();
00352             }
00353             else {
00354                 epComplete |= (1 << endpoint);
00355                 if ((instance->*(epCallback[endpoint - 2]))()) {
00356                     epComplete &= (1 << endpoint);
00357                 }
00358             }
00359         }
00360 
00361         for (uint32_t i=0; i<rxFifoCount; i+=4) {
00362             (void) OTG_FS->FIFO[0][0];
00363         }
00364         OTG_FS->GREGS.GINTSTS = (1 << 4);
00365     }
00366 
00367     if (OTG_FS->GREGS.GINTSTS & (1 << 18)) { // In endpoint interrupt
00368         // Loop through the in endpoints
00369         for (uint32_t i=0; i<4; i++) {
00370             if (OTG_FS->DREGS.DAINT & (1 << i)) { // Interrupt is on endpoint
00371 
00372                 if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 7)) {// Tx FIFO empty
00373                     // If the Tx FIFO is empty on EP0 we need to send a further
00374                     // packet, so call EP0in()
00375                     if (i == 0) {
00376                         EP0in();
00377                     }
00378                     // Clear the interrupt
00379                     OTG_FS->INEP_REGS[i].DIEPINT = (1 << 7);
00380                     // Stop firing Tx empty interrupts
00381                     // Will get turned on again if another write is called
00382                     OTG_FS->DREGS.DIEPEMPMSK &= ~(1 << i);
00383                 }
00384 
00385                 // If the transfer is complete
00386                 if (OTG_FS->INEP_REGS[i].DIEPINT & (1 << 0)) { // Tx Complete
00387                     epComplete |= (1 << (1 + (i << 1)));
00388                     OTG_FS->INEP_REGS[i].DIEPINT = (1 << 0);
00389                 }
00390             }
00391         }
00392         OTG_FS->GREGS.GINTSTS = (1 << 18);
00393     }
00394 
00395     if (OTG_FS->GREGS.GINTSTS & (1 << 3)) { // Start of frame
00396         SOF((OTG_FS->GREGS.GRXSTSR >> 17) & 0xF);
00397         OTG_FS->GREGS.GINTSTS = (1 << 3);
00398     }
00399 }
00400 
00401 
00402 #endif