blablabla
Dependencies: MAG3110 MMA8451Q SLCD- TSI USBDevice mbed
USBHAL_KL25Z.cpp
00001 /* Copyright (c) 2010-2011 mbed.org, MIT License 00002 * 00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software 00004 * and associated documentation files (the "Software"), to deal in the Software without 00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish, 00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 00007 * Software is furnished to do so, subject to the following conditions: 00008 * 00009 * The above copyright notice and this permission notice shall be included in all copies or 00010 * substantial portions of the Software. 00011 * 00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING 00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 00017 */ 00018 00019 #if defined(TARGET_KL25Z) | defined(TARGET_KL46Z) | defined(TARGET_K20D5M) 00020 00021 #include "USBHAL.h" 00022 00023 USBHAL * USBHAL::instance; 00024 00025 static volatile int epComplete = 0; 00026 00027 // Convert physical endpoint number to register bit 00028 #define EP(endpoint) (1<<(endpoint)) 00029 00030 // Convert physical to logical 00031 #define PHY_TO_LOG(endpoint) ((endpoint)>>1) 00032 00033 // Get endpoint direction 00034 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false) 00035 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true) 00036 00037 #define BD_OWN_MASK (1<<7) 00038 #define BD_DATA01_MASK (1<<6) 00039 #define BD_KEEP_MASK (1<<5) 00040 #define BD_NINC_MASK (1<<4) 00041 #define BD_DTS_MASK (1<<3) 00042 #define BD_STALL_MASK (1<<2) 00043 00044 #define TX 1 00045 #define RX 0 00046 #define ODD 0 00047 #define EVEN 1 00048 // this macro waits a physical endpoint number 00049 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 * odd))) 00050 00051 #define SETUP_TOKEN 0x0D 00052 #define IN_TOKEN 0x09 00053 #define OUT_TOKEN 0x01 00054 #define TOK_PID(idx) ((bdt[idx].info >> 2) & 0x0F) 00055 00056 // for each endpt: 8 bytes 00057 typedef struct BDT { 00058 uint8_t info; // BD[0:7] 00059 uint8_t dummy; // RSVD: BD[8:15] 00060 uint16_t byte_count; // BD[16:32] 00061 uint32_t address; // Addr 00062 } BDT; 00063 00064 00065 // there are: 00066 // * 16 bidirectionnal endpt -> 32 physical endpt 00067 // * as there are ODD and EVEN buffer -> 32*2 bdt 00068 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2]; 00069 uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2]; 00070 uint8_t * endpoint_buffer_iso[2*2]; 00071 00072 static uint8_t set_addr = 0; 00073 static uint8_t addr = 0; 00074 00075 static uint32_t Data1 = 0x55555555; 00076 00077 static uint32_t frameNumber() { 00078 return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF); 00079 } 00080 00081 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) { 00082 return 0; 00083 } 00084 00085 USBHAL::USBHAL(void) { 00086 // Disable IRQ 00087 NVIC_DisableIRQ(USB0_IRQn); 00088 00089 // fill in callback array 00090 epCallback[0] = &USBHAL::EP1_OUT_callback; 00091 epCallback[1] = &USBHAL::EP1_IN_callback; 00092 epCallback[2] = &USBHAL::EP2_OUT_callback; 00093 epCallback[3] = &USBHAL::EP2_IN_callback; 00094 epCallback[4] = &USBHAL::EP3_OUT_callback; 00095 epCallback[5] = &USBHAL::EP3_IN_callback; 00096 epCallback[6] = &USBHAL::EP4_OUT_callback; 00097 epCallback[7] = &USBHAL::EP4_IN_callback; 00098 epCallback[8] = &USBHAL::EP5_OUT_callback; 00099 epCallback[9] = &USBHAL::EP5_IN_callback; 00100 epCallback[10] = &USBHAL::EP6_OUT_callback; 00101 epCallback[11] = &USBHAL::EP6_IN_callback; 00102 epCallback[12] = &USBHAL::EP7_OUT_callback; 00103 epCallback[13] = &USBHAL::EP7_IN_callback; 00104 epCallback[14] = &USBHAL::EP8_OUT_callback; 00105 epCallback[15] = &USBHAL::EP8_IN_callback; 00106 epCallback[16] = &USBHAL::EP9_OUT_callback; 00107 epCallback[17] = &USBHAL::EP9_IN_callback; 00108 epCallback[18] = &USBHAL::EP10_OUT_callback; 00109 epCallback[19] = &USBHAL::EP10_IN_callback; 00110 epCallback[20] = &USBHAL::EP11_OUT_callback; 00111 epCallback[21] = &USBHAL::EP11_IN_callback; 00112 epCallback[22] = &USBHAL::EP12_OUT_callback; 00113 epCallback[23] = &USBHAL::EP12_IN_callback; 00114 epCallback[24] = &USBHAL::EP13_OUT_callback; 00115 epCallback[25] = &USBHAL::EP13_IN_callback; 00116 epCallback[26] = &USBHAL::EP14_OUT_callback; 00117 epCallback[27] = &USBHAL::EP14_IN_callback; 00118 epCallback[28] = &USBHAL::EP15_OUT_callback; 00119 epCallback[29] = &USBHAL::EP15_IN_callback; 00120 00121 00122 // choose usb src as PLL 00123 SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_PLLFLLSEL_MASK); 00124 00125 // enable OTG clock 00126 SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK; 00127 00128 // Attach IRQ 00129 instance = this; 00130 NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr); 00131 NVIC_EnableIRQ(USB0_IRQn); 00132 00133 // USB Module Configuration 00134 // Reset USB Module 00135 USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK; 00136 while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK); 00137 00138 // Set BDT Base Register 00139 USB0->BDTPAGE1=(uint8_t)((uint32_t)bdt>>8); 00140 USB0->BDTPAGE2=(uint8_t)((uint32_t)bdt>>16); 00141 USB0->BDTPAGE3=(uint8_t)((uint32_t)bdt>>24); 00142 00143 // Clear interrupt flag 00144 USB0->ISTAT = 0xff; 00145 00146 // USB Interrupt Enablers 00147 USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK | 00148 USB_INTEN_SOFTOKEN_MASK | 00149 USB_INTEN_ERROREN_MASK | 00150 USB_INTEN_USBRSTEN_MASK; 00151 00152 // Disable weak pull downs 00153 USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK); 00154 00155 USB0->USBTRC0 |= 0x40; 00156 } 00157 00158 USBHAL::~USBHAL(void) { } 00159 00160 void USBHAL::connect(void) { 00161 // enable USB 00162 USB0->CTL |= USB_CTL_USBENSOFEN_MASK; 00163 // Pull up enable 00164 USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK; 00165 } 00166 00167 void USBHAL::disconnect(void) { 00168 // disable USB 00169 USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK; 00170 // Pull up disable 00171 USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK; 00172 00173 //Free buffers if required: 00174 for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) { 00175 free(endpoint_buffer[i]); 00176 endpoint_buffer[i] = NULL; 00177 } 00178 free(endpoint_buffer_iso[2]); 00179 endpoint_buffer_iso[2] = NULL; 00180 free(endpoint_buffer_iso[0]); 00181 endpoint_buffer_iso[0] = NULL; 00182 } 00183 00184 void USBHAL::configureDevice(void) { 00185 // not needed 00186 } 00187 00188 void USBHAL::unconfigureDevice(void) { 00189 // not needed 00190 } 00191 00192 void USBHAL::setAddress(uint8_t address) { 00193 // we don't set the address now otherwise the usb controller does not ack 00194 // we set a flag instead 00195 // see usbisr when an IN token is received 00196 set_addr = 1; 00197 addr = address; 00198 } 00199 00200 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) { 00201 uint32_t handshake_flag = 0; 00202 uint8_t * buf; 00203 00204 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) { 00205 return false; 00206 } 00207 00208 uint32_t log_endpoint = PHY_TO_LOG(endpoint); 00209 00210 if ((flags & ISOCHRONOUS) == 0) { 00211 handshake_flag = USB_ENDPT_EPHSHK_MASK; 00212 if (IN_EP(endpoint)) { 00213 if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL) 00214 endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64*2); 00215 buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0]; 00216 } else { 00217 if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL) 00218 endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64*2); 00219 buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0]; 00220 } 00221 } else { 00222 if (IN_EP(endpoint)) { 00223 if (endpoint_buffer_iso[2] == NULL) 00224 endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2); 00225 buf = &endpoint_buffer_iso[2][0]; 00226 } else { 00227 if (endpoint_buffer_iso[0] == NULL) 00228 endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2); 00229 buf = &endpoint_buffer_iso[0][0]; 00230 } 00231 } 00232 00233 // IN endpt -> device to host (TX) 00234 if (IN_EP(endpoint)) { 00235 USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint) 00236 USB_ENDPT_EPTXEN_MASK; // en TX (IN) tran 00237 bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf; 00238 bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0; 00239 } 00240 // OUT endpt -> host to device (RX) 00241 else { 00242 USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint) 00243 USB_ENDPT_EPRXEN_MASK; // en RX (OUT) tran. 00244 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket; 00245 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address = (uint32_t) buf; 00246 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info = BD_OWN_MASK | BD_DTS_MASK; 00247 bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info = 0; 00248 } 00249 00250 Data1 |= (1 << endpoint); 00251 00252 return true; 00253 } 00254 00255 // read setup packet 00256 void USBHAL::EP0setup(uint8_t *buffer) { 00257 uint32_t sz; 00258 endpointReadResult(EP0OUT, buffer, &sz); 00259 } 00260 00261 void USBHAL::EP0readStage(void) { 00262 Data1 &= ~1UL; // set DATA0 00263 bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK); 00264 } 00265 00266 void USBHAL::EP0read(void) { 00267 uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0); 00268 bdt[idx].byte_count = MAX_PACKET_SIZE_EP0; 00269 } 00270 00271 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { 00272 uint32_t sz; 00273 endpointReadResult(EP0OUT, buffer, &sz); 00274 return sz; 00275 } 00276 00277 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { 00278 endpointWrite(EP0IN, buffer, size); 00279 } 00280 00281 void USBHAL::EP0getWriteResult(void) { 00282 } 00283 00284 void USBHAL::EP0stall(void) { 00285 stallEndpoint(EP0OUT); 00286 } 00287 00288 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { 00289 endpoint = PHY_TO_LOG(endpoint); 00290 uint32_t idx = EP_BDT_IDX(endpoint, RX, 0); 00291 bdt[idx].byte_count = maximumSize; 00292 return EP_PENDING; 00293 } 00294 00295 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) { 00296 uint32_t n, sz, idx, setup = 0; 00297 uint8_t not_iso; 00298 uint8_t * ep_buf; 00299 00300 uint32_t log_endpoint = PHY_TO_LOG(endpoint); 00301 00302 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) { 00303 return EP_INVALID; 00304 } 00305 00306 // if read on a IN endpoint -> error 00307 if (IN_EP(endpoint)) { 00308 return EP_INVALID; 00309 } 00310 00311 idx = EP_BDT_IDX(log_endpoint, RX, 0); 00312 sz = bdt[idx].byte_count; 00313 not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK; 00314 00315 //for isochronous endpoint, we don't wait an interrupt 00316 if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) { 00317 return EP_PENDING; 00318 } 00319 00320 if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) { 00321 setup = 1; 00322 } 00323 00324 // non iso endpoint 00325 if (not_iso) { 00326 ep_buf = endpoint_buffer[idx]; 00327 } else { 00328 ep_buf = endpoint_buffer_iso[0]; 00329 } 00330 00331 for (n = 0; n < sz; n++) { 00332 buffer[n] = ep_buf[n]; 00333 } 00334 00335 if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) { 00336 if (setup && (buffer[6] == 0)) // if no setup data stage, 00337 Data1 &= ~1UL; // set DATA0 00338 else 00339 Data1 ^= (1 << endpoint); 00340 } 00341 00342 if (((Data1 >> endpoint) & 1)) { 00343 bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK; 00344 } 00345 else { 00346 bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK; 00347 } 00348 00349 USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK; 00350 *bytesRead = sz; 00351 00352 epComplete &= ~EP(endpoint); 00353 return EP_COMPLETED; 00354 } 00355 00356 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) { 00357 uint32_t idx, n; 00358 uint8_t * ep_buf; 00359 00360 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) { 00361 return EP_INVALID; 00362 } 00363 00364 // if write on a OUT endpoint -> error 00365 if (OUT_EP(endpoint)) { 00366 return EP_INVALID; 00367 } 00368 00369 idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0); 00370 bdt[idx].byte_count = size; 00371 00372 00373 // non iso endpoint 00374 if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) { 00375 ep_buf = endpoint_buffer[idx]; 00376 } else { 00377 ep_buf = endpoint_buffer_iso[2]; 00378 } 00379 00380 for (n = 0; n < size; n++) { 00381 ep_buf[n] = data[n]; 00382 } 00383 00384 if ((Data1 >> endpoint) & 1) { 00385 bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK; 00386 } else { 00387 bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK; 00388 } 00389 00390 Data1 ^= (1 << endpoint); 00391 00392 return EP_PENDING; 00393 } 00394 00395 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { 00396 if (epComplete & EP(endpoint)) { 00397 epComplete &= ~EP(endpoint); 00398 return EP_COMPLETED; 00399 } 00400 00401 return EP_PENDING; 00402 } 00403 00404 void USBHAL::stallEndpoint(uint8_t endpoint) { 00405 USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK; 00406 } 00407 00408 void USBHAL::unstallEndpoint(uint8_t endpoint) { 00409 USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK; 00410 } 00411 00412 bool USBHAL::getEndpointStallState(uint8_t endpoint) { 00413 uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK); 00414 return (stall) ? true : false; 00415 } 00416 00417 void USBHAL::remoteWakeup(void) { 00418 // [TODO] 00419 } 00420 00421 00422 void USBHAL::_usbisr(void) { 00423 instance->usbisr(); 00424 } 00425 00426 00427 void USBHAL::usbisr(void) { 00428 uint8_t i; 00429 uint8_t istat = USB0->ISTAT; 00430 00431 // reset interrupt 00432 if (istat & USB_ISTAT_USBRST_MASK) { 00433 // disable all endpt 00434 for(i = 0; i < 16; i++) { 00435 USB0->ENDPOINT[i].ENDPT = 0x00; 00436 } 00437 00438 // enable control endpoint 00439 realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0); 00440 realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0); 00441 00442 Data1 = 0x55555555; 00443 USB0->CTL |= USB_CTL_ODDRST_MASK; 00444 00445 USB0->ISTAT = 0xFF; // clear all interrupt status flags 00446 USB0->ERRSTAT = 0xFF; // clear all error flags 00447 USB0->ERREN = 0xFF; // enable error interrupt sources 00448 USB0->ADDR = 0x00; // set default address 00449 00450 return; 00451 } 00452 00453 // resume interrupt 00454 if (istat & USB_ISTAT_RESUME_MASK) { 00455 USB0->ISTAT = USB_ISTAT_RESUME_MASK; 00456 } 00457 00458 // SOF interrupt 00459 if (istat & USB_ISTAT_SOFTOK_MASK) { 00460 USB0->ISTAT = USB_ISTAT_SOFTOK_MASK; 00461 // SOF event, read frame number 00462 SOF(frameNumber()); 00463 } 00464 00465 // stall interrupt 00466 if (istat & 1<<7) { 00467 if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK) 00468 USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK; 00469 USB0->ISTAT |= USB_ISTAT_STALL_MASK; 00470 } 00471 00472 // token interrupt 00473 if (istat & 1<<3) { 00474 uint32_t num = (USB0->STAT >> 4) & 0x0F; 00475 uint32_t dir = (USB0->STAT >> 3) & 0x01; 00476 uint32_t ev_odd = (USB0->STAT >> 2) & 0x01; 00477 00478 // setup packet 00479 if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) { 00480 Data1 &= ~0x02; 00481 bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK; 00482 bdt[EP_BDT_IDX(0, TX, ODD)].info &= ~BD_OWN_MASK; 00483 00484 // EP0 SETUP event (SETUP data received) 00485 EP0setupCallback(); 00486 00487 } else { 00488 // OUT packet 00489 if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) { 00490 if (num == 0) 00491 EP0out(); 00492 else { 00493 epComplete |= (1 << EP(num)); 00494 if ((instance->*(epCallback[EP(num) - 2]))()) { 00495 epComplete &= ~(1 << EP(num)); 00496 } 00497 } 00498 } 00499 00500 // IN packet 00501 if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) { 00502 if (num == 0) { 00503 EP0in(); 00504 if (set_addr == 1) { 00505 USB0->ADDR = addr & 0x7F; 00506 set_addr = 0; 00507 } 00508 } 00509 else { 00510 epComplete |= (1 << (EP(num) + 1)); 00511 if ((instance->*(epCallback[EP(num) + 1 - 2]))()) { 00512 epComplete &= ~(1 << (EP(num) + 1)); 00513 } 00514 } 00515 } 00516 } 00517 00518 USB0->ISTAT = USB_ISTAT_TOKDNE_MASK; 00519 } 00520 00521 // sleep interrupt 00522 if (istat & 1<<4) { 00523 USB0->ISTAT |= USB_ISTAT_SLEEP_MASK; 00524 } 00525 00526 // error interrupt 00527 if (istat & USB_ISTAT_ERROR_MASK) { 00528 USB0->ERRSTAT = 0xFF; 00529 USB0->ISTAT |= USB_ISTAT_ERROR_MASK; 00530 } 00531 } 00532 00533 00534 #endif
Generated on Tue Jul 12 2022 16:20:43 by 1.7.2