Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed WattBob_TextLCD
main.cpp
- Committer:
- Nurbol
- Date:
- 2011-11-24
- Revision:
- 1:05b399616fcd
- Parent:
- 0:99ea9a842829
- Child:
- 2:0d0ec8aa4605
File content as of revision 1:05b399616fcd:
// // COM_test : program to communicate via a COM port to a PC/laptop // ======== // // Description // Program to receive ASCII format commands through a virtual COM port and // after executing the command return some data (optional, depending on // the command) and a status value. // The program understands two possible commands : // "s i j" : move servo 'i (0 to 5) to postion 'j' (0 to 90) // "r" : read the 'i' parameter of the last "s" command // // Version : 1.0 // Author : Jim Herd // Date : 5th Oct 2011 // #include "mbed.h" #include "MCP23017.h" #include "WattBob_TextLCD.h" #include "cmd_io.h" #include "globals.h" Ticker timer1p; Ticker timer2p; Ticker timercounter1p; Ticker timercounter2p; Ticker timerstatemachine; AnalogIn sensor1(p15); AnalogIn sensor2(p16); DigitalOut valueLED1(p23); DigitalOut valueLED2(p25); DigitalOut led1(LED1); DigitalOut led2(LED2); DigitalOut led3(LED3); DigitalOut led4(LED4); DigitalOut clk(p24); DigitalIn counter1p(p5); DigitalIn counter2p(p6); DigitalIn SW1p(p11); DigitalIn SW2p(p12); bool Position1_1p; bool Position2_1p; bool Position1_2p; bool Position2_2p; int state; //****************************************************************************** // declare functions // void sensor1p (void); void sensor2p (void); void counter1 (void); void counter2 (void); void state_machine (void); // // // 2. five servo outputs // PwmOut servo_0(p26); //PwmOut servo_1(p25); //PwmOut servo_2(p24); //PwmOut servo_3(p23); PwmOut servo_4(p22); PwmOut servo_5(p21); // // 3. objects necessary to use the 2*16 character MBED display // MCP23017 *par_port; WattBob_TextLCD *lcd; // // 4. Virtual COM port over USB link to laptop/PC // Serial pc(USBTX, USBRX); //****************************************************************************** // Defined GLOBAL variables and structures // CMD_STRUCT ext_cmd, commandcounter2; // structure to hold command data STAT_STRUCT ext_stat; // structure to hold status reply //CMD_STRUCT commandcounter2; uint32_t last_servo; // store for last servo number //************************************************************************ //************************************************************************ // init_sys : initialise the system // ======== // // 1. Configure 2*16 character display // 2. Print "COM test" string // 3. initialise relevant global variables // 4. set COM port baud rate to 19200 bits per second // void init_sys(void) { par_port = new MCP23017(p9, p10, 0x40); lcd = new WattBob_TextLCD(par_port); par_port->write_bit(1,BL_BIT); // turn LCD backlight ON lcd->cls(); lcd->locate(0,0); lcd->printf("COM "); servo_0.period(0.020); // servo requires a 20ms period, common for all 5 servo objects last_servo = SERVO_UNKNOWN; pc.baud(19200); servo_0.pulsewidth_us(1000 + (0 * 1000) / 90); servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); servo_5.pulsewidth_us(1000 + (0 * 1000) / 90); Position1_1p = 1; Position2_1p = 0; Position1_2p = 1; Position2_2p = 0; state = 0; return; } // end init_sys //************************************************************************ // process_cmd : decode and execute command // =========== uint32_t process_cmd(CMD_STRUCT *command) { int32_t pulse_width; switch (command->cmd_code) { // // move a servo // case SERVO_CMD : command->nos_data = 0; // no data to be returned // // check that parameters are OK // if (command->nos_params != 2) { // check for 2 parameters command->result_status = CMD_BAD_NUMBER_OF_PARAMETERS; break; } if (command->param[0] > MAX_SERVO_NUMBER ) { // check servo number command->result_status = CMD_BAD_SERVO_NUMBER; break; } if ((command->param[1] < MIN_SERVO_ANGLE) || (command->param[1] > MAX_SERVO_ANGLE) ) { command->result_status = CMD_BAD_SERVO_VALUE; break; } if ((command->param[0] == 4) && (command->param[1] == 0)) { pulse_width = 0; // convert angle to pulse width } else{ pulse_width = 1000 + (command->param[1] * 1000) / MAX_SERVO_ANGLE; // convert angle to pulse width } // // implement servo move to all 5 servos // switch (command->param[0]) { case 0 : servo_0.pulsewidth_us(pulse_width); break; // case 1 : servo_1.pulsewidth_us(pulse_width); break; // case 2 : servo_2.pulsewidth_us(pulse_width); break; // case 3 : servo_3.pulsewidth_us(pulse_width); break; case 4 : servo_4.pulsewidth_us(pulse_width); break; // case 5 : servo_5.pulsewidth_us(pulse_width); break; } last_servo = command->param[0]; break; // // return last servo number // case READ_CMD : command->nos_data = 2; // no data to be returned command->result_data[0] = valueLED1; command->result_data[1] = valueLED2; break; // // catch any problems // default: command->nos_data = 0; // no data to be returned command->result_status = CMD_BAD_SERVO_VALUE; break; } return OK; } //************************************************************************ //function to send value on the FPGA when 1p is detected void sensor1p (void){ clk = !clk; wait(0.01); sensor1.read(); if(sensor1 > 0.5) { led1 = 1; valueLED1 = 1; } else if(sensor1 < 0.5){ led1 = 0; valueLED1 = 0; } } //function to send value on the FPGA when 2p is detected void sensor2p (){ sensor2.read(); if(sensor2 > 0.5) { led2 = 1; valueLED2 = 1; } else if(sensor2 < 0.5){ led2 = 0; valueLED2 = 0; } } void state_machine (){ switch(state) { case 0: // initial state servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); // motor is run servo_0.pulsewidth_us(1000 + (0 * 1000) / 90); // servo 1p go to position 1 servo_5.pulsewidth_us(1000 + (0 * 1000) / 90); // servo 2p go to position 1 Position1_1p = 1; Position2_1p = 0; Position1_2p = 1; Position2_2p = 0; led3 = 0; led4 = 0; counter1p.read(); counter2p.read(); if(counter1p > 0.5){ state = 1; } if(counter2p > 0.5){ state = 4; } break; case 1: // state 1 if counter1p = 1 servo_4.pulsewidth_us(0); // motor stop servo_0.pulsewidth_us(1000 + (200 * 1000) / 90); // servo 1p go to position 2 wait(1); Position1_1p = 0; Position2_1p = 1; if(Position2_1p == 1){ state = 2; } break; case 2: // state 2 if servo 1p is in position 2 servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); // motor is run if(counter1p > 0.5){ state = 3; } break; case 3: // state 3 if counter 1p = 1 servo_4.pulsewidth_us(0); // motor stop led3 = 1; if(SW1p == 1){ // wait SW 1p to go to the initial state state = 0; } break; case 4: // state 4 if counter 2p = 1 servo_4.pulsewidth_us(0); // motor stop servo_5.pulsewidth_us(1000 + (200 * 1000) / 90); // servo 2p go to position 2 wait(1); Position1_2p = 0; Position2_2p = 1; if((Position2_2p == 1)&&(counter2p < 0.5)){ state = 5; } break; case 5: // state 5 if servo 2p is in position 2 servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); // motor run counter2p.read(); if(counter2p > 0.5){ state = 6; } break; case 6: // state 6 if counter 2p = 1 servo_4.pulsewidth_us(0); // motor stop led4 = 1; if(SW2p == 1){ // wait SW 2p to go to the initial state state = 0; } break; } } //function to move servo when we have counter1p equal to 10 /* void counter1 (){ if((counter1p > 0.5)&&(Position1_1p == 1)&&(SW1p == 0)){ led3 = 1; servo_4.pulsewidth_us(0); wait(1); servo_0.pulsewidth_us(1000 + (200 * 1000) / 90); wait(1); if(SW1p == 1){ Position2_1p = 1; Position1_1p = 0; } } else if ((counter1p > 0.5)&&(Position2_1p == 1)&&(SW1p == 0)){ led3 = 1; servo_4.pulsewidth_us(0); wait(1); servo_0.pulsewidth_us(1000 + (0 * 1000) / 90); wait(1); if(SW1p == 1){ Position2_1p = 0; Position1_1p = 1; } } else if ((counter1p < 0.5)&&(Position1_1p == 1)&&(SW1p == 0)){ led3 = 0; servo_0.pulsewidth_us(1000 + (0 * 1000) / 90); if(counter2p < 0.5){ servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); } } else if ((counter1p < 0.5)&&(Position2_1p == 1)&&(SW1p == 0)){ led3 = 0; servo_0.pulsewidth_us(1000 + (200 * 1000) / 90); if(counter2p < 0.5){ servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); } } } */ //function to move servo when we have counter2p equal to 5 /*void counter2(){ if((counter2p > 0.5)&&(Position1_1p == 1)&&(SW2p == 0)){ led3 = 1; servo_4.pulsewidth_us(0); wait(1); servo_5.pulsewidth_us(1000 + (200 * 1000) / 90); wait(1); if(SW2p == 1){ Position2_1p = 1; Position1_1p = 0; } } else if ((counter2p > 0.5)&&(Position2_1p == 1)&&(SW2p == 0)){ led3 = 1; servo_4.pulsewidth_us(0); wait(1); servo_5.pulsewidth_us(1000 + (0 * 1000) / 90); wait(1); if(SW2p == 1){ Position2_1p = 0; Position1_1p = 1; } } else if ((counter2p < 0.5)&&(Position1_1p == 1)&&(SW2p == 0)){ led3 = 0; servo_5.pulsewidth_us(1000 + (0 * 1000) / 90); if(counter1p < 0.5){ servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); } } else if ((counter2p < 0.5)&&(Position2_1p == 1)&&(SW2p == 0)){ led3 = 0; servo_5.pulsewidth_us(1000 + (200 * 1000) / 90); if(counter1p < 0.5){ servo_4.pulsewidth_us(1000 + (25 * 1000) / 90); } } } */ //************************************************************************ // int main() { valueLED1=0; valueLED2=0; clk=0; init_sys(); FOREVER { timer2p.attach(&sensor2p, 0.1); //function sensor2p is reading all the 0.1 ms timer1p.attach(&sensor1p, 0.1); //function sensor1p is reading all the 0.1 ms counter1p.read(); counter2p.read(); timerstatemachine.attach(&state_machine, 0.1); //state_machine //end of the state machine // timercounter2p.attach(&counter2, 0.1); //function counter2 is reading all the 0.1 ms // timercounter1p.attach(&counter1, 0.1); //function counter1 is reading all the 0.1 ms clk = !clk; wait(0.01); get_cmd(&ext_cmd); // // Check status of read command activity and return an error status if there was a problem // If there is a problem, then return status code only and wait for next command. // if (ext_cmd.result_status != OK){ send_status(ext_cmd.result_status); continue; } // // Parse command and return an error staus if there is a problem // If there is a problem, then return status code only and wait for next command. // parse_cmd(&ext_cmd); lcd->locate(1,0); lcd->printf(ext_cmd.cmd_str); if ((ext_cmd.result_status != OK) && (ext_cmd.cmd_code != TEXT_CMD)){ lcd->locate(1,0); lcd->printf("parse : error"); send_status(ext_cmd.result_status); continue; } // // Execute command and return an error staus if there is a problem // process_cmd(&ext_cmd); reply_to_cmd(&ext_cmd); } }