Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
PositionSensor.cpp
00001 00002 #include "mbed.h" 00003 #include "PositionSensor.h" 00004 #include "math_ops.h" 00005 //#include "offset_lut.h" 00006 //#include <math.h> 00007 00008 PositionSensorAM5147::PositionSensorAM5147(int CPR, float offset, int ppairs){ 00009 //_CPR = CPR; 00010 _CPR = CPR; 00011 _ppairs = ppairs; 00012 ElecOffset = offset; 00013 rotations = 0; 00014 spi = new SPI(PA_7, PA_6, PA_5); 00015 spi->format(16, 1); // mbed v>127 breaks 16-bit spi, so transaction is broken into 2 8-bit words 00016 spi->frequency(25000000); 00017 00018 cs = new DigitalOut(PA_4); 00019 cs->write(1); 00020 readAngleCmd = 0xffff; 00021 MechOffset = offset; 00022 modPosition = 0; 00023 oldModPosition = 0; 00024 oldVel = 0; 00025 raw = 0; 00026 flag_first_time = true; 00027 } 00028 00029 void PositionSensorAM5147::Sample(float dt){ 00030 GPIOA->ODR &= ~(1 << 4); 00031 raw = spi->write(readAngleCmd); 00032 raw &= 0x3FFF; //Extract last 14 bits 00033 GPIOA->ODR |= (1 << 4); 00034 int off_1 = offset_lut[raw>>7]; 00035 int off_2 = offset_lut[((raw>>7)+1)%128]; 00036 int off_interp = off_1 + ((off_2 - off_1)*(raw - ((raw>>7)<<7))>>7); // Interpolate between lookup table entries 00037 int angle = raw + off_interp; // Correct for nonlinearity with lookup table from calibration 00038 // if(flag_first_time){ 00039 // old_counts = angle; 00040 // flag_first_time = false; 00041 // } 00042 if(angle - old_counts > _CPR/2){ 00043 rotations -= 1; 00044 } 00045 else if (angle - old_counts < -_CPR/2){ 00046 rotations += 1; 00047 } 00048 00049 old_counts = angle; 00050 oldModPosition = modPosition; 00051 modPosition = ((2.0f*PI * ((float) angle))/ (float)_CPR); 00052 position = (2.0f*PI * ((float) angle+(_CPR*rotations)))/ (float)_CPR; 00053 MechPosition = position - MechOffset; 00054 float elec = ((2.0f*PI/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) + ElecOffset; 00055 if(elec < 0) elec += 2.0f*PI; 00056 else if(elec > 2.0f*PI) elec -= 2.0f*PI ; 00057 ElecPosition = elec; 00058 00059 float vel; 00060 //if(modPosition<.1f && oldModPosition>6.1f){ 00061 00062 if((modPosition-oldModPosition) < -3.0f){ 00063 vel = (modPosition - oldModPosition + 2.0f*PI)/dt; 00064 } 00065 //else if(modPosition>6.1f && oldModPosition<0.1f){ 00066 else if((modPosition - oldModPosition) > 3.0f){ 00067 vel = (modPosition - oldModPosition - 2.0f*PI)/dt; 00068 } 00069 else{ 00070 vel = (modPosition-oldModPosition)/dt; 00071 } 00072 00073 int n = 40; 00074 float sum = vel; 00075 for (int i = 1; i < (n); i++){ 00076 velVec[n - i] = velVec[n-i-1]; 00077 sum += velVec[n-i]; 00078 } 00079 velVec[0] = vel; 00080 MechVelocity = sum/((float)n); 00081 ElecVelocity = MechVelocity*_ppairs; 00082 ElecVelocityFilt = 0.99f*ElecVelocityFilt + 0.01f*ElecVelocity; 00083 } 00084 00085 int PositionSensorAM5147::GetRawPosition(){ 00086 return raw; 00087 } 00088 00089 float PositionSensorAM5147::GetMechPositionFixed(){ 00090 return MechPosition+MechOffset; 00091 } 00092 00093 float PositionSensorAM5147::GetMechPosition(){ 00094 return MechPosition; 00095 } 00096 00097 float PositionSensorAM5147::GetElecPosition(){ 00098 return ElecPosition; 00099 } 00100 00101 float PositionSensorAM5147::GetElecVelocity(){ 00102 return ElecVelocity; 00103 } 00104 00105 float PositionSensorAM5147::GetMechVelocity(){ 00106 return MechVelocity; 00107 } 00108 00109 void PositionSensorAM5147::ZeroPosition(){ 00110 rotations = 0; 00111 MechOffset = 0; 00112 //flag_first_time = true; 00113 Sample(.00025f); 00114 MechOffset = GetMechPosition(); 00115 } 00116 00117 void PositionSensorAM5147::SetElecOffset(float offset){ 00118 ElecOffset = offset; 00119 } 00120 void PositionSensorAM5147::SetMechOffset(float offset){ 00121 MechOffset = offset; 00122 } 00123 00124 int PositionSensorAM5147::GetCPR(){ 00125 return _CPR; 00126 } 00127 00128 00129 void PositionSensorAM5147::WriteLUT(int new_lut[128]){ 00130 memcpy(offset_lut, new_lut, sizeof(offset_lut)); 00131 } 00132 00133 00134 // 00135 //PositionSensorEncoder::PositionSensorEncoder(int CPR, float offset, int ppairs) { 00136 // _ppairs = ppairs; 00137 // _CPR = CPR; 00138 // _offset = offset; 00139 // MechPosition = 0; 00140 // out_old = 0; 00141 // oldVel = 0; 00142 // raw = 0; 00143 // 00144 // // Enable clock for GPIOA 00145 // __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h 00146 // 00147 // GPIOA->MODER |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ; //PA6 & PA7 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */ 00148 // GPIOA->OTYPER |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ; //PA6 & PA7 as Inputs /*!< GPIO port output type register, Address offset: 0x04 */ 00149 // GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ; //Low speed /*!< GPIO port output speed register, Address offset: 0x08 */ 00150 // GPIOA->PUPDR |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ; //Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */ 00151 // GPIOA->AFR[0] |= 0x22000000 ; //AF02 for PA6 & PA7 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ 00152 // GPIOA->AFR[1] |= 0x00000000 ; //nibbles here refer to gpio8..15 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ 00153 // 00154 // // configure TIM3 as Encoder input 00155 // // Enable clock for TIM3 00156 // __TIM3_CLK_ENABLE(); 00157 // 00158 // TIM3->CR1 = 0x0001; // CEN(Counter ENable)='1' < TIM control register 1 00159 // TIM3->SMCR = TIM_ENCODERMODE_TI12; // SMS='011' (Encoder mode 3) < TIM slave mode control register 00160 // TIM3->CCMR1 = 0x1111; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1, maximum digital filtering 00161 // TIM3->CCMR2 = 0x0000; // < TIM capture/compare mode register 2 00162 // TIM3->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register 00163 // TIM3->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler 00164 // TIM3->ARR = CPR; // IM auto-reload register 00165 // 00166 // TIM3->CNT = 0x000; //reset the counter before we use it 00167 // 00168 // // Extra Timer for velocity measurement 00169 // 00170 // __TIM2_CLK_ENABLE(); 00171 // TIM3->CR2 = 0x030; //MMS = 101 00172 // 00173 // TIM2->PSC = 0x03; 00174 // //TIM2->CR2 |= TIM_CR2_TI1S; 00175 // TIM2->SMCR = 0x24; //TS = 010 for ITR2, SMS = 100 (reset counter at edge) 00176 // TIM2->CCMR1 = 0x3; // CC1S = 11, IC1 mapped on TRC 00177 // 00178 // //TIM2->CR2 |= TIM_CR2_TI1S; 00179 // TIM2->CCER |= TIM_CCER_CC1P; 00180 // //TIM2->CCER |= TIM_CCER_CC1NP; 00181 // TIM2->CCER |= TIM_CCER_CC1E; 00182 // 00183 // 00184 // TIM2->CR1 = 0x01; //CEN, enable timer 00185 // 00186 // TIM3->CR1 = 0x01; // CEN 00187 // ZPulse = new InterruptIn(PC_4); 00188 // ZSense = new DigitalIn(PC_4); 00189 // //ZPulse = new InterruptIn(PB_0); 00190 // //ZSense = new DigitalIn(PB_0); 00191 // ZPulse->enable_irq(); 00192 // ZPulse->rise(this, &PositionSensorEncoder::ZeroEncoderCount); 00193 // //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown); 00194 // ZPulse->mode(PullDown); 00195 // flag = 0; 00196 // 00197 // 00198 // //ZTest = new DigitalOut(PC_2); 00199 // //ZTest->write(1); 00200 // } 00201 // 00202 //void PositionSensorEncoder::Sample(float dt){ 00203 // 00204 // } 00205 // 00206 // 00207 //float PositionSensorEncoder::GetMechPosition() { //returns rotor angle in radians. 00208 // int raw = TIM3->CNT; 00209 // float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR); 00210 // return (float) unsigned_mech;// + 6.28318530718f* (float) rotations; 00211 //} 00212 // 00213 //float PositionSensorEncoder::GetElecPosition() { //returns rotor electrical angle in radians. 00214 // int raw = TIM3->CNT; 00215 // float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset; 00216 // if(elec < 0) elec += 6.28318530718f; 00217 // return elec; 00218 //} 00219 // 00220 // 00221 // 00222 //float PositionSensorEncoder::GetMechVelocity(){ 00223 // 00224 // float out = 0; 00225 // float rawPeriod = TIM2->CCR1; //Clock Ticks 00226 // int currentTime = TIM2->CNT; 00227 // if(currentTime > 2000000){rawPeriod = currentTime;} 00228 // float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; // +/- 1 00229 // float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; 00230 // if(isinf(meas)){ meas = 1;} 00231 // out = meas; 00232 // //if(meas == oldVel){ 00233 // // out = .9f*out_old; 00234 // // } 00235 // 00236 // 00237 // oldVel = meas; 00238 // out_old = out; 00239 // int n = 16; 00240 // float sum = out; 00241 // for (int i = 1; i < (n); i++){ 00242 // velVec[n - i] = velVec[n-i-1]; 00243 // sum += velVec[n-i]; 00244 // } 00245 // velVec[0] = out; 00246 // return sum/(float)n; 00247 // } 00248 // 00249 //float PositionSensorEncoder::GetElecVelocity(){ 00250 // return _ppairs*GetMechVelocity(); 00251 // } 00252 // 00253 //void PositionSensorEncoder::ZeroEncoderCount(void){ 00254 // if (ZSense->read() == 1 & flag == 0){ 00255 // if (ZSense->read() == 1){ 00256 // GPIOC->ODR ^= (1 << 4); 00257 // TIM3->CNT = 0x000; 00258 // //state = !state; 00259 // //ZTest->write(state); 00260 // GPIOC->ODR ^= (1 << 4); 00261 // //flag = 1; 00262 // } 00263 // } 00264 // } 00265 // 00266 //void PositionSensorEncoder::ZeroPosition(void){ 00267 // 00268 // } 00269 // 00270 //void PositionSensorEncoder::ZeroEncoderCountDown(void){ 00271 // if (ZSense->read() == 0){ 00272 // if (ZSense->read() == 0){ 00273 // GPIOC->ODR ^= (1 << 4); 00274 // flag = 0; 00275 // float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; 00276 // if(dir != dir){ 00277 // dir = dir; 00278 // rotations += dir; 00279 // } 00280 // 00281 // GPIOC->ODR ^= (1 << 4); 00282 // 00283 // } 00284 // } 00285 // } 00286 //void PositionSensorEncoder::SetElecOffset(float offset){ 00287 // 00288 // } 00289 // 00290 //int PositionSensorEncoder::GetRawPosition(void){ 00291 // return 0; 00292 // } 00293 // 00294 //int PositionSensorEncoder::GetCPR(){ 00295 // return _CPR; 00296 // } 00297 // 00298 // 00299 //void PositionSensorEncoder::WriteLUT(int new_lut[128]){ 00300 // memcpy(offset_lut, new_lut, sizeof(offset_lut)); 00301 // }
Generated on Wed Jul 13 2022 15:44:18 by
1.7.2