Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: WizFi250_AP_HelloWorld
Fork of mbed-src by
targets/hal/TARGET_STM/TARGET_STM32F3/spi_api.c
- Committer:
- mbed_official
- Date:
- 2015-05-21
- Revision:
- 544:1af5f1c39e80
- Parent:
- 508:4f5903e025e6
- Child:
- 552:a1b9575155a3
File content as of revision 544:1af5f1c39e80:
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "mbed_assert.h"
#include "spi_api.h"
#if DEVICE_SPI
#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
static SPI_HandleTypeDef SpiHandle;
static void init_spi(spi_t *obj)
{
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
__HAL_SPI_DISABLE(&SpiHandle);
SpiHandle.Init.Mode = obj->mode;
SpiHandle.Init.BaudRatePrescaler = obj->br_presc;
SpiHandle.Init.Direction = SPI_DIRECTION_2LINES;
SpiHandle.Init.CLKPhase = obj->cpha;
SpiHandle.Init.CLKPolarity = obj->cpol;
SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
SpiHandle.Init.CRCPolynomial = 7;
SpiHandle.Init.DataSize = obj->bits;
SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB;
SpiHandle.Init.NSS = obj->nss;
SpiHandle.Init.TIMode = SPI_TIMODE_DISABLED;
HAL_SPI_Init(&SpiHandle);
__HAL_SPI_ENABLE(&SpiHandle);
}
void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
{
// Determine the SPI to use
SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);
MBED_ASSERT(obj->spi != (SPIName)NC);
// Enable SPI clock
#if defined(SPI1_BASE)
if (obj->spi == SPI_1) {
__SPI1_CLK_ENABLE();
}
#endif
#if defined(SPI2_BASE)
if (obj->spi == SPI_2) {
__SPI2_CLK_ENABLE();
}
#endif
#if defined(SPI3_BASE)
if (obj->spi == SPI_3) {
__SPI3_CLK_ENABLE();
}
#endif
// Configure the SPI pins
pinmap_pinout(mosi, PinMap_SPI_MOSI);
pinmap_pinout(miso, PinMap_SPI_MISO);
pinmap_pinout(sclk, PinMap_SPI_SCLK);
// Save new values
obj->bits = SPI_DATASIZE_8BIT;
obj->cpol = SPI_POLARITY_LOW;
obj->cpha = SPI_PHASE_1EDGE;
#if defined(TARGET_STM32F334C8)
obj->br_presc = SPI_BAUDRATEPRESCALER_256;
#else
obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1 MHz (HSI) or 1.13 MHz (HSE)
#endif
obj->pin_miso = miso;
obj->pin_mosi = mosi;
obj->pin_sclk = sclk;
obj->pin_ssel = ssel;
if (ssel == NC) { // SW NSS Master mode
obj->mode = SPI_MODE_MASTER;
obj->nss = SPI_NSS_SOFT;
} else { // Slave
pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->mode = SPI_MODE_SLAVE;
obj->nss = SPI_NSS_HARD_INPUT;
}
init_spi(obj);
}
void spi_free(spi_t *obj)
{
// Reset SPI and disable clock
#if defined(SPI1_BASE)
if (obj->spi == SPI_1) {
__SPI1_FORCE_RESET();
__SPI1_RELEASE_RESET();
__SPI1_CLK_DISABLE();
}
#endif
#if defined(SPI2_BASE)
if (obj->spi == SPI_2) {
__SPI2_FORCE_RESET();
__SPI2_RELEASE_RESET();
__SPI2_CLK_DISABLE();
}
#endif
#if defined(SPI3_BASE)
if (obj->spi == SPI_3) {
__SPI3_FORCE_RESET();
__SPI3_RELEASE_RESET();
__SPI3_CLK_DISABLE();
}
#endif
// Configure GPIOs
pin_function(obj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
pin_function(obj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
pin_function(obj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
pin_function(obj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
void spi_format(spi_t *obj, int bits, int mode, int slave)
{
// Save new values
if (bits == 16) {
obj->bits = SPI_DATASIZE_16BIT;
} else {
obj->bits = SPI_DATASIZE_8BIT;
}
switch (mode) {
case 0:
obj->cpol = SPI_POLARITY_LOW;
obj->cpha = SPI_PHASE_1EDGE;
break;
case 1:
obj->cpol = SPI_POLARITY_LOW;
obj->cpha = SPI_PHASE_2EDGE;
break;
case 2:
obj->cpol = SPI_POLARITY_HIGH;
obj->cpha = SPI_PHASE_1EDGE;
break;
default:
obj->cpol = SPI_POLARITY_HIGH;
obj->cpha = SPI_PHASE_2EDGE;
break;
}
if (slave == 0) {
obj->mode = SPI_MODE_MASTER;
obj->nss = SPI_NSS_SOFT;
} else {
obj->mode = SPI_MODE_SLAVE;
obj->nss = SPI_NSS_HARD_INPUT;
}
init_spi(obj);
}
void spi_frequency(spi_t *obj, int hz)
{
#if defined(TARGET_STM32F334C8)
// Values depend of APB2CLK : 64 MHz if HSI is used, 72 MHz if HSE is used
if (hz < 500000) {
obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 250 kHz - 281 kHz
} else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 500 kHz - 563 kHz
} else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 1 MHz - 1.13 MHz
} else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 2 MHz - 2.25 MHz
} else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 4 MHz - 4.5 MHz
} else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 8 MHz - 9 MHz
} else if ((hz >= 16000000) && (hz < 32000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 16 MHz - 18 MHz
} else { // >= 32000000
obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 32 MHz - 36 MHz
}
#elif defined(TARGET_STM32F302R8)
if (hz < 250000) {
obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 125 kHz - 141 kHz
} else if ((hz >= 250000) && (hz < 500000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 250 kHz - 280 kHz
} else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 500 kHz - 560 kHz
} else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1 MHz - 1.13 MHz
} else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 2 MHz - 2.25 MHz
} else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 4 MHz - 4.5 MHz
} else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 8 MHz - 9 MHz
} else { // >= 16000000
obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 16 MHz - 18 MHz
}
#else
// Values depend of APB1CLK and APB2CLK : 32 MHz if HSI is used, 36 MHz if HSE is used
if (obj->spi == SPI_1) {
if (hz < 500000) {
obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 250 kHz - 280 kHz
} else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 500 kHz - 560 kHz
} else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 1 MHz - 1.13 MHz
} else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 2 MHz - 2.25 MHz
} else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 4 MHz - 4.5 MHz
} else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 8 MHz - 9 MHz
} else if ((hz >= 16000000) && (hz < 32000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 16 MHz - 18 MHz
} else { // >= 32000000
obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 32 MHz - 36 MHz
}
} else {
if (hz < 250000) {
obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 125 kHz - 141 kHz
} else if ((hz >= 250000) && (hz < 500000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 250 kHz - 280 kHz
} else if ((hz >= 500000) && (hz < 1000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 500 kHz - 560 kHz
} else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1 MHz - 1.13 MHz
} else if ((hz >= 2000000) && (hz < 4000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 2 MHz - 2.25 MHz
} else if ((hz >= 4000000) && (hz < 8000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 4 MHz - 4.5 MHz
} else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 8 MHz - 9 MHz
} else { // >= 16000000
obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 16 MHz - 18 MHz
}
}
#endif
init_spi(obj);
}
static inline int ssp_readable(spi_t *obj)
{
int status;
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
// Check if data is received
status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_RXNE) != RESET) ? 1 : 0);
return status;
}
static inline int ssp_writeable(spi_t *obj)
{
int status;
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
// Check if data is transmitted
status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_TXE) != RESET) ? 1 : 0);
return status;
}
static inline void ssp_write(spi_t *obj, int value)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj));
if (obj->bits == SPI_DATASIZE_8BIT) {
// Force 8-bit access to the data register
uint8_t *p_spi_dr = 0;
p_spi_dr = (uint8_t *) & (spi->DR);
*p_spi_dr = (uint8_t)value;
} else { // SPI_DATASIZE_16BIT
spi->DR = (uint16_t)value;
}
}
static inline int ssp_read(spi_t *obj)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_readable(obj));
if (obj->bits == SPI_DATASIZE_8BIT) {
// Force 8-bit access to the data register
uint8_t *p_spi_dr = 0;
p_spi_dr = (uint8_t *) & (spi->DR);
return (int)(*p_spi_dr);
} else {
return (int)spi->DR;
}
}
static inline int ssp_busy(spi_t *obj)
{
int status;
SpiHandle.Instance = (SPI_TypeDef *)(obj->spi);
status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_BSY) != RESET) ? 1 : 0);
return status;
}
int spi_master_write(spi_t *obj, int value)
{
ssp_write(obj, value);
return ssp_read(obj);
}
int spi_slave_receive(spi_t *obj)
{
return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0);
};
int spi_slave_read(spi_t *obj)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_readable(obj));
if (obj->bits == SPI_DATASIZE_8BIT) {
// Force 8-bit access to the data register
uint8_t *p_spi_dr = 0;
p_spi_dr = (uint8_t *) & (spi->DR);
return (int)(*p_spi_dr);
} else {
return (int)spi->DR;
}
}
void spi_slave_write(spi_t *obj, int value)
{
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
while (!ssp_writeable(obj));
if (obj->bits == SPI_DATASIZE_8BIT) {
// Force 8-bit access to the data register
uint8_t *p_spi_dr = 0;
p_spi_dr = (uint8_t *) & (spi->DR);
*p_spi_dr = (uint8_t)value;
} else { // SPI_DATASIZE_16BIT
spi->DR = (uint16_t)value;
}
}
int spi_busy(spi_t *obj)
{
return ssp_busy(obj);
}
#endif
