Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Project_script_union_final by
Revision 26:ac5656aa35c7, committed 2018-10-31
- Comitter:
- MarijkeZondag
- Date:
- Wed Oct 31 10:36:01 2018 +0000
- Parent:
- 25:bbef09ff226b
- Child:
- 27:fa493551be99
- Commit message:
- Alles samengevoegd
Changed in this revision
| main.cpp | Show annotated file Show diff for this revision Revisions of this file |
--- a/main.cpp Wed Oct 31 09:28:45 2018 +0000
+++ b/main.cpp Wed Oct 31 10:36:01 2018 +0000
@@ -14,11 +14,17 @@
AnalogIn emg1_in (A1); //Second raw EMG signal input
AnalogIn emg2_in (A2); //Third raw EMG signal input
-InterruptIn button1 (D10); //Is this one available? We need to make a map of which pins are used for what.
+InterruptIn encoderA1 (D9);
+InterruptIn encoderB1 (D8);
+InterruptIn encoderA2 (D12);
+InterruptIn encoderB2 (D13);
+
+InterruptIn button1 (D10);
InterruptIn button2 (D11);
DigitalOut directionpin1 (D7);
DigitalOut directionpin2 (D4);
+
PwmOut pwmpin1 (D6);
PwmOut pwmpin2 (D5);
@@ -73,14 +79,13 @@
BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter
-// Inverse Kinematica variabelen
+// Inverse Kinematica variables
const double L1 = 0.208; // Hoogte van tafel tot joint 1
const double L2 = 0.288; // Hoogte van tafel tot joint 2
const double L3 = 0.212; // Lengte van de arm
const double L4 = 0.089; // Afstand van achterkant base tot joint 1
const double L5 = 0.030; // Afstand van joint 1 naar joint 2
const double r_trans = 0.035; // Kan gebruikt worden om om te rekenen van translation naar shaft rotation
-//const double T = 0.002f; // Ticker value
// Variërende variabelen inverse kinematics:
double q1ref = 0; // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
@@ -97,9 +102,199 @@
double q1_ii; // Reference signal for motorangle q1ref
double q2_ii; // Reference signal for motorangle q2ref
+//Variables PID controller
+double PI = 3.14159;
+double Kp1 = 17.5; //Motor 1
+double Ki1 = 1.02;
+double Kd1 = 23.2;
+double encoder1 = 0;
+double encoder_radians1=0;
-//Functions
+double Kp2 = 17.5; //Motor 2
+double Ki2 = 1.02;
+double Kd2 = 23.2;
+double encoder2 = 0;
+double encoder_radians2=0;
+
+
+//--------------Functions----------------------------------------------------------------------------------------------------------------------------//
+
+
+//------------------ Encoder motor 1 --------------------------------//
+
+void encoderA1_rise()
+{
+ if(encoderB1==false)
+ {
+ encoder1++;
+ }
+ else
+ {
+ encoder1--;
+ }
+}
+
+void encoderA1_fall()
+{
+ if(encoderB1==true)
+ {
+ encoder1++;
+ }
+ else
+ {
+ encoder1--;
+ }
+}
+
+void encoderB1_rise()
+{
+ if(encoderA1==true)
+ {
+ encoder1++;
+ }
+ else
+ {
+ encoder1--;
+ }
+}
+
+void encoderB1_fall()
+{
+ if(encoderA1==false)
+ {
+ encoder1++;
+ }
+ else
+ {
+ encoder1--;
+ }
+}
+
+void encoder_count1()
+{
+ encoderA1.rise(&encoderA1_rise);
+ encoderA1.fall(&encoderA1_fall);
+ encoderB1.rise(&encoderB1_rise);
+ encoderB1.fall(&encoderB1_fall);
+}
+
+//------------------ Encoder motor 2 --------------------------------//
+
+void encoderA2_rise()
+{
+ if(encoderB2==false)
+ {
+ encoder2++;
+ }
+ else
+ {
+ encoder2--;
+ }
+}
+void encoderA2_fall()
+{
+ if(encoderB2==true)
+ {
+ encoder2++;
+ }
+ else
+ {
+ encoder2--;
+ }
+}
+
+void encoderB2_rise()
+{
+ if(encoderA2==true)
+ {
+ encoder2++;
+ }
+ else
+ {
+ encoder2--;
+ }
+}
+
+void encoderB2_fall()
+{
+ if(encoderA2==false)
+ {
+ encoder2++;
+ }
+ else
+ {
+ encoder2--;
+ }
+}
+
+void encoder_count2()
+{
+ encoderA2.rise(&encoderA2_rise);
+ encoderA2.fall(&encoderA2_fall);
+ encoderB2.rise(&encoderB2_rise);
+ encoderB2.fall(&encoderB2_fall);
+}
+
+//------------------ Filter EMG + Calibration EMG --------------------------------//
+
+void EMGFilter0()
+{
+ emg0_raw = emg0_in.read(); //give name to raw EMG0 data calve
+ emg0_filt_x = emg0filter.step(emg0_raw); //Use biquad chain to filter raw EMG data
+ emg0_filt = abs(emg0_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
+}
+
+void EMGFilter1()
+{
+ emg1_raw = emg1_in.read(); //give name to raw EMG1 data bicep 1
+ emg1_filt_x = emg1filter.step(emg1_raw); //Use biquad chain to filter raw EMG data
+ emg1_filt = abs(emg1_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
+}
+
+void EMGFilter2()
+{
+ emg2_raw = emg2_in.read(); //Give name to raw EMG1 data bicep 2
+ emg2_filt_x = emg2filter.step(emg2_raw); //Use biquad chain to filter raw EMG data
+ emg2_filt = abs(emg2_filt_x); //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
+}
+
+void MovAg() //Calculate moving average (MovAg)
+{
+ for (int i = windowsize-1; i>=0; i--) //Make arrays for the last datapoints of the filtered signals
+ {
+ StoreArray0[i] = StoreArray0[i-1]; //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
+ StoreArray1[i] = StoreArray1[i-1];
+ StoreArray2[i] = StoreArray2[i-1];
+ }
+
+ StoreArray0[0] = emg0_filt; //Stores the latest datapoint of the filtered signal in the first element of the array
+ StoreArray1[0] = emg1_filt;
+ StoreArray2[0] = emg2_filt;
+
+ sum1 = 0.0;
+ sum2 = 0.0;
+ sum3 = 0.0;
+
+ for(int a = 0; a<= windowsize-1; a++) //Sums the elements in the arrays
+ {
+ sum1 += StoreArray0[a];
+ sum2 += StoreArray1[a];
+ sum3 += StoreArray2[a];
+ }
+
+ movAg0 = sum1/windowsize; //calculates an average in the array
+ movAg1 = sum2/windowsize;
+ movAg2 = sum3/windowsize;
+ //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout.
+}
+
+void emg_filtered() //Call all filter functions
+{
+ EMGFilter0();
+ EMGFilter1();
+ EMGFilter2();
+}
void switch_to_calibrate()
{
x++; //Every time function gets called, x increases. Every button press --> new calibration state.
@@ -193,80 +388,24 @@
}
}
}
-
+/*
void HIDScope_sample()
{
- /* Set the sampled emg values in channel 0 (the first channel) and 1 (the second channel) in the 'HIDScope' instance named 'scope' */
- //scope.set(0,emg0_raw);
- //scope.set(1,emg0_filt);
- //scope.set(1,movAg0); //als moving average werkt
- //scope.set(2,emg1_raw);
- //scope.set(3,emg1_filt);
- //scope.set(3,movAg1); //als moving average werkt
- //scope.set(4,emg2_raw);
- //scope.set(5,emg2_filt);
- //scope.set(5,movAg2); //als moving average werkt
-
- //scope.send(); //Send data to HIDScope server
-}
+ scope.set(0,emg0_raw);
+ scope.set(1,emg0_filt);
+ scope.set(1,movAg0); //als moving average werkt
+ scope.set(2,emg1_raw);
+ scope.set(3,emg1_filt);
+ scope.set(3,movAg1); //als moving average werkt
+ scope.set(4,emg2_raw);
+ scope.set(5,emg2_filt);
+ scope.set(5,movAg2); //als moving average werkt
-void EMGFilter0()
-{
- emg0_raw = emg0_in.read(); //give name to raw EMG0 data
- emg0_filt_x = emg0filter.step(emg0_raw); //Use biquad chain to filter raw EMG data
- emg0_filt = abs(emg0_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
-}
-
-void EMGFilter1()
-{
- emg1_raw = emg1_in.read(); //give name to raw EMG1 data
- emg1_filt_x = emg1filter.step(emg1_raw); //Use biquad chain to filter raw EMG data
- emg1_filt = abs(emg1_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
-}
-
-void EMGFilter2()
-{
- emg2_raw = emg2_in.read(); //Give name to raw EMG1 data
- emg2_filt_x = emg2filter.step(emg2_raw); //Use biquad chain to filter raw EMG data
- emg2_filt = abs(emg2_filt_x); //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
+ scope.send(); //Send data to HIDScope server
}
-
-void MovAg() //Calculate moving average (MovAg), klopt nog niet!!
-{
- for (int i = windowsize-1; i>=0; i--) //Make arrays for the last datapoints of the filtered signals
- {
- StoreArray0[i] = StoreArray0[i-1]; //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
- StoreArray1[i] = StoreArray1[i-1];
- StoreArray2[i] = StoreArray2[i-1];
- }
-
- StoreArray0[0] = emg0_filt; //Stores the latest datapoint of the filtered signal in the first element of the array
- StoreArray1[0] = emg1_filt;
- StoreArray2[0] = emg2_filt;
-
- sum1 = 0.0;
- sum2 = 0.0;
- sum3 = 0.0;
-
- for(int a = 0; a<= windowsize-1; a++) //Sums the elements in the arrays
- {
- sum1 += StoreArray0[a];
- sum2 += StoreArray1[a];
- sum3 += StoreArray2[a];
- }
-
- movAg0 = sum1/windowsize; //calculates an average in the array
- movAg1 = sum2/windowsize;
- movAg2 = sum3/windowsize;
- //serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout.
-}
+*/
-void emg_filtered() //Call all filter functions
-{
- EMGFilter0();
- EMGFilter1();
- EMGFilter2();
-}
+//------------------ Inversed Kinematics --------------------------------//
void inverse_kinematics()
{
@@ -285,51 +424,148 @@
void v_des_calculate_qref()
{
- while(emg_cal==1) //After calibration is finished, emg_cal will be 1. Otherwise 0.
+ while(emg_cal==1) //After calibration is finished, emg_cal will be 1. Otherwise 0.
{
- if(movAg1>Threshold1) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
+ if(movAg1>Threshold1) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
{
- v_x = 1.0; //beweging in +x direction
- ledr = 0; //red
+ v_x = 1.0; //beweging in +x direction
+ ledr = 0; //red
ledb = 1;
ledg = 1;
}
- else if(movAg2>Threshold2) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
+ else if(movAg2>Threshold2) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
{
- v_y = 1.0; //beweging in +y direction
- ledr = 1; //green
+ v_y = 1.0; //beweging in +y direction
+ ledr = 1; //green
ledb = 1;
ledg = 0;
}
- else if(movAg0>Threshold0) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
+ else if(movAg0>Threshold0) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
{
v_x = -v_x;
v_y = -v_y;
- ledr = 1; //Blue
+ ledr = 1; //Blue
ledb = 0;
ledg = 1;
}
- else //If not higher than the threshold, motors will not turn at all
+ else //If not higher than the threshold, motors will not turn at all
{
v_x = 0;
v_y = 0;
- ledr = 0; //white
+ ledr = 0; //white
ledb = 0;
ledg = 0;
}
break;
}
- inverse_kinematics();
+
+ inverse_kinematics(); //Call inverse kinematics function
+}
+
+//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
+double PID_controller1(double err1)
+{
+ static double err_integral1 = 0;
+ static double err_prev1 = err1; // initialization with this value only done once!
+
+ static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+ // Proportional part:
+ double u_k1 = Kp1 * err1;
+
+ // Integral part
+ err_integral1 = err_integral1 + err1 * T;
+ double u_i1 = Ki1 * err_integral1;
+
+ // Derivative part
+ double err_derivative1 = (err1 - err_prev1)/T;
+ double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
+ double u_d1 = Kd1 * filtered_err_derivative1;
+ err_prev1 = err1;
+
+ // Sum all parts and return it
+ return u_k1 + u_i1 + u_d1;
+}
+
+void start_your_engines1(double u1)
+{
+ if(encoder1<5250 && encoder1>-5250) //limits rotation, in counts
+ {
+ pwmpin1 = fabs(u1); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+ directionpin1.write(u1 < 0.0f);
+ }
+ else
+ {
+ pwmpin1 = 0;
+ }
+}
+
+ void engine_control1() //Engine 1 is rotational engine, connected with left side pins
+{
+ encoder_radians1 = encoder1*(2*PI)/8400;
+ double err1 = q1ref - encoder_radians1;
+ double u1 = PID_controller1(err1); //PID controller function call
+ start_your_engines1(u1); //Call start_your_engines function
}
+
+//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
+double PID_controller2(double err2)
+{
+ static double err_integral2 = 0;
+ static double err_prev2 = err2; // initialization with this value only done once!
+
+ static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
+
+ // Proportional part:
+ double u_k2 = Kp2 * err2;
+
+ // Integral part
+ err_integral2 = err_integral2 + err2 * T;
+ double u_i2 = Ki2 * err_integral2;
+
+ // Derivative part
+ double err_derivative2 = (err2 - err_prev2)/T;
+ double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
+ double u_d2 = Kd2 * filtered_err_derivative2;
+ err_prev2 = err2;
+
+ // Sum all parts and return it
+ return u_k2 + u_i2 + u_d2;
+}
+
+void start_your_engines2(double u2)
+{
+ if(encoder2<12600 && encoder2>-1) //limits translation in counts
+ {
+ pwmpin2 = fabs(u2); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
+ directionpin2.write(u2 < 0.0f);
+ }
+ else
+ {
+ pwmpin2 = 0;
+ }
+}
+
+void engine_control2() //Engine 2 is translational engine, connected with right side wires
+{
+ encoder_radians2 = encoder2*(2*PI)/8400;
+ double err2 = q2ref - encoder_radians2;
+ double u2 = PID_controller2(err2); //PID controller function call
+ start_your_engines2(u2); //Call start_your_engines function
+}
+
+//------------------ Start main function --------------------------//
+
+
int main()
{
pc.baud(115200);
- pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off.
- pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz
+ pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off.
+ pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz
emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( ¬ch1 ); //attach biquad elements to chain
emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( ¬ch2 );
@@ -337,20 +573,20 @@
while(true)
{
- ticker.attach(&emg_filtered,T); //EMG signals filtered every T sec.
- ticker.attach(&MovAg,T); //Moving average calculation every T sec.
- ticker.attach(&v_des_calculate_qref,T); //v_des determined every T
+ ticker.attach(&emg_filtered,T); //EMG signals filtered every T sec.
+ ticker.attach(&MovAg,T); //Moving average calculation every T sec.
+ ticker.attach(&v_des_calculate_qref,T); //v_des determined every T
- // HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec.
+ // HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec.
- button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle)
- wait(0.2f); //Wait to avoid bouncing of button
- button2.rise(calibrate); //Calibrate threshold for 3 muscles
- wait(0.2f); //Wait to avoid bouncing of button
+ button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle)
+ wait(0.2f); //Wait to avoid bouncing of button
+ button2.rise(calibrate); //Calibrate threshold for 3 muscles
+ wait(0.2f); //Wait to avoid bouncing of button
- pc.printf("x is %i\n\r",x);
- pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
- pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);
- //wait(2.0f);
+ pc.printf("x is %i\n\r",x);
+ pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
+ pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);
+ //wait(2.0f);
}
}
