Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL biquadFilter mbed QEI
Fork of Project_script by
main.cpp
- Committer:
- MarijkeZondag
- Date:
- 2018-10-31
- Revision:
- 26:ac5656aa35c7
- Parent:
- 25:bbef09ff226b
- Child:
- 27:fa493551be99
File content as of revision 26:ac5656aa35c7:
#include "mbed.h"
#include "MODSERIAL.h"
#include "BiQuad.h"
#include "HIDScope.h"
#include <math.h>
//ATTENTION: set mBed to version 151
// set QEI to version 0, (gebruiken wij (nog) niet, is voor encoder)
// set MODSERIAL to version 44
// set HIDScope to version 7
// set biquadFilter to version 7
AnalogIn emg0_in (A0); //First raw EMG signal input
AnalogIn emg1_in (A1); //Second raw EMG signal input
AnalogIn emg2_in (A2); //Third raw EMG signal input
InterruptIn encoderA1 (D9);
InterruptIn encoderB1 (D8);
InterruptIn encoderA2 (D12);
InterruptIn encoderB2 (D13);
InterruptIn button1 (D10);
InterruptIn button2 (D11);
DigitalOut directionpin1 (D7);
DigitalOut directionpin2 (D4);
PwmOut pwmpin1 (D6);
PwmOut pwmpin2 (D5);
DigitalOut ledr (LED_RED);
DigitalOut ledb (LED_BLUE);
DigitalOut ledg (LED_GREEN);
MODSERIAL pc(USBTX, USBRX); //Serial communication to see if the code works step by step, turn on if hidscope is off
//HIDScope scope( 6 ); //HIDScope set to 3x2 channels for 3 muscles, raw data + filtered
//Tickers
Ticker ticker;
//Global variables
const float T = 0.002f; //Ticker period
//EMG filter
double emg0_filt, emg1_filt, emg2_filt; //Variables for filtered EMG data channel 0, 1 and 2
double emg0_raw, emg1_raw, emg2_raw;
double emg0_filt_x, emg1_filt_x, emg2_filt_x;
const int windowsize = 150; //Size of the array over which the moving average (MovAg) is calculated. (random number)
double sum, sum1, sum2, sum3; //variables used to sum elements in array
double StoreArray0[windowsize], StoreArray1[windowsize], StoreArray2[windowsize]; //Empty arrays to calculate MoveAg
double movAg0, movAg1, movAg2; //outcome of MovAg (moet dit een array zijn??)
//Calibration variables
int x = -1; //Start switch, colour LED is blue.
int emg_cal = 0; //if emg_cal is set to 1, motors can begin to work in this code (!!)
const int sizeCal = 1500; //size of the dataset used for calibration, eerst 2000
double StoreCal0[sizeCal], StoreCal1[sizeCal], StoreCal2[sizeCal]; //arrays to put the dataset of the calibration in
double Mean0,Mean1,Mean2; //average of maximum tightening
double Threshold0, Threshold1, Threshold2;
//Biquad //Variables for the biquad band filters (alle 3 dezelfde maar je kan niet 3x 'emg0band' aanroepen ofzo)
BiQuadChain emg0filter;
BiQuad emg0band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg0band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg0band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch1( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter biquad coefficients
BiQuadChain emg1filter;
BiQuad emg1band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg1band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg1band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch2( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter
BiQuadChain emg2filter;
BiQuad emg2band1( 7.29441e-01, -1.89276e-08, -7.29450e-01, -1.64507e-01, -7.26543e-01 );
BiQuad emg2band2( 1.00000e+00, 1.99999e+00, 9.99994e-01, 1.72349e+00, 7.79616e-01 );
BiQuad emg2band3( 1.00000e+00, -1.99999e+00, 9.99994e-01, -1.93552e+00, 9.39358e-01 );
BiQuad notch3( 9.91104e-01, -1.60364e+00, 9.91104e-01, -1.60364e+00, 9.82207e-01 ); //Notch filter
// Inverse Kinematica variables
const double L1 = 0.208; // Hoogte van tafel tot joint 1
const double L2 = 0.288; // Hoogte van tafel tot joint 2
const double L3 = 0.212; // Lengte van de arm
const double L4 = 0.089; // Afstand van achterkant base tot joint 1
const double L5 = 0.030; // Afstand van joint 1 naar joint 2
const double r_trans = 0.035; // Kan gebruikt worden om om te rekenen van translation naar shaft rotation
// Variërende variabelen inverse kinematics:
double q1ref = 0; // Huidige motorhoek van joint 1 zoals bepaald uit referentiesignaal --> checken of het goede type is
double q2ref = 0; // Huidige motorhoek van joint 2 zoals bepaald uit referentiesignaal --> checken of het goede type is
double v_x; // Desired velocity end effector in x direction --> Determined by EMG signals
double v_y; // Desired velocity end effector in y direction --> Determined by EMG signals
double Lq1; // Translatieafstand als gevolg van motor rotation joint 1
double Cq2; // Joint angle of the system (corrected for gear ratio 1:5)
double q1_dot; // Benodigde hoeksnelheid van motor 1 om v_des te bereiken
double q2_dot; // Benodigde hoeksnelheid van motor 2 om v_des te bereiken
double q1_ii; // Reference signal for motorangle q1ref
double q2_ii; // Reference signal for motorangle q2ref
//Variables PID controller
double PI = 3.14159;
double Kp1 = 17.5; //Motor 1
double Ki1 = 1.02;
double Kd1 = 23.2;
double encoder1 = 0;
double encoder_radians1=0;
double Kp2 = 17.5; //Motor 2
double Ki2 = 1.02;
double Kd2 = 23.2;
double encoder2 = 0;
double encoder_radians2=0;
//--------------Functions----------------------------------------------------------------------------------------------------------------------------//
//------------------ Encoder motor 1 --------------------------------//
void encoderA1_rise()
{
if(encoderB1==false)
{
encoder1++;
}
else
{
encoder1--;
}
}
void encoderA1_fall()
{
if(encoderB1==true)
{
encoder1++;
}
else
{
encoder1--;
}
}
void encoderB1_rise()
{
if(encoderA1==true)
{
encoder1++;
}
else
{
encoder1--;
}
}
void encoderB1_fall()
{
if(encoderA1==false)
{
encoder1++;
}
else
{
encoder1--;
}
}
void encoder_count1()
{
encoderA1.rise(&encoderA1_rise);
encoderA1.fall(&encoderA1_fall);
encoderB1.rise(&encoderB1_rise);
encoderB1.fall(&encoderB1_fall);
}
//------------------ Encoder motor 2 --------------------------------//
void encoderA2_rise()
{
if(encoderB2==false)
{
encoder2++;
}
else
{
encoder2--;
}
}
void encoderA2_fall()
{
if(encoderB2==true)
{
encoder2++;
}
else
{
encoder2--;
}
}
void encoderB2_rise()
{
if(encoderA2==true)
{
encoder2++;
}
else
{
encoder2--;
}
}
void encoderB2_fall()
{
if(encoderA2==false)
{
encoder2++;
}
else
{
encoder2--;
}
}
void encoder_count2()
{
encoderA2.rise(&encoderA2_rise);
encoderA2.fall(&encoderA2_fall);
encoderB2.rise(&encoderB2_rise);
encoderB2.fall(&encoderB2_fall);
}
//------------------ Filter EMG + Calibration EMG --------------------------------//
void EMGFilter0()
{
emg0_raw = emg0_in.read(); //give name to raw EMG0 data calve
emg0_filt_x = emg0filter.step(emg0_raw); //Use biquad chain to filter raw EMG data
emg0_filt = abs(emg0_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch, stel er komt iets raars uit, dan Notch uit de biquad chain halen en aparte chain voor aanmaken.
}
void EMGFilter1()
{
emg1_raw = emg1_in.read(); //give name to raw EMG1 data bicep 1
emg1_filt_x = emg1filter.step(emg1_raw); //Use biquad chain to filter raw EMG data
emg1_filt = abs(emg1_filt_x); //rectifier. LET OP: volgorde filter: band-notch-rectifier. Eerst band-rect-notch.
}
void EMGFilter2()
{
emg2_raw = emg2_in.read(); //Give name to raw EMG1 data bicep 2
emg2_filt_x = emg2filter.step(emg2_raw); //Use biquad chain to filter raw EMG data
emg2_filt = abs(emg2_filt_x); //Rectifier. LET OP: volgorde filter: band-notch-rectifier.
}
void MovAg() //Calculate moving average (MovAg)
{
for (int i = windowsize-1; i>=0; i--) //Make arrays for the last datapoints of the filtered signals
{
StoreArray0[i] = StoreArray0[i-1]; //Shifts the i'th element one place to the right, this makes it "rolling or moving" average.
StoreArray1[i] = StoreArray1[i-1];
StoreArray2[i] = StoreArray2[i-1];
}
StoreArray0[0] = emg0_filt; //Stores the latest datapoint of the filtered signal in the first element of the array
StoreArray1[0] = emg1_filt;
StoreArray2[0] = emg2_filt;
sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
for(int a = 0; a<= windowsize-1; a++) //Sums the elements in the arrays
{
sum1 += StoreArray0[a];
sum2 += StoreArray1[a];
sum3 += StoreArray2[a];
}
movAg0 = sum1/windowsize; //calculates an average in the array
movAg1 = sum2/windowsize;
movAg2 = sum3/windowsize;
//serial getallen sturen, als het 1 getal is gaat hier wat fout, als het een reeks is dan gaat er bij de input naar HIDscope wat fout.
}
void emg_filtered() //Call all filter functions
{
EMGFilter0();
EMGFilter1();
EMGFilter2();
}
void switch_to_calibrate()
{
x++; //Every time function gets called, x increases. Every button press --> new calibration state.
//Starts with x = -1. So when function gets called 1 time, x = 0. In the end, x = 4 will reset to -1.
if(x==0) //If x = 0, led is red
{
ledr = 0;
ledb = 1;
ledg = 1;
}
else if (x==1) //If x = 1, led is blue
{
ledr = 1;
ledb = 0;
ledg = 1;
}
else if (x==2) //If x = 2, led is green
{
ledr = 1;
ledb = 1;
ledg = 0;
}
else //If x = 3 or 4, led is white
{
ledr = 0;
ledb = 0;
ledg = 0;
}
if(x==4) //Reset back to x = -1
{
x = -1;
emg_cal=0; //reset, motors off
}
}
void calibrate(void)
{
switch(x)
{
case 0: //If calibration state 0:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 0
{
StoreCal0[j] = emg0_filt;
sum+=StoreCal0[j];
wait(0.001f); //Does there need to be a wait?
}
Mean0 = sum/sizeCal; //Calculate mean of the datapoints in the calibration set (2000 samples)
Threshold0 = Mean0/2; //Threshold calculation = 0.5*mean
break; //Stop. Threshold is calculated, we will use this further in the code
}
case 1: //If calibration state 1:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 1
{
StoreCal1[j] = emg1_filt;
sum+=StoreCal1[j];
wait(0.001f);
}
Mean1 = sum/sizeCal;
Threshold1 = Mean1/2;
break;
}
case 2: //If calibration state 2:
{
sum = 0.0;
for(int j = 0; j<=sizeCal-1; j++) //Array filled with datapoints from the EMGfilter signal of muscle 2
{
StoreCal2[j] = emg2_filt;
sum+=StoreCal2[j];
wait(0.001f);
}
Mean2 = sum/sizeCal;
Threshold2 = Mean2/2;
break;
}
case 3: //EMG is calibrated, robot can be set to Home position.
{
emg_cal = 1; //This is the setting for which the motors can begin turning in this code (!!)
wait(0.001f);
break;
}
default: //Ensures nothing happens if x is not 0,1 or 2.
{
break;
}
}
}
/*
void HIDScope_sample()
{
scope.set(0,emg0_raw);
scope.set(1,emg0_filt);
scope.set(1,movAg0); //als moving average werkt
scope.set(2,emg1_raw);
scope.set(3,emg1_filt);
scope.set(3,movAg1); //als moving average werkt
scope.set(4,emg2_raw);
scope.set(5,emg2_filt);
scope.set(5,movAg2); //als moving average werkt
scope.send(); //Send data to HIDScope server
}
*/
//------------------ Inversed Kinematics --------------------------------//
void inverse_kinematics()
{
Lq1 = q1ref*r_trans;
Cq2 = q2ref/5.0;
q1_dot = v_x + (v_y*(L1 + L3*sin(Cq2)))/(L4 + Lq1 + L3*cos(Cq2));
q2_dot = v_y/(L4 + Lq1 + L3*cos(Cq2));
q1_ii = q1ref + q1_dot*T;
q2_ii = q2ref + q2_dot*T;
q1ref = q1_ii;
q2ref = q2_ii;
}
void v_des_calculate_qref()
{
while(emg_cal==1) //After calibration is finished, emg_cal will be 1. Otherwise 0.
{
if(movAg1>Threshold1) //If the filtered EMG signal of muscle 1 is higher than the threshold, motor 1 will turn
{
v_x = 1.0; //beweging in +x direction
ledr = 0; //red
ledb = 1;
ledg = 1;
}
else if(movAg2>Threshold2) //If the filtered EMG signal of muscle 2 is higher than the threshold, motor 1 and 2 will turn
{
v_y = 1.0; //beweging in +y direction
ledr = 1; //green
ledb = 1;
ledg = 0;
}
else if(movAg0>Threshold0) //If the filtered EMG signal of muscle 0 is higher than the threshold, motor1 will turn in 1 direction
{
v_x = -v_x;
v_y = -v_y;
ledr = 1; //Blue
ledb = 0;
ledg = 1;
}
else //If not higher than the threshold, motors will not turn at all
{
v_x = 0;
v_y = 0;
ledr = 0; //white
ledb = 0;
ledg = 0;
}
break;
}
inverse_kinematics(); //Call inverse kinematics function
}
//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
double PID_controller1(double err1)
{
static double err_integral1 = 0;
static double err_prev1 = err1; // initialization with this value only done once!
static BiQuad LowPassFilter1(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// Proportional part:
double u_k1 = Kp1 * err1;
// Integral part
err_integral1 = err_integral1 + err1 * T;
double u_i1 = Ki1 * err_integral1;
// Derivative part
double err_derivative1 = (err1 - err_prev1)/T;
double filtered_err_derivative1 = LowPassFilter1.step(err_derivative1);
double u_d1 = Kd1 * filtered_err_derivative1;
err_prev1 = err1;
// Sum all parts and return it
return u_k1 + u_i1 + u_d1;
}
void start_your_engines1(double u1)
{
if(encoder1<5250 && encoder1>-5250) //limits rotation, in counts
{
pwmpin1 = fabs(u1); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
directionpin1.write(u1 < 0.0f);
}
else
{
pwmpin1 = 0;
}
}
void engine_control1() //Engine 1 is rotational engine, connected with left side pins
{
encoder_radians1 = encoder1*(2*PI)/8400;
double err1 = q1ref - encoder_radians1;
double u1 = PID_controller1(err1); //PID controller function call
start_your_engines1(u1); //Call start_your_engines function
}
//---------PID controller motor 1 + start motor 1 -----------------------------------------------------------//
double PID_controller2(double err2)
{
static double err_integral2 = 0;
static double err_prev2 = err2; // initialization with this value only done once!
static BiQuad LowPassFilter2(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// Proportional part:
double u_k2 = Kp2 * err2;
// Integral part
err_integral2 = err_integral2 + err2 * T;
double u_i2 = Ki2 * err_integral2;
// Derivative part
double err_derivative2 = (err2 - err_prev2)/T;
double filtered_err_derivative2 = LowPassFilter2.step(err_derivative2);
double u_d2 = Kd2 * filtered_err_derivative2;
err_prev2 = err2;
// Sum all parts and return it
return u_k2 + u_i2 + u_d2;
}
void start_your_engines2(double u2)
{
if(encoder2<12600 && encoder2>-1) //limits translation in counts
{
pwmpin2 = fabs(u2); //u_total moet nog geschaald worden om in de motor gevoerd te worden!!!
directionpin2.write(u2 < 0.0f);
}
else
{
pwmpin2 = 0;
}
}
void engine_control2() //Engine 2 is translational engine, connected with right side wires
{
encoder_radians2 = encoder2*(2*PI)/8400;
double err2 = q2ref - encoder_radians2;
double u2 = PID_controller2(err2); //PID controller function call
start_your_engines2(u2); //Call start_your_engines function
}
//------------------ Start main function --------------------------//
int main()
{
pc.baud(115200);
pc.printf("Hello World!\r\n"); //Serial communication only works if hidscope is turned off.
pwmpin1.period_us(60); //60 microseconds PWM period, 16.7 kHz
emg0filter.add( &emg0band1 ).add( &emg0band2 ).add( &emg0band3 ).add( ¬ch1 ); //attach biquad elements to chain
emg1filter.add( &emg1band1 ).add( &emg1band2 ).add( &emg1band3 ).add( ¬ch2 );
emg2filter.add( &emg2band1 ).add( &emg2band2 ).add( &emg2band3 ).add( ¬ch3 );
while(true)
{
ticker.attach(&emg_filtered,T); //EMG signals filtered every T sec.
ticker.attach(&MovAg,T); //Moving average calculation every T sec.
ticker.attach(&v_des_calculate_qref,T); //v_des determined every T
// HIDScope_tick.attach(&HIDScope_sample,T); //EMG signals raw + filtered to HIDScope every T sec.
button1.rise(switch_to_calibrate); //Switch state of calibration (which muscle)
wait(0.2f); //Wait to avoid bouncing of button
button2.rise(calibrate); //Calibrate threshold for 3 muscles
wait(0.2f); //Wait to avoid bouncing of button
pc.printf("x is %i\n\r",x);
pc.printf("Movag0 = %f , Movag1 = %f, Movag2 = %f \n\r",movAg0, movAg1, movAg2);
pc.printf("Thresh0 = %f , Thresh1 = %f, Thresh2 = %f \n\r",Threshold0, Threshold1, Threshold2);
//wait(2.0f);
}
}
