Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-src by
targets/cmsis/TARGET_STM/TARGET_STM32F3XX/stm32f30x_opamp.c
- Committer:
- mbed_official
- Date:
- 2014-04-08
- Revision:
- 155:8435094ec241
File content as of revision 155:8435094ec241:
/** ****************************************************************************** * @file stm32f30x_opamp.c * @author MCD Application Team * @version V1.1.0 * @date 27-February-2014 * @brief This file provides firmware functions to manage the following * functionalities of the operational amplifiers (OPAMP1,...OPAMP4) peripheral: * + OPAMP Configuration * + OPAMP calibration * @verbatim ============================================================================== ##### OPAMP Peripheral Features ##### ============================================================================== [..] The device integrates 4 operational amplifiers OPAMP1, OPAMP2, OPAMP3 and OPAMP4: (+) The OPAMPs non inverting input can be selected among the list shown by table below. (+) The OPAMPs inverting input can be selected among the list shown by table below. (+) The OPAMPs outputs can be internally connected to the inverting input (follower mode) (+) The OPAMPs outputs can be internally connected to resistor feedback output (Programmable Gain Amplifier mode) (+) The OPAMPs outputs can be internally connected to ADC (+) The OPAMPs can be calibrated to compensate the offset compensation (+) Timer-controlled Mux for automatic switch of inverting and non-inverting input OPAMPs inverting/non-inverting inputs: +--------------------------------------------------------------+ | | | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 | |-----------------|--------|--------|--------|--------|--------| | | PGA | OK | OK | OK | OK | | Inverting Input | Vout | OK | OK | OK | OK | | | IO1 | PC5 | PC5 | PB10 | PB10 | | | IO2 | PA3 | PA5 | PB2 | PD8 | |-----------------|--------|--------|--------|--------|--------| | | IO1 | PA7 | PD14 | PB13 | PD11 | | Non Inverting | IO2 | PA5 | PB14 | PA5 | PB11 | | Input | IO3 | PA3 | PB0 | PA1 | PA4 | | | IO4 | PA1 | PA7 | PB0 | PB13 | +--------------------------------------------------------------+ ##### How to use this driver ##### ============================================================================== [..] This driver provides functions to configure and program the OPAMP of all STM32F30x devices. To use the OPAMP, perform the following steps: (#) Enable the SYSCFG APB clock to get write access to OPAMP register using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); (#) Configure the OPAMP input in analog mode using GPIO_Init() (#) Configure the OPAMP using OPAMP_Init() function: (++) Select the inverting input (++) Select the non-inverting inverting input (#) Enable the OPAMP using OPAMP_Cmd() function @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f30x_opamp.h" /** @addtogroup STM32F30x_StdPeriph_Driver * @{ */ /** @defgroup OPAMP * @brief OPAMP driver modules * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #define OPAMP_CSR_DEFAULT_MASK ((uint32_t)0xFFFFFF93) #define OPAMP_CSR_TIMERMUX_MASK ((uint32_t)0xFFFFF8FF) #define OPAMP_CSR_TRIMMING_MASK ((uint32_t)0x0000001F) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup OPAMP_Private_Functions * @{ */ /** @defgroup OPAMP_Group1 Initialization and Configuration functions * @brief Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and Configuration functions ##### =============================================================================== @endverbatim * @{ */ /** * @brief Deinitializes OPAMP peripheral registers to their default reset values. * @note Deinitialization can't be performed if the OPAMP configuration is locked. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param None * @retval None */ void OPAMP_DeInit(uint32_t OPAMP_Selection) { /*!< Set OPAMP_CSR register to reset value */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) = ((uint32_t)0x00000000); } /** * @brief Initializes the OPAMP peripheral according to the specified parameters * in OPAMP_InitStruct * @note If the selected OPAMP is locked, initialization can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param OPAMP_InitStruct: pointer to an OPAMP_InitTypeDef structure that contains * the configuration information for the specified OPAMP peripheral. * - OPAMP_InvertingInput specifies the inverting input of OPAMP * - OPAMP_NonInvertingInput specifies the non inverting input of OPAMP * @retval None */ void OPAMP_Init(uint32_t OPAMP_Selection, OPAMP_InitTypeDef* OPAMP_InitStruct) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_OPAMP_INVERTING_INPUT(OPAMP_InitStruct->OPAMP_InvertingInput)); assert_param(IS_OPAMP_NONINVERTING_INPUT(OPAMP_InitStruct->OPAMP_NonInvertingInput)); /*!< Get the OPAMPx_CSR register value */ tmpreg = *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection); /*!< Clear the inverting and non inverting bits selection bits */ tmpreg &= (uint32_t) (OPAMP_CSR_DEFAULT_MASK); /*!< Configure OPAMP: inverting and non inverting inputs */ tmpreg |= (uint32_t)(OPAMP_InitStruct->OPAMP_InvertingInput | OPAMP_InitStruct->OPAMP_NonInvertingInput); /*!< Write to OPAMPx_CSR register */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) = tmpreg; } /** * @brief Fills each OPAMP_InitStruct member with its default value. * @param OPAMP_InitStruct: pointer to an OPAMP_InitTypeDef structure which will * be initialized. * @retval None */ void OPAMP_StructInit(OPAMP_InitTypeDef* OPAMP_InitStruct) { OPAMP_InitStruct->OPAMP_NonInvertingInput = OPAMP_NonInvertingInput_IO1; OPAMP_InitStruct->OPAMP_InvertingInput = OPAMP_InvertingInput_IO1; } /** * @brief Configure the feedback resistor gain. * @note If the selected OPAMP is locked, gain configuration can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param NewState: new state of the OPAMP peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void OPAMP_PGAConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_PGAGain, uint32_t OPAMP_PGAConnect) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_OPAMP_PGAGAIN(OPAMP_PGAGain)); assert_param(IS_OPAMP_PGACONNECT(OPAMP_PGAConnect)); /* Reset the configuration bits */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (uint32_t)(~OPAMP_CSR_PGGAIN); /* Set the new configuration */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_PGAGain | OPAMP_PGAConnect); } /** * @brief Configure the OPAMP's internal reference. * @note This feature is used when calibration enabled or OPAMP's reference * connected to the non inverting input. * @note If the selected OPAMP is locked, Vref configuration can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param OPAMP_Vref: This parameter can be: * OPAMP_Vref_3VDDA: OPMAP Vref = 3.3% VDDA * OPAMP_Vref_10VDDA: OPMAP Vref = 10% VDDA * OPAMP_Vref_50VDDA: OPMAP Vref = 50% VDDA * OPAMP_Vref_90VDDA: OPMAP Vref = 90% VDDA * @retval None */ void OPAMP_VrefConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Vref) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_OPAMP_VREF(OPAMP_Vref)); /*!< Get the OPAMPx_CSR register value */ tmpreg = *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection); /*!< Clear the CALSEL bits */ tmpreg &= (uint32_t) (~OPAMP_CSR_CALSEL); /*!< Configure OPAMP reference */ tmpreg |= (uint32_t)(OPAMP_Vref); /*!< Write to OPAMPx_CSR register */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) = tmpreg; } /** * @brief Connnect the internal reference to the OPAMP's non inverting input. * @note If the selected OPAMP is locked, Vref configuration can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param NewState: new state of the OPAMP peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void OPAMP_VrefConnectNonInvertingInput(uint32_t OPAMP_Selection, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Connnect the internal reference to the OPAMP's non inverting input */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_CSR_FORCEVP); } else { /* Disconnnect the internal reference to the OPAMP's non inverting input */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (uint32_t)(~OPAMP_CSR_FORCEVP); } } /** * @brief Enables or disables connecting the OPAMP's internal reference to ADC. * @note If the selected OPAMP is locked, Vref connection can't be performed. * To unlock the configuration, perform a system reset. * @param NewState: new state of the Vrefint output. * This parameter can be: ENABLE or DISABLE. * @retval None */ void OPAMP_VrefConnectADCCmd(uint32_t OPAMP_Selection, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable output internal reference */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_CSR_TSTREF); } else { /* Disable output internal reference */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (uint32_t)(~OPAMP_CSR_TSTREF); } } /** * @brief Configure the OPAMP peripheral (secondary inputs) for timer-controlled * mux mode according to the specified parameters in OPAMP_InitStruct. * @note If the selected OPAMP is locked, timer-controlled mux configuration * can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param OPAMP_InitStruct: pointer to an OPAMP_InitTypeDef structure that contains * the configuration information for the specified OPAMP peripheral. * - OPAMP_InvertingInput specifies the inverting input of OPAMP * - OPAMP_NonInvertingInput specifies the non inverting input of OPAMP * @note PGA and Vout can't be selected as seconadry inverting input. * @retval None */ void OPAMP_TimerControlledMuxConfig(uint32_t OPAMP_Selection, OPAMP_InitTypeDef* OPAMP_InitStruct) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_OPAMP_SECONDARY_INVINPUT(OPAMP_InitStruct->OPAMP_InvertingInput)); assert_param(IS_OPAMP_NONINVERTING_INPUT(OPAMP_InitStruct->OPAMP_NonInvertingInput)); /*!< Get the OPAMPx_CSR register value */ tmpreg = *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection); /*!< Clear the secondary inverting bit, secondary non inverting bit and TCMEN bits */ tmpreg &= (uint32_t) (OPAMP_CSR_TIMERMUX_MASK); /*!< Configure OPAMP: secondary inverting and non inverting inputs */ tmpreg |= (uint32_t)((uint32_t)(OPAMP_InitStruct->OPAMP_InvertingInput<<3) | (uint32_t)(OPAMP_InitStruct->OPAMP_NonInvertingInput<<7)); /*!< Write to OPAMPx_CSR register */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) = tmpreg; } /** * @brief Enable or disable the timer-controlled mux mode. * @note If the selected OPAMP is locked, enable/disable can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param NewState: new state of the OPAMP peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void OPAMP_TimerControlledMuxCmd(uint32_t OPAMP_Selection, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the timer-controlled Mux mode */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_CSR_TCMEN); } else { /* Disable the timer-controlled Mux mode */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (uint32_t)(~OPAMP_CSR_TCMEN); } } /** * @brief Enable or disable the OPAMP peripheral. * @note If the selected OPAMP is locked, enable/disable can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param NewState: new state of the OPAMP peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void OPAMP_Cmd(uint32_t OPAMP_Selection, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected OPAMPx peripheral */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_CSR_OPAMPxEN); } else { /* Disable the selected OPAMPx peripheral */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (uint32_t)(~OPAMP_CSR_OPAMPxEN); } } /** * @brief Return the output level (high or low) during calibration of the selected OPAMP. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * - OPAMP output is low when the non-inverting input is at a lower * voltage than the inverting input * - OPAMP output is high when the non-inverting input is at a higher * voltage than the inverting input * @note OPAMP ouput level is provided only during calibration phase. * @retval Returns the selected OPAMP output level: low or high. * */ uint32_t OPAMP_GetOutputLevel(uint32_t OPAMP_Selection) { uint32_t opampout = 0x0; /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); /* Check if selected OPAMP output is high */ if ((*(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) & (OPAMP_CSR_OUTCAL)) != 0) { opampout = OPAMP_OutputLevel_High; } else { opampout = OPAMP_OutputLevel_Low; } /* Return the OPAMP output level */ return (uint32_t)(opampout); } /** * @brief Select the trimming mode. * @param OffsetTrimming: the selected offset trimming mode. * This parameter can be one of the following values: * @arg OPAMP_Trimming_Factory: factory trimming values are used for offset * calibration * @arg OPAMP_Trimming_User: user trimming values are used for offset * calibration * @note When OffsetTrimming_User is selected, use OPAMP_OffsetTrimConfig() * function or OPAMP_OffsetTrimLowPowerConfig() function to adjust * trimming value. * @retval None */ void OPAMP_OffsetTrimModeSelect(uint32_t OPAMP_Selection, uint32_t OPAMP_Trimming) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_OPAMP_TRIMMING(OPAMP_Trimming)); /* Reset USERTRIM bit */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (~(uint32_t) (OPAMP_CSR_USERTRIM)); /* Select trimming mode */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= OPAMP_Trimming; } /** * @brief Configure the trimming value of the OPAMP. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param OPAMP_Input: the selected OPAMP input. * This parameter can be one of the following values: * @arg OPAMP_Input_Inverting: Inverting input is selected to configure the trimming value * @arg OPAMP_Input_NonInverting: Non inverting input is selected to configure the trimming value * @param OPAMP_TrimValue: the trimming value. This parameter can be any value lower * or equal to 0x0000001F. * @retval None */ void OPAMP_OffsetTrimConfig(uint32_t OPAMP_Selection, uint32_t OPAMP_Input, uint32_t OPAMP_TrimValue) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_OPAMP_INPUT(OPAMP_Input)); assert_param(IS_OPAMP_TRIMMINGVALUE(OPAMP_TrimValue)); /*!< Get the OPAMPx_CSR register value */ tmpreg = *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection); /*!< Clear the trimming bits */ tmpreg &= ((uint32_t)~(OPAMP_CSR_TRIMMING_MASK<<OPAMP_Input)); /*!< Configure the new trimming value */ tmpreg |= (uint32_t)(OPAMP_TrimValue<<OPAMP_Input); /*!< Write to OPAMPx_CSR register */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) = tmpreg; } /** * @brief Start or stop the calibration of selected OPAMP peripheral. * @note If the selected OPAMP is locked, start/stop can't be performed. * To unlock the configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @param NewState: new state of the OPAMP peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void OPAMP_StartCalibration(uint32_t OPAMP_Selection, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Start the OPAMPx calibration */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_CSR_CALON); } else { /* Stop the OPAMPx calibration */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) &= (uint32_t)(~OPAMP_CSR_CALON); } } /** * @} */ /** @defgroup OPAMP_Group2 OPAMP configuration locking function * @brief OPAMP1,...OPAMP4 configuration locking function * OPAMP1,...OPAMP4 configuration can be locked each separately. * Unlocking is performed by system reset. * @verbatim =============================================================================== ##### Configuration Lock function ##### =============================================================================== @endverbatim * @{ */ /** * @brief Lock the selected OPAMP configuration. * @note Locking the configuration means that all control bits are read-only. * To unlock the OPAMP configuration, perform a system reset. * @param OPAMP_Selection: the selected OPAMP. * This parameter can be OPAMP_Selection_OPAMPx where x can be 1 to 4 * to select the OPAMP peripheral. * @retval None */ void OPAMP_LockConfig(uint32_t OPAMP_Selection) { /* Check the parameter */ assert_param(IS_OPAMP_ALL_PERIPH(OPAMP_Selection)); /* Set the lock bit corresponding to selected OPAMP */ *(__IO uint32_t *) (OPAMP_BASE + OPAMP_Selection) |= (uint32_t) (OPAMP_CSR_LOCK); } /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/