Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Diff: main.cpp
- Revision:
- 3:03db694efdbe
- Parent:
- 2:e36213affbda
- Child:
- 4:2786719c73fd
diff -r e36213affbda -r 03db694efdbe main.cpp
--- a/main.cpp Sun Oct 15 14:15:10 2017 +0000
+++ b/main.cpp Thu Oct 26 21:07:45 2017 +0000
@@ -3,7 +3,7 @@
#include "MODSERIAL.h"
//#include "HIDScope.h"
-
+//there is something wrong with the code, the motor turns twice when the potmeters are at the minimum
Serial pc (USBTX,USBRX);
PwmOut Motor1Vel(D6); //motor 1 velocity control
@@ -20,126 +20,159 @@
QEI encoder2(D10,D11,NC,16);
Ticker switch_tick;
-float Angle1,Angle2; //real angles of the motor
-const float Angle1_0 = 0.8411 ,Angle2_0 = -0.8411; //initial angle of the motors
-float XPosition = 0.0, YPosition = 0.0; //real position of end point
-float L2 = 300.0;
-float L3 = 300.0; //length of the arms of the robot
-const float pi = 3.14159265359; //to convert pulses to radians
-const float PulsesPerRev = 16.0; // ||
-const float GearRatio = 131.15; // ||
-const float Time = 0.01; //to control the tickers
+float Angle1,Angle2; //real angles of the motor
+float XPos, YPos; //position of the end-effector
+float XSet, YSet; //desired position of the end-effector
+float L = 300.0; //length of the arms of the robot
+const float Ts = 0.01; //to control the tickers
+const float X0 = 14.5, X1 = 21.85, X2 = 31.94, slope = -17.34/6.6; //values of special points in the workspace
+const float KV = 1; //velocity constant, to scale the desired velocity of the end-effector
+float X,Y; //emg input for the motors
+
+const float pi = 3.14159265359,PulsesPerRev = 16.0,GearRatio = 131.15; //to convert pulses to radians
+const float Angle1_0 = pi/2 ,Angle2_0 = 0; //initial angle of the motors
+
+//variables and constants for the PID
+const float KP = 10, KI = 5, KD = 2, N = 100;
+float M1_v1 = 0, M1_v2 = 0, M2_v1 = 0, M2_v2 = 0;
+
+volatile bool ReturnIP;
+int counter; //to count the time of inactivity
+
+// PID controller (Tustin approximation)
+float PID(float err, const float KP, const float KI, const float KD,const float Ts, const float N, float &v1, float &v2)
+{
+ const float a1 = -(N*Ts+2);
+ const float a2 = -(N*Ts-2)/(N*Ts+2);
+ const float b0 = (4*KP+4*KD*N+2*KI*Ts+2*KP*N*Ts+KI*N*pow(Ts,2))/(2*N*Ts+4);
+ const float b1 = (KI*N*pow(Ts,2)-4*KP-4*KD*N)/(N*Ts+2);
+ const float b2 = (4*KP+4*KD*N-2*KI*Ts-2*KP*N*pow(Ts,2))/(2*N*Ts+4);
+
+ float v = err-a1*v1-a2*v2;
+ float u = abs(b0*v+b1*v1+b2*v2);
+ v2 = v1; v1 = v;
+ return u;
+}
-float R = 160.0; //radius of the work space
-
+void positionxy(float Angle1, float Angle2,float &XPos,float &YPos)
+{
+ Angle1 = (encoder1.getPulses()/(2*PulsesPerRev*GearRatio))*2*pi + Angle1_0; //angles of the arms driven by the motors in radians
+ Angle2 = (encoder2.getPulses()/(2*PulsesPerRev*GearRatio))*2*pi + Angle2_0;
+
+ XPos = L*cos(Angle1)+L*cos(Angle2); // calculate the position of the end-effector
+ YPos = L*sin(Angle1)+L*sin(Angle2);
+}
-void positionxy(float Angle1, float Angle2,float &XPosition,float &YPosition)
-{
- XPosition = L2*cos(Angle1)+L3*cos(Angle2);
- YPosition = L2*sin(Angle1)+L3*sin(Angle2);
+int Direction(float err)
+{ //choose the direction of the motor, using the difference between the set angle and the actual angle.
+ int a;
+ if(err >= 0)
+ a = 1;
+ else
+ a = 0;
+ return a;
+}
+
+void MoveMotors() // move the motors using the inverse kinematic equations of the robot
+{
+ float VX = KV*(XSet - XPos); //set the desired velocity, proportional to the difference between the set point and the end-effector position.
+ float VY = KV*(YSet-YPos);
+
+ float W1 = (VX*(XPos-L*cos(Angle1))+VY*(YPos-L*sin(Angle1)))/(L*YPos*cos(Angle1)-L*XPos*sin(Angle1)); // calculate the needed angular velocity to achieve the desired velocity
+ float W2 = (-VX*XPos-VY*YPos)/(L*YPos*cos(Angle1)-L*XPos*sin(Angle1));
+
+ float Angle1Set = Angle1 + W1*Ts; //calculate the set angle, angle at which the motor should be after 1 period with the calculated angular velocity
+ float Angle2Set = Angle2 + W2*Ts;
+
+ Motor1Vel = PID(Angle1Set-Angle1,KP,KI,KD,Ts,N,M1_v1,M1_v2); //PID controller to choose the velocity of the motors
+ Motor1Dir = Direction(Angle1Set-Angle1);
+ Motor2Vel = PID(Angle2Set-Angle2,KP,KI,KD,Ts,N,M2_v1,M2_v2);
+ Motor2Dir = Direction(Angle2Set-Angle2);
}
-void moveXpYp()
-{
- Motor1Vel = emg1*2-1;
- Motor2Vel = emg2*2-1;
- Motor1Dir = 1;
- Motor2Dir = 1;
-}
-void moveXpYn()
-{
- Motor1Vel = emg1*2-1;
- Motor2Vel = 1-emg2*2;
- Motor1Dir = 1;
- Motor2Dir = 0;
-}
-void moveXnYp()
-{
- Motor1Vel = 1-emg1*2;
- Motor2Vel = emg2*2-1;
- Motor1Dir = 0;
- Motor2Dir = 1;
+void GoToSet()
+{
+ XSet += X; // keep increasing the set point, depending on the input
+ YSet += Y;
+ positionxy(Angle1,Angle2,XPos,YPos);
+ MoveMotors();
}
-void moveXnYn()
-{
- Motor1Vel = 1-emg1*2;
- Motor2Vel = 1-emg2*2;
- Motor1Dir = 0;
- Motor2Dir = 0;
-}
-void StopMotors()
-{
- Motor1Vel = 0;
- Motor2Vel = 0;
-}
-int choosecase(float cons1, float cons2)
-{ //decide which case has to be used
- Angle1 = (encoder1.getPulses()/(2*PulsesPerRev*GearRatio))*2*pi + Angle1_0; //angles of the motors in radians
- Angle2 = (encoder2.getPulses()/(2*PulsesPerRev*GearRatio))*2*pi + Angle2_0;
- positionxy(Angle1,Angle2,XPosition,YPosition); //calculate the position of the end point
- int a = 0;
- if (Button == 1)
+void InitialPosition() //Go back to the initial position
+{
+ const float AllowedError = 1;
+
+ positionxy(Angle1,Angle2,XPos,YPos);
+ if(sqrt(pow(XPos-XSet,2)+pow(YPos-YSet,2))<AllowedError) //to call the function until the end effector is at the initial position
+ {
+ ReturnIP = false;
+ }
+ else
{
- // not do anything
+ ReturnIP = true;
+ }
+ //The following if-else statement is to choose a set point so that the end-effector does not go out of the work space while returning
+ if(XPos<X1)
+ {
+ XSet = X0;
+ YSet = 0;
}
- else if (pow((XPosition-400),2) + pow(YPosition,2) > pow(R,2)) // limit so that the robot does not break. Maybe try approximating with an elipse.
+ else if(XPos < X2 && (XPos < slope*YPos+X0 || XPos < slope*YPos+X0 ))
+ {
+ XSet = XPos;
+ YSet = 0;
+ }
+ else if(XPos >= X2 && (XPos < slope*YPos+X0 || XPos < slope*YPos+X0))
+ {
+ XSet = X2;
+ YSet = 0;
+ }
+ else
{
- a = 1; // don't move, the robot has reached the end of the workspace
- }
- else if (cons1*10 >= 5 && cons2*10 >= 5)
- {
- a = 2;
- }
- else if (cons1*10 >= 5 && cons2*10 < 5)
- {
- a = 3;
+ XSet = X0;
+ YSet = 0;
}
- else if (cons1*10 < 5 && cons2*10 >= 5)
- {
- a = 4;
- }
- else if (cons1*10 < 5 && cons2*10 < 5)
- {
- a = 5;
- }
- pc.printf("case: %d \r\n",a);
- return a;
-
+ MoveMotors();
}
-void selectcase()
-{ //call function to move the motors
- int switchcons = choosecase(emg1.read(),emg2.read());
- switch(switchcons)
+void CallFuncMovement() //decide which case has to be used
+{
+ positionxy(Angle1,Angle2,XPos,YPos); //calculate the position of the end point
+ if (Button == 1)
+ { //stop motors
+ Motor1Vel = 0;
+ Motor2Vel = 0;
+ }
+ else if (ReturnIP)
+ { //when InitialPosition is called, keep calling until the end-effector gets there;
+ InitialPosition();
+ counter = 0;
+ }
+ else if (sqrt(pow(XPos-300,2) + pow(YPos,2)) > 280 || sqrt(pow(XPos,2) + pow(YPos,2)) > 570 || sqrt(pow(XPos,2) + pow(YPos-300,2)) > 320 || sqrt(pow(XPos,2) + pow(YPos+300,2)) > 320 )
+ { // limit so that the robot does not break.
+ InitialPosition();
+ counter = 0;
+ }
+ else if (counter == 2/Ts)
+ { //after 2 seconds of inactivity the robot goes back to the initial position
+ InitialPosition();
+ counter = 0;
+ }
+ else if (X > 0 || Y != 0)
{
- case 1:
- StopMotors();
- break;
- case 2:
- moveXpYp();
- break;
- case 3:
- moveXpYn();
- break;
- case 4:
- moveXnYp();
- break;
- case 5:
- moveXnYn();
- break;
- default:
- break;
+ GoToSet();
+ counter = 0;
}
-
+ else
+ {
+ counter++;
+ }
}
+
+
main()
{
- Motor1Dir = 1;
- Motor2Dir = 1;
pc.baud(115200);
- switch_tick.attach(&selectcase,Time);
+ switch_tick.attach(&CallFuncMovement,Ts);
while (true)
{
- pc.printf("XP: %f YP: %f EMG1: %f EMG2: %f\r\n", XPosition, YPosition,emg1.read(),emg2.read());
- wait(0.5f);
}
}
\ No newline at end of file