Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: ISR_Mini-explorer mbed
Fork of roboticLab_withclass_3_July by
MiniExplorerCoimbra.cpp
- Committer:
- Ludwigfr
- Date:
- 2017-07-06
- Revision:
- 5:19f24c363418
- Parent:
- 3:37345c109dfc
- Child:
- 6:0e8db3a23486
File content as of revision 5:19f24c363418:
#include "MiniExplorerCoimbra.hpp"
#include "robot.h"
#define PI 3.14159
MiniExplorerCoimbra::MiniExplorerCoimbra(float defaultXWorld, float defaultYWorld, float defaultThetaWorld, float widthRealMap, float heightRealMap):map(widthRealMap,heightRealMap,18,12),sonarLeft(10*PI/36,-4,4),sonarFront(0,0,5),sonarRight(-10*PI/36,4,4){
i2c1.frequency(100000);
initRobot(); //Initializing the robot
pc.baud(9600); // baud for the pc communication
measure_always_on();//TODO check if needed
this->setXYThetaAndXYThetaWorld(defaultXWorld,defaultYWorld,defaultThetaWorld);
this->radiusWheels=3.25;
this->distanceWheels=7.2;
this->k_linear=10;
this->k_angular=200;
this->khro=12;
this->ka=30;
this->kb=-13;
this->kv=200;
this->kh=200;
this->kd=5;//previous 5
this->speed=300;
this->rangeForce=50;
//not too bad values 200 and -40000
//not too bad values 200 and -20000
//not too bad values 500 and -20000
//not too bad values 500 and -25000 rangeForce 50
this->attractionConstantForce=600;
this->repulsionConstantForce=0;
this->covariancePositionEstimationK[0][0]=0;
this->covariancePositionEstimationK[0][1]=0;
this->covariancePositionEstimationK[0][2]=0;
this->covariancePositionEstimationK[1][0]=0;
this->covariancePositionEstimationK[1][1]=0;
this->covariancePositionEstimationK[1][2]=0;
this->covariancePositionEstimationK[2][0]=0;
this->covariancePositionEstimationK[2][1]=0;
this->covariancePositionEstimationK[2][2]=0;
}
void MiniExplorerCoimbra::setXYThetaAndXYThetaWorld(float defaultXWorld, float defaultYWorld, float defaultThetaWorld){
this->xWorld=defaultXWorld;
this->yWorld=defaultYWorld;
this->thetaWorld=defaultThetaWorld;
X=defaultYWorld;
Y=-defaultXWorld;
if(defaultThetaWorld < -PI/2)
theta=PI/2+PI-defaultThetaWorld;
else
theta=defaultThetaWorld-PI/2;
}
void MiniExplorerCoimbra::myOdometria(){
Odometria();
this->xWorld=-Y;
this->yWorld=X;
if(theta >PI/2)
this->thetaWorld=-PI+(theta-PI/2);
else
this->thetaWorld=theta+PI/2;
}
void MiniExplorerCoimbra::go_to_point(float targetXWorld, float targetYWorld) {
float angleError; //angle error
float d; //distance from target
float k_linear=10, k_angular=200;
float angularLeft, angularRight, linear, angular;
int speed=300;
do {
//Updating X,Y and theta with the odometry values
this->myOdometria();
//Computing angle error and distance towards the target value
angleError = atan2((targetYWorld-this->yWorld),(targetXWorld-this->xWorld))-this->thetaWorld;
if(angleError>PI) angleError=-(angleError-PI);
else if(angleError<-PI) angleError=-(angleError+PI);
pc.printf("\n\r error=%f",angleError);
d=this->dist(this->xWorld, this->yWorld, targetXWorld, targetYWorld);
pc.printf("\n\r dist=%f/n", d);
//Computing linear and angular velocities
linear=k_linear*d;
angular=k_angular*angleError;
angularLeft=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
angularRight=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
//Normalize speed for motors
if(angularLeft>angularRight) {
angularRight=speed*angularRight/angularLeft;
angularLeft=speed;
} else {
angularLeft=speed*angularLeft/angularRight;
angularRight=speed;
}
pc.printf("\n\r X=%f", this->xWorld);
pc.printf("\n\r Y=%f", this->yWorld);
pc.printf("\n\r theta=%f", this->thetaWorld);
//Updating motor velocities
if(angularLeft>0){
leftMotor(1,angularLeft);
}
else{
leftMotor(0,-angularLeft);
}
if(angularRight>0){
rightMotor(1,angularRight);
}
else{
rightMotor(0,-angularRight);
}
//wait(0.5);
} while(d>1);
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
}
void MiniExplorerCoimbra::test_procedure_lab2(int nbIteration){
for(int i=0;i<nbIteration;i++){
this->randomize_and_map();
//this->print_map_with_robot_position();
}
while(1)
this->print_map_with_robot_position();
}
//generate a position randomly and makes the robot go there while updating the map
void MiniExplorerCoimbra::randomize_and_map() {
//TODO check that it's aurelien's work
float movementOnX=rand()%(int)(this->map.widthRealMap);
float movementOnY=rand()%(int)(this->map.heightRealMap);
float targetXWorld = movementOnX;
float targetYWorld = movementOnY;
float targetAngleWorld = 2*((float)(rand()%31416)-15708)/10000.0;
//target between (0,0) and (widthRealMap,heightRealMap)
this->go_to_point_with_angle(targetXWorld, targetYWorld, targetAngleWorld);
}
void MiniExplorerCoimbra::test_sonars_and_map(int nbIteration){
float leftMm;
float frontMm;
float rightMm;
this->myOdometria();
this->print_map_with_robot_position();
for(int i=0;i<nbIteration;i++){
leftMm = get_distance_left_sensor();
frontMm = get_distance_front_sensor();
rightMm = get_distance_right_sensor();
pc.printf("\n\r 1 leftMm= %f",leftMm);
pc.printf("\n\r 1 frontMm= %f",frontMm);
pc.printf("\n\r 1 rightMm= %f",rightMm);
this->update_sonar_values(leftMm, frontMm, rightMm);
this->print_map_with_robot_position();
wait(1);
}
}
//generate a position randomly and makes the robot go there while updating the map
//move of targetXWorld and targetYWorld ending in a targetAngleWorld
void MiniExplorerCoimbra::go_to_point_with_angle(float targetXWorld, float targetYWorld, float targetAngleWorld) {
bool keepGoing=true;
float leftMm;
float frontMm;
float rightMm;
float dt;
Timer t;
float distanceToTarget;
do {
//Timer stuff
dt = t.read();
t.reset();
t.start();
//Updating X,Y and theta with the odometry values
this->myOdometria();
leftMm = get_distance_left_sensor();
frontMm = get_distance_front_sensor();
rightMm = get_distance_right_sensor();
//if in dangerzone 150 mm
if((frontMm < 150 && frontMm > 0)|| (leftMm <150 && leftMm > 0) || (rightMm <150 && rightMm > 0) ){
//stop motors
leftMotor(1,0);
rightMotor(1,0);
//update the map
this->update_sonar_values(leftMm, frontMm, rightMm);
this->myOdometria();
keepGoing=false;
this->do_half_flip();
}else{
//if not in danger zone continue as usual
this->update_sonar_values(leftMm, frontMm, rightMm);
//Updating motor velocities
distanceToTarget=this->update_angular_speed_wheels_go_to_point_with_angle(targetXWorld,targetYWorld,targetAngleWorld,dt);
//wait(0.2);
//Timer stuff
t.stop();
pc.printf("\n\rdist to target= %f",distanceToTarget);
}
} while((distanceToTarget>2 || (abs(targetAngleWorld-this->thetaWorld)>PI/3)) && keepGoing);
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
pc.printf("\r\nReached Target!");
}
//move of targetXWorld and targetYWorld ending in a targetAngleWorld
void MiniExplorerCoimbra::go_to_point_with_angle_first_lab(float targetXWorld, float targetYWorld, float targetAngleWorld) {
float dt;
Timer t;
float distanceToTarget;
do {
//Timer stuff
dt = t.read();
t.reset();
t.start();
//Updating X,Y and theta with the odometry values
this->myOdometria();
//Updating motor velocities
distanceToTarget=this->update_angular_speed_wheels_go_to_point_with_angle(targetXWorld,targetYWorld,targetAngleWorld,dt);
//wait(0.2);
//Timer stuff
t.stop();
pc.printf("\n\rdist to target= %f",distanceToTarget);
} while(distanceToTarget>1 || (abs(targetAngleWorld-this->thetaWorld)>0.1));
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
pc.printf("\r\nReached Target!");
}
float MiniExplorerCoimbra::update_angular_speed_wheels_go_to_point_with_angle(float targetXWorld, float targetYWorld, float targetAngleWorld, float dt){
//compute_angles_and_distance
//atan2 take the deplacement on x and the deplacement on y as parameters
float angleToPoint = atan2((targetYWorld-this->yWorld),(targetXWorld-this->xWorld))-this->thetaWorld;
if(angleToPoint>PI) angleToPoint=-(angleToPoint-PI);
else if(angleToPoint<-PI) angleToPoint=-(angleToPoint+PI);
//rho is the distance to the point of arrival
float rho = dist(targetXWorld,targetYWorld,this->xWorld,this->yWorld);
float distanceToTarget = rho;
//TODO check that
float beta = targetAngleWorld-angleToPoint-this->thetaWorld;
//Computing angle error and distance towards the target value
rho += dt*(-this->khro*cos(angleToPoint)*rho);
float temp = angleToPoint;
angleToPoint += dt*(this->khro*sin(angleToPoint)-this->ka*angleToPoint-this->kb*beta);
beta += dt*(-this->khro*sin(temp));
//Computing linear and angular velocities
float linear;
float angular;
if(angleToPoint>=-1.5708 && angleToPoint<=1.5708){
linear=this->khro*rho;
angular=this->ka*angleToPoint+this->kb*beta;
}
else{
linear=-this->khro*rho;
angular=-this->ka*angleToPoint-this->kb*beta;
}
float angularLeft=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
float angularRight=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
//Slowing down at the end for more precision
if (distanceToTarget<30) {
this->speed = distanceToTarget*10;
}
//Normalize speed for motors
if(angularLeft>angularRight) {
angularRight=this->speed*angularRight/angularLeft;
angularLeft=this->speed;
} else {
angularLeft=this->speed*angularLeft/angularRight;
angularRight=this->speed;
}
//compute_linear_angular_velocities
leftMotor(1,angularLeft);
rightMotor(1,angularRight);
return distanceToTarget;
}
void MiniExplorerCoimbra::update_sonar_values(float leftMm,float frontMm,float rightMm){
float xWorldCell;
float yWorldCell;
float probaLeft;
float probaFront;
float probaRight;
float leftCm=leftMm/10;
float frontCm=frontMm/10;
float rightCm=rightMm/10;
for(int i=0;i<this->map.nbCellWidth;i++){
for(int j=0;j<this->map.nbCellHeight;j++){
xWorldCell=this->map.cell_width_coordinate_to_world(i);
yWorldCell=this->map.cell_height_coordinate_to_world(j);
probaLeft=this->sonarLeft.compute_probability_t(leftCm,xWorldCell,yWorldCell,this->xWorld,this->yWorld,this->thetaWorld);
probaFront=this->sonarFront.compute_probability_t(frontCm,xWorldCell,yWorldCell,this->xWorld,this->yWorld,this->thetaWorld);
probaRight=this->sonarRight.compute_probability_t(rightCm,xWorldCell,yWorldCell,this->xWorld,this->yWorld,this->thetaWorld);
/*
pc.printf("\n\r leftCm= %f",leftCm);
pc.printf("\n\r frontCm= %f",frontCm);
pc.printf("\n\r rightCm= %f",rightCm);
*/
/*
pc.printf("\n\r probaLeft= %f",probaLeft);
pc.printf("\n\r probaFront= %f",probaFront);
pc.printf("\n\r probaRight= %f",probaRight);
if(probaLeft> 1 || probaLeft < 0 || probaFront> 1 || probaFront < 0 ||probaRight> 1 || probaRight < 0)){
pwm_buzzer.pulsewidth_us(250);
wait_ms(50);
pwm_buzzer.pulsewidth_us(0);
wait(20);
pwm_buzzer.pulsewidth_us(250);
wait_ms(50);
pwm_buzzer.pulsewidth_us(0);
}
*/
this->map.update_cell_value(i,j,probaLeft);
this->map.update_cell_value(i,j,probaFront);
this->map.update_cell_value(i,j,probaRight);
}
}
}
void MiniExplorerCoimbra::do_half_flip(){
this->myOdometria();
float theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
if(theta_plus_h_pi > PI)
theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
leftMotor(0,100);
rightMotor(1,100);
while(abs(theta_plus_h_pi-theta)>0.05){
this->myOdometria();
// pc.printf("\n\r diff=%f", abs(theta_plus_pi-theta));
}
leftMotor(1,0);
rightMotor(1,0);
}
//Distance computation function
float MiniExplorerCoimbra::dist(float x1, float y1, float x2, float y2){
return sqrt(pow(y2-y1,2) + pow(x2-x1,2));
}
//use virtual force field
void MiniExplorerCoimbra::try_to_reach_target(float targetXWorld,float targetYWorld){
//atan2 gives the angle beetween PI and -PI
this->myOdometria();
/*
float deplacementOnXWorld=targetXWorld-this->xWorld;
float deplacementOnYWorld=targetYWorld-this->yWorld;
*/
//float angleToTarget=atan2(targetYWorld-this->yWorld,targetXWorld-this->xWorld);
//pc.printf("\n angleToTarget=%f",angleToTarget);
//turn_to_target(angleToTarget);
//TODO IDEA check if maybe set a low max range
//this->sonarLeft.setMaxRange(30);
//this->sonarFront.setMaxRange(30);
//this->sonarRight.setMaxRange(30);
bool reached=false;
int print=0;
int printLimit=1000;
while (!reached) {
this->vff(&reached,targetXWorld,targetYWorld);
//test_got_to_line(&reached);
if(print==printLimit){
leftMotor(1,0);
rightMotor(1,0);
this->print_map_with_robot_position_and_target(targetXWorld,targetYWorld);
print=0;
}else
print+=1;
}
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
pc.printf("\r\n target reached");
//wait(3);//
}
void MiniExplorerCoimbra::vff(bool* reached, float targetXWorld, float targetYWorld){
float line_a;
float line_b;
float line_c;
//Updating X,Y and theta with the odometry values
float forceXWorld=0;
float forceYWorld=0;
//we update the odometrie
this->myOdometria();
//we check the sensors
float leftMm = get_distance_left_sensor();
float frontMm = get_distance_front_sensor();
float rightMm = get_distance_right_sensor();
//update the probabilities values
this->update_sonar_values(leftMm, frontMm, rightMm);
//we compute the force on X and Y
this->compute_forceX_and_forceY(&forceXWorld, &forceYWorld,targetXWorld,targetYWorld);
//we compute a new ine
this->calculate_line(forceXWorld, forceYWorld, &line_a,&line_b,&line_c);
//Updating motor velocities
this->go_to_line(line_a,line_b,line_c,targetXWorld,targetYWorld);
//wait(0.1);
this->myOdometria();
if(dist(this->xWorld,this->yWorld,targetXWorld,targetYWorld)<3)
*reached=true;
}
/*angleToTarget is obtained through atan2 so it s:
< 0 if the angle is bettween PI and 2pi on a trigo circle
> 0 if it is between 0 and PI
*/
void MiniExplorerCoimbra::turn_to_target(float angleToTarget){
this->myOdometria();
if(angleToTarget!=0){
if(angleToTarget>0){
leftMotor(0,1);
rightMotor(1,1);
}else{
leftMotor(1,1);
rightMotor(0,1);
}
while(abs(angleToTarget-this->thetaWorld)>0.05)
this->myOdometria();
}
leftMotor(1,0);
rightMotor(1,0);
}
void MiniExplorerCoimbra::print_map_with_robot_position_and_target(float targetXWorld, float targetYWorld) {
float currProba;
float heightIndiceInOrthonormal;
float widthIndiceInOrthonormal;
float widthMalus=-(3*this->map.sizeCellWidth/2);
float widthBonus=this->map.sizeCellWidth/2;
float heightMalus=-(3*this->map.sizeCellHeight/2);
float heightBonus=this->map.sizeCellHeight/2;
pc.printf("\n\r");
for (int y = this->map.nbCellHeight -1; y>-1; y--) {
for (int x= 0; x<this->map.nbCellWidth; x++) {
heightIndiceInOrthonormal=this->map.cell_height_coordinate_to_world(y);
widthIndiceInOrthonormal=this->map.cell_width_coordinate_to_world(x);
if(this->yWorld >= (heightIndiceInOrthonormal+heightMalus) && this->yWorld <= (heightIndiceInOrthonormal+heightBonus) && this->xWorld >= (widthIndiceInOrthonormal+widthMalus) && this->xWorld <= (widthIndiceInOrthonormal+widthBonus))
pc.printf(" R ");
else{
if(targetYWorld >= (heightIndiceInOrthonormal+heightMalus) && targetYWorld <= (heightIndiceInOrthonormal+heightBonus) && targetXWorld >= (widthIndiceInOrthonormal+widthMalus) && targetXWorld <= (widthIndiceInOrthonormal+widthBonus))
pc.printf(" T ");
else{
currProba=this->map.log_to_proba(this->map.cellsLogValues[x][y]);
if ( currProba < 0.5){
pc.printf(" ");
//pc.printf("%f",currProba);
}else{
if(currProba==0.5){
pc.printf(" . ");
//pc.printf("%f",currProba);
}else{
pc.printf(" X ");
//pc.printf("%f",currProba);
}
}
}
}
}
pc.printf("\n\r");
}
}
void MiniExplorerCoimbra::print_map_with_robot_position(){
float currProba;
float heightIndiceInOrthonormal;
float widthIndiceInOrthonormal;
float widthMalus=-(3*this->map.sizeCellWidth/2);
float widthBonus=this->map.sizeCellWidth/2;
float heightMalus=-(3*this->map.sizeCellHeight/2);
float heightBonus=this->map.sizeCellHeight/2;
pc.printf("\n\r");
for (int y = this->map.nbCellHeight -1; y>-1; y--) {
for (int x= 0; x<this->map.nbCellWidth; x++) {
heightIndiceInOrthonormal=this->map.cell_height_coordinate_to_world(y);
widthIndiceInOrthonormal=this->map.cell_width_coordinate_to_world(x);
if(this->yWorld >= (heightIndiceInOrthonormal+heightMalus) && this->yWorld <= (heightIndiceInOrthonormal+heightBonus) && this->xWorld >= (widthIndiceInOrthonormal+widthMalus) && this->xWorld <= (widthIndiceInOrthonormal+widthBonus)){
pc.printf(" R ");
//pc.printf("%f",currProba);
}else{
currProba=this->map.log_to_proba(this->map.cellsLogValues[x][y]);
if ( currProba < 0.5){
pc.printf(" ");
//pc.printf("%f",currProba);
}else{
if(currProba==0.5){
pc.printf(" . ");
//pc.printf("%f",currProba);
}else{
pc.printf(" X ");
//pc.printf("%f",currProba);
}
}
}
}
pc.printf("\n\r");
}
}
//robotX and robotY are from this->myOdometria(), calculate line_a, line_b and line_c
void MiniExplorerCoimbra::calculate_line(float forceX, float forceY, float *line_a, float *line_b, float *line_c){
/*
in the teachers maths it is
*line_a=forceY;
*line_b=-forceX;
because a*x+b*y+c=0
a impact the vertical and b the horizontal
and he has to put them like this because
Robot space: World space:
^ ^
|x |y
<- R O ->
y x
but since our forceX, forceY are already computed in the orthonormal space I m not sure we need to
*/
//*line_a=forceX;
//*line_b=forceY;
*line_a=forceY;
*line_b=-forceX;
//because the line computed always pass by the robot center we dont need lince_c
//*line_c=forceX*this->yWorld+forceY*this->xWorld;
*line_c=0;
}
//compute the force on X and Y
void MiniExplorerCoimbra::compute_forceX_and_forceY(float* forceXWorld, float* forceYWorld, float targetXWorld, float targetYWorld){
float forceRepulsionComputedX=0;
float forceRepulsionComputedY=0;
for(int i=0;i<this->map.nbCellWidth;i++){ //for each cell of the map we compute a force of repulsion
for(int j=0;j<this->map.nbCellHeight;j++){
this->update_force(i,j,&forceRepulsionComputedX,&forceRepulsionComputedY);
}
}
//update with attraction force
*forceXWorld=forceRepulsionComputedX;
*forceYWorld=forceRepulsionComputedY;
this->print_map_with_robot_position();
pc.printf("\r\nForce X repul:%f",*forceXWorld);
pc.printf("\r\nForce Y repul:%f",*forceYWorld);
float distanceTargetRobot=sqrt(pow(targetXWorld-this->xWorld,2)+pow(targetYWorld-this->yWorld,2));
if(distanceTargetRobot != 0){
*forceXWorld+=-this->attractionConstantForce*(targetXWorld-this->xWorld)/distanceTargetRobot;
*forceYWorld+=-this->attractionConstantForce*(targetYWorld-this->yWorld)/distanceTargetRobot;
}else{
*forceXWorld+=-this->attractionConstantForce*(targetXWorld-this->xWorld)/0.01;
*forceYWorld+=-this->attractionConstantForce*(targetYWorld-this->yWorld)/0.01;
}
pc.printf("\r\nForce X after attract:%f",*forceXWorld);
pc.printf("\r\nForce Y after attract:%f",*forceYWorld);
float amplitude=sqrt(pow(*forceXWorld,2)+pow(*forceYWorld,2));
if(amplitude!=0){//avoid division by 0 if forceX and forceY == 0
*forceXWorld=*forceXWorld/amplitude;
*forceYWorld=*forceYWorld/amplitude;
}else{
*forceXWorld=*forceXWorld/0.01;
*forceYWorld=*forceYWorld/0.01;
}
}
//for vff
void MiniExplorerCoimbra::go_to_line(float line_a, float line_b, float line_c,float targetXWorld, float targetYWorld){
float lineAngle;
float angleError;
float linear;
float angular;
float d;
//line angle is beetween pi/2 and -pi/2
if(line_b!=0){
lineAngle=atan(line_a/-line_b);
}
else{
lineAngle=0;
}
this->myOdometria();
//Computing angle error
angleError = lineAngle-this->thetaWorld;//TODO that I m not sure
if(angleError>PI)
angleError=-(angleError-PI);
else
if(angleError<-PI)
angleError=-(angleError+PI);
//d=this->distFromLine(this->xWorld, this->yWorld, line_a, line_b, line_c);//this could be 0
d=0;
//Calculating velocities
linear= this->kv*(3.14);
angular=-this->kd*d + this->kh*angleError;
float angularLeft=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
float angularRight=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
//Normalize speed for motors
if(abs(angularLeft)>abs(angularRight)) {
angularRight=this->speed*abs(angularRight/angularLeft)*this->sign1(angularRight);
angularLeft=this->speed*this->sign1(angularLeft);
}
else {
angularLeft=this->speed*abs(angularLeft/angularRight)*this->sign1(angularLeft);
angularRight=this->speed*this->sign1(angularRight);
}
pc.printf("\r\nd = %f", d);
pc.printf("\r\nerror = %f, lineAngle=%f, robotAngle=%f\n", angleError,lineAngle,this->thetaWorld);
leftMotor(this->sign2(angularLeft),abs(angularLeft));
rightMotor(this->sign2(angularRight),abs(angularRight));
}
void MiniExplorerCoimbra::go_to_line_first_lab(float line_a, float line_b, float line_c){
float lineAngle;
float angleError;
float linear;
float angular;
float d;
//line angle is beetween pi/2 and -pi/2
if(line_b!=0){
lineAngle=atan(line_a/-line_b);
}
else{
lineAngle=1.5708;
}
do{
this->myOdometria();
//Computing angle error
pc.printf("\r\nline angle = %f", lineAngle);
pc.printf("\r\nthetaWorld = %f", thetaWorld);
angleError = lineAngle-this->thetaWorld;//TODO that I m not sure
if(angleError>PI)
angleError=-(angleError-PI);
else
if(angleError<-PI)
angleError=-(angleError+PI);
pc.printf("\r\nangleError = %f\n", angleError);
d=this->distFromLine(xWorld, yWorld, line_a, line_b, line_c);
pc.printf("\r\ndistance to line = %f", d);
//Calculating velocities
linear= this->kv*(3.14);
angular=-this->kd*d + this->kh*angleError;
float angularLeft=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
float angularRight=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
//Normalize speed for motors
if(abs(angularLeft)>abs(angularRight)) {
angularRight=this->speed*abs(angularRight/angularLeft)*this->sign1(angularRight);
angularLeft=this->speed*this->sign1(angularLeft);
}
else {
angularLeft=this->speed*abs(angularLeft/angularRight)*this->sign1(angularLeft);
angularRight=this->speed*this->sign1(angularRight);
}
leftMotor(this->sign2(angularLeft),abs(angularLeft));
rightMotor(this->sign2(angularRight),abs(angularRight));
}while(1);
}
void MiniExplorerCoimbra::update_force(int widthIndice, int heightIndice, float* forceRepulsionComputedX, float* forceRepulsionComputedY ){
//get the coordonate of the map and the robot in the ortonormal space
float xWorldCell=this->map.cell_width_coordinate_to_world(widthIndice);
float yWorldCell=this->map.cell_height_coordinate_to_world(heightIndice);
//compute the distance beetween the cell and the robot
float distanceCellToRobot=sqrt(pow(xWorldCell-this->xWorld,2)+pow(yWorldCell-this->yWorld,2));
float probaCell;
//check if the cell is in range
float anglePointToRobot=atan2(yWorldCell-this->yWorld,xWorldCell-this->xWorld);//like world system
float temp1;
float temp2;
if(distanceCellToRobot <= this->rangeForce) {
probaCell=this->map.get_proba_cell(widthIndice,heightIndice);
pc.printf("\r\nupdate force proba:%f",probaCell);
temp1=this->repulsionConstantForce*probaCell/pow(distanceCellToRobot,2);
temp2=(xWorldCell-this->xWorld)/distanceCellToRobot;
*forceRepulsionComputedX+=temp1*temp2;
temp2=(yWorldCell-this->yWorld)/distanceCellToRobot;
*forceRepulsionComputedY+=temp1*temp2;
}
}
//return 1 if positiv, -1 if negativ
float MiniExplorerCoimbra::sign1(float value){
if(value>=0)
return 1;
else
return -1;
}
//return 1 if positiv, 0 if negativ
int MiniExplorerCoimbra::sign2(float value){
if(value>=0)
return 1;
else
return 0;
}
float MiniExplorerCoimbra::distFromLine(float robot_x, float robot_y, float line_a, float line_b, float line_c){
return abs((line_a*robot_x+line_b*robot_y+line_c)/sqrt(line_a*line_a+line_b*line_b));
}
//4th LAB
//starting position lower left
void MiniExplorerCoimbra::test_procedure_lab_4(float sizeX, float sizeY, int nbRectangle){
this->map.fill_map_with_kalman_knowledge();
this->go_to_point_with_angle_kalman(this->xWorld+sizeX,this->yWorld,this->thetaWorld);
/*
for(int j=0;j<nbRectangle;j++){
//right
this->go_to_point_with_angle_kalman(this->xWorld+sizeX,this->yWorld,this->thetaWorld);
this->go_turn_kalman(this->xWorld,this->yWorld,this->thetaWorld+PI/2);
this->print_map_with_robot_position();
pc.printf("\n\rX= %f",this->xWorld);
pc.printf("\n\rY= %f",this->yWorld);
pc.printf("\n\rtheta= %f",this->thetaWorld);
//up
this->go_to_point_with_angle_kalman(this->xWorld+sizeX,this->yWorld+sizeY,this->thetaWorld);
this->go_turn_kalman(this->xWorld,this->yWorld,this->thetaWorld+PI/2);
this->print_map_with_robot_position();
pc.printf("\n\rX= %f",this->xWorld);
pc.printf("\n\rY= %f",this->yWorld);
pc.printf("\n\rtheta= %f",this->thetaWorld);
//left
this->go_to_point_with_angle_kalman(this->xWorld-sizeX,this->yWorld,this->thetaWorld);
this->go_turn_kalman(this->xWorld,this->yWorld,this->thetaWorld+PI/2);
this->print_map_with_robot_position();
pc.printf("\n\rX= %f",this->xWorld);
pc.printf("\n\rY= %f",this->yWorld);
pc.printf("\n\rtheta= %f",this->thetaWorld);
//down
this->go_to_point_with_angle_kalman(this->xWorld,this->yWorld-sizeY,this->thetaWorld);
this->go_turn_kalman(this->xWorld,this->yWorld,this->thetaWorld+PI/2);
this->print_map_with_robot_position();
pc.printf("\n\rX= %f",this->xWorld);
pc.printf("\n\rY= %f",this->yWorld);
pc.printf("\n\rtheta= %f",this->thetaWorld);
}
*/
}
//move of targetXWorld and targetYWorld ending in a targetAngleWorld
void MiniExplorerCoimbra::go_turn_kalman(float targetXWorld, float targetYWorld, float targetAngleWorld) {
//make sure the target is correct
if(targetAngleWorld > PI)
targetAngleWorld=-2*PI+targetAngleWorld;
if(targetAngleWorld < -PI)
targetAngleWorld=2*PI+targetAngleWorld;
float distanceToTarget=100;
do {
leftMotor(1,50);
rightMotor(0,50);
this->OdometriaKalmanFilter(1,1);
float distanceToTarget=this->dist(this->xWorld, this->yWorld, targetXWorld, targetYWorld);
//pc.printf("\n\rdist to target= %f",distanceToTarget);
} while(distanceToTarget>1 || (abs(targetAngleWorld-this->thetaWorld)>0.1));
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
pc.printf("\r\nReached Target!");
}
//move of targetXWorld and targetYWorld ending in a targetAngleWorld
void MiniExplorerCoimbra::go_straight_kalman(float targetXWorld, float targetYWorld, float targetAngleWorld) {
//make sure the target is correct
if(targetAngleWorld > PI)
targetAngleWorld=-2*PI+targetAngleWorld;
if(targetAngleWorld < -PI)
targetAngleWorld=2*PI+targetAngleWorld;
float distanceToTarget=100;;
do {
leftMotor(1,400);
rightMotor(1,400);
this->OdometriaKalmanFilter(1,1);
float distanceToTarget=this->dist(this->xWorld, this->yWorld, targetXWorld, targetYWorld);
pc.printf("\n\rdist to target= %f",distanceToTarget);
} while(distanceToTarget>1 || (abs(targetAngleWorld-this->thetaWorld)>0.1));
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
pc.printf("\r\nReached Target!");
}
//move of targetXWorld and targetYWorld ending in a targetAngleWorld
void MiniExplorerCoimbra::go_to_point_with_angle_kalman(float targetXWorld, float targetYWorld, float targetAngleWorld) {
float dt;
Timer t;
float distanceToTarget;
//make sure the target is correct
if(targetAngleWorld > PI)
targetAngleWorld=-2*PI+targetAngleWorld;
if(targetAngleWorld < -PI)
targetAngleWorld=2*PI+targetAngleWorld;
do {
//Timer stuff
dt = t.read();
t.reset();
t.start();
//Updating X,Y and theta with the odometry values
this->OdometriaKalmanFilter(1,1);
//Updating motor velocities
distanceToTarget=this->update_angular_speed_wheels_go_to_point_with_angle(targetXWorld,targetYWorld,targetAngleWorld,dt);
//wait(0.2);
//Timer stuff
t.stop();
pc.printf("\n\rdist to target= %f",distanceToTarget);
} while(distanceToTarget>1 || (abs(targetAngleWorld-this->thetaWorld)>0.1));
//Stop at the end
leftMotor(1,0);
rightMotor(1,0);
pc.printf("\r\nReached Target!");
}
void MiniExplorerCoimbra::OdometriaKalmanFilter(float encoderRightFailureRate,float encoderLeftFailureRate){
//=====KINEMATICS===========================
float R_cm;
float L_cm;
//fill R_cm and L_cm with how much is wheel has moved (custom robot.h)
OdometriaKalman(&R_cm, &L_cm);
encoderRightFailureRate=0.95;
encoderLeftFailureRate=1;
R_cm=R_cm*encoderRightFailureRate;
L_cm=L_cm*encoderLeftFailureRate;
float distanceMoved=(R_cm+L_cm)/2;
float angleMoved=(R_cm-L_cm)/this->distanceWheels;
float distanceMovedX=distanceMoved*cos(this->thetaWorld+angleMoved/2);
float distanceMovedY=distanceMoved*sin(this->thetaWorld+angleMoved/2);
//try with world coordinate system
float xEstimatedK=this->xWorld+distanceMovedX;
float yEstimatedK=this->yWorld+distanceMovedY;
float thetaWorldEstimatedK = this->thetaWorld+angleMoved;
//try with robot coordinate system
/*
float xEstimatedK=X;
float yEstimatedK=Y;
float thetaWorldEstimatedK = theta;
*/
//=====ERROR_MODEL===========================
//FP Matrix
float Fp[3][3]={{1,0,0},{0,1,0},{0,0,1}};
Fp[0][2]=-1*distanceMoved*sin(this->thetaWorld+(angleMoved/2));
Fp[1][2]=distanceMoved*cos(this->thetaWorld+(angleMoved/2));
//Frl matrix
float Frl[3][2]={{0,0},{0,0},{(1/this->distanceWheels),-(1/this->distanceWheels)}};
Frl[0][0]=0.5*cos(this->thetaWorld+(angleMoved/2))-(distanceMoved/(2*this->distanceWheels))*sin(this->thetaWorld+(angleMoved/2));
Frl[0][1]=0.5*cos(this->thetaWorld+(angleMoved/2))+(distanceMoved/(2*this->distanceWheels))*sin(this->thetaWorld+(angleMoved/2));
Frl[1][0]=0.5*sin(this->thetaWorld+(angleMoved/2))+(distanceMoved/(2*this->distanceWheels))*cos(this->thetaWorld+(angleMoved/2));
Frl[1][1]=0.5*sin(this->thetaWorld+(angleMoved/2))-(distanceMoved/(2*this->distanceWheels))*cos(this->thetaWorld+(angleMoved/2));
//error constants...
float kr=1;
float kl=1;
float covar[2][2]={{kr*abs(R_cm), 0}, {0, kl*abs(L_cm)}};
//uncertainty positionx, and theta at
//1,1,1
float Q[3][3]={{1,0,0}, {0,2,0}, {0,0,0.01}};
covariancePositionEstimationK[0][0]=covar[0][0]*pow(Frl[0][0],2)+covar[1][1]*pow(Frl[0][1],2)+covariancePositionEstimationK[0][0]+Q[0][0]+covariancePositionEstimationK[2][0]*Fp[0][2]+Fp[0][2]*(covariancePositionEstimationK[0][2]+covariancePositionEstimationK[2][2]*Fp[0][2]);
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1]+covariancePositionEstimationK[2][1]*Fp[0][2]+Fp[1][2]*(covariancePositionEstimationK[0][2]+covariancePositionEstimationK[2][2]*Fp[0][2])+covar[0][0]*Frl[0][0]*Frl[1][0]+covar[1][1]*Frl[0][1];
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2]+covariancePositionEstimationK[2][2]*Fp[0][2]+covar[0][0]*Frl[0][0]*Frl[2][0]+covar[1][1]*Frl[0][1]*Frl[2][1];
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0]+covariancePositionEstimationK[2][0]*Fp[1][2]+Fp[0][2]*(covariancePositionEstimationK[1][2]+covariancePositionEstimationK[2][2]*Fp[1][2])+covar[0][0]*Frl[0][0]*Frl[1][0]+covar[1][1]*Frl[0][1]*Frl[1][1];
covariancePositionEstimationK[1][1]=covar[0][0]*pow(Frl[1][0],2)+covar[1][1]*pow(Frl[1][1],2)+covariancePositionEstimationK[1][1]+Q[1][1]+covariancePositionEstimationK[2][1]*Fp[1][2]+Fp[1][2]*(covariancePositionEstimationK[1][2]+covariancePositionEstimationK[2][2]*Fp[1][2]);
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2]+covariancePositionEstimationK[2][2]*Fp[1][2]+covar[0][0]*Frl[1][0]*Frl[2][0]+covar[1][1]*Frl[1][1]*Frl[2][1];
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0]+covariancePositionEstimationK[2][2]*Fp[0][2]+covar[0][0]*Frl[0][0]*Frl[2][0]+covar[1][1]*Frl[0][1]*Frl[2][1];
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1]+covariancePositionEstimationK[2][2]*Fp[1][2]+covar[0][0]*Frl[1][0]*Frl[2][0]+covar[1][1]*Frl[1][1]*Frl[2][1];
covariancePositionEstimationK[2][2]=covar[0][0]*pow(Frl[2][1],2)+covar[1][1]*pow(Frl[2][1],2)+covariancePositionEstimationK[2][2]+Q[2][2];
//=====OBSERVATION=====
//get the estimated measure we should have according to our knowledge of the map and the previously computed localisation
float leftCmEstimated=this->sonarLeft.maxRange;
float frontCmEstimated=this->sonarFront.maxRange;
float rightCmEstimated=this->sonarRight.maxRange;
float xWorldCell;
float yWorldCell;
float currDistance;
float xClosestCellLeft;
float yClosestCellLeft;
float xClosestCellFront;
float yClosestCellFront;
float xClosestCellRight;
float yClosestCellRight;
//get theorical distance to sonar
for(int i=0;i<this->map.nbCellWidth;i++){
for(int j=0;j<this->map.nbCellHeight;j++){
//check if occupied, if not discard
if(this->map.get_proba_cell(i,j)<0.5){
//check if in sonar range
xWorldCell=this->map.cell_width_coordinate_to_world(i);
yWorldCell=this->map.cell_height_coordinate_to_world(j);
//check left
currDistance=this->sonarLeft.isInRange(xWorldCell,yWorldCell,xEstimatedK,yEstimatedK,thetaWorldEstimatedK);
if((currDistance < this->sonarLeft.maxRange) && currDistance!=-1){
//check if distance is lower than previous, update lowest if so
if(currDistance < leftCmEstimated){
leftCmEstimated= currDistance;
xClosestCellLeft=xWorldCell;
yClosestCellLeft=yWorldCell;
}
}
//check front
currDistance=this->sonarFront.isInRange(xWorldCell,yWorldCell,xEstimatedK,yEstimatedK,thetaWorldEstimatedK);
if((currDistance < this->sonarFront.maxRange) && currDistance!=-1){
//check if distance is lower than previous, update lowest if so
if(currDistance < frontCmEstimated){
frontCmEstimated= currDistance;
xClosestCellFront=xWorldCell;
yClosestCellFront=yWorldCell;
}
}
//check right
currDistance=this->sonarRight.isInRange(xWorldCell,yWorldCell,xEstimatedK,yEstimatedK,thetaWorldEstimatedK);
if((currDistance < this->sonarRight.maxRange) && currDistance!=-1){
//check if distance is lower than previous, update lowest if so
if(currDistance < rightCmEstimated){
rightCmEstimated= currDistance;
xClosestCellRight=xWorldCell;
yClosestCellRight=yWorldCell;
}
}
}
}
}
//check measurements from sonars, see if they passed the validation gate
float leftCm = get_distance_left_sensor()/10;
float frontCm = get_distance_front_sensor()/10;
float rightCm = get_distance_right_sensor()/10;
//if superior to sonar range, put the value to sonar max range + 1
if(leftCm > this->sonarLeft.maxRange)
leftCm=this->sonarLeft.maxRange;
if(frontCm > this->sonarFront.maxRange)
frontCm=this->sonarFront.maxRange;
if(rightCm > this->sonarRight.maxRange)
rightCm=this->sonarRight.maxRange;
//======INNOVATION========
//get the innoncation: the value of the difference between the actual measure and what we anticipated
float innovationLeft=leftCm-leftCmEstimated;
float innovationFront=frontCm-frontCmEstimated;
float innovationRight=-rightCm-rightCmEstimated;
//compute jacobian of observation
float jacobianOfObservationLeft[1][3];
float jacobianOfObservationRight[1][3];
float jacobianOfObservationFront[1][3];
float xSonarLeft=xEstimatedK+this->sonarLeft.distanceX;
float ySonarLeft=yEstimatedK+this->sonarLeft.distanceY;
//left
jacobianOfObservationLeft[0][0]=(xSonarLeft-xClosestCellLeft)/leftCmEstimated;
jacobianOfObservationLeft[0][1]=(ySonarLeft-yClosestCellLeft)/leftCmEstimated;
jacobianOfObservationLeft[0][2]=(xClosestCellLeft-xSonarLeft)*(xSonarLeft*sin(thetaWorldEstimatedK)+ySonarLeft*cos(thetaWorldEstimatedK))+(yClosestCellLeft-ySonarLeft)*(-xSonarLeft*cos(thetaWorldEstimatedK)+ySonarLeft*sin(thetaWorldEstimatedK));
//front
float xSonarFront=xEstimatedK+this->sonarFront.distanceX;
float ySonarFront=yEstimatedK+this->sonarFront.distanceY;
jacobianOfObservationFront[0][0]=(xSonarFront-xClosestCellFront)/frontCmEstimated;
jacobianOfObservationFront[0][1]=(ySonarFront-yClosestCellFront)/frontCmEstimated;
jacobianOfObservationFront[0][2]=(xClosestCellFront-xSonarFront)*(xSonarFront*sin(thetaWorldEstimatedK)+ySonarFront*cos(thetaWorldEstimatedK))+(yClosestCellFront-ySonarFront)*(-xSonarFront*cos(thetaWorldEstimatedK)+ySonarFront*sin(thetaWorldEstimatedK));
//right
float xSonarRight=xEstimatedK+this->sonarRight.distanceX;
float ySonarRight=yEstimatedK+this->sonarRight.distanceY;
jacobianOfObservationRight[0][0]=(xSonarRight-xClosestCellRight)/rightCmEstimated;
jacobianOfObservationRight[0][1]=(ySonarRight-yClosestCellRight)/rightCmEstimated;
jacobianOfObservationRight[0][2]=(xClosestCellRight-xSonarRight)*(xSonarRight*sin(thetaWorldEstimatedK)+ySonarRight*cos(thetaWorldEstimatedK))+(yClosestCellRight-ySonarRight)*(-xSonarRight*cos(thetaWorldEstimatedK)+ySonarRight*sin(thetaWorldEstimatedK));
//error constants 0,0,0 sonars perfect; must be found by experimenting; gives mean and standanrt deviation
//let's assume
//in centimeters
float R_front=4;
float R_left=4;
float R_right=4;
//R-> 4 in diagonal
//S for each sonar (concatenated covariance matrix of innovation)
float innovationCovarianceFront=R_front+ jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
float innovationCovarianceLeft=R_left+ jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
float innovationCovarianceRight=R_right+ jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
//check if it pass the validation gate
float gateScoreLeft=innovationLeft*innovationLeft/innovationCovarianceLeft;
float gateScoreFront=innovationFront*innovationFront/innovationCovarianceFront;
float gateScoreRight=innovationRight*innovationRight/innovationCovarianceRight;
int leftPassed=0;
int frontPassed=0;
int rightPassed=0;
//5cm -> 25
int errorsquare=25;//constant error
if(gateScoreLeft <= errorsquare)
leftPassed=1;
if(gateScoreFront <= errorsquare)
frontPassed=10;
if(gateScoreRight <= errorsquare)
rightPassed=100;
//for those who passed
//compute composite innovation
int nbPassed=leftPassed+frontPassed+rightPassed;
float xEstimatedKNext=xEstimatedK;
float yEstimatedKNext=xEstimatedK;
float thetaWorldEstimatedKNext=thetaWorldEstimatedK;
float compositeInnovationCovariance3x3[3][3]={{0,0,0}, {0,0,0}, {0,0,0}};
float compositeInnovationCovariance2x2[2][2]={{0,0}, {0,0}};
float compositeInnovationCovariance1x1=0;
float kalmanGain3X1[3][1]={{0}, {0}, {0}};
float kalmanGain3X2[3][2]={{0,0}, {0.0}, {0,0}};
float kalmanGain3X3[3][3]={{0,0,0}, {0,0,0}, {0,0,0}};
//we do not use the composite measurement jacobian (16), we directly use the values from the measurement jacobian (jacobianOfObservation)
switch(nbPassed){
case 0://none
//nothings happens it's okay
break;
case 1://left
compositeInnovationCovariance1x1=R_right + jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
kalmanGain3X1[0][0]=(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2])/compositeInnovationCovariance1x1;
kalmanGain3X1[1][0]=(covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2])/compositeInnovationCovariance1x1;
kalmanGain3X1[2][0]=(covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2])/compositeInnovationCovariance1x1;
xEstimatedKNext+= kalmanGain3X1[0][0]*innovationRight;
yEstimatedKNext+= kalmanGain3X1[1][0]*innovationRight;
thetaWorldEstimatedKNext+= kalmanGain3X1[2][0]*innovationRight;
covariancePositionEstimationK[0][0]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[0][0],2) + covariancePositionEstimationK[0][0];
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X1[0][0]*kalmanGain3X1[1][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X1[0][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X1[0][0]*kalmanGain3X1[1][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[1][1]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[1][0],2) + covariancePositionEstimationK[1][1];
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X1[1][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X1[0][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X1[1][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][2]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[2][0],2) + covariancePositionEstimationK[2][2];
break;
case 10://front
compositeInnovationCovariance1x1=R_front + jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
kalmanGain3X1[0][0]=(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2])/compositeInnovationCovariance1x1;
kalmanGain3X1[1][0]=(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2])/compositeInnovationCovariance1x1;
kalmanGain3X1[2][0]=(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2])/compositeInnovationCovariance1x1;
xEstimatedKNext+= kalmanGain3X1[0][0]*innovationFront;
yEstimatedKNext+= kalmanGain3X1[1][0]*innovationFront;
thetaWorldEstimatedKNext+= kalmanGain3X1[2][0]*innovationFront;
covariancePositionEstimationK[0][0]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[0][0],2) + covariancePositionEstimationK[0][0];
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X1[0][0]*kalmanGain3X1[1][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X1[0][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X1[0][0]*kalmanGain3X1[1][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[1][1]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[1][0],2) + covariancePositionEstimationK[1][1];
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X1[1][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X1[0][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X1[1][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][2]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[2][0],2) + covariancePositionEstimationK[2][2];
break;
case 11://left and front
compositeInnovationCovariance2x2[0][0]=R_front + jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance2x2[0][1]=jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance2x2[1][0]=jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
compositeInnovationCovariance2x2[1][1]=R_left + jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
kalmanGain3X2[0][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[0][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[1][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[1][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[2][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[2][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
xEstimatedKNext+= kalmanGain3X2[0][0]*innovationFront + kalmanGain3X2[0][1]*innovationLeft;
yEstimatedKNext+= kalmanGain3X2[1][0]*innovationFront + kalmanGain3X2[1][1]*innovationLeft;
thetaWorldEstimatedKNext+= kalmanGain3X2[2][0]*innovationFront + kalmanGain3X2[2][1]*innovationLeft;
covariancePositionEstimationK[0][0]=covariancePositionEstimationK[0][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][1]=covariancePositionEstimationK[1][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][2]=covariancePositionEstimationK[2][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
break;
case 100://right
compositeInnovationCovariance1x1=R_right + jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
kalmanGain3X1[0][0]=(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2])/compositeInnovationCovariance1x1;
kalmanGain3X1[1][0]=(covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2])/compositeInnovationCovariance1x1;
kalmanGain3X1[2][0]=(covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2])/compositeInnovationCovariance1x1;
xEstimatedKNext+= kalmanGain3X1[0][0]*innovationRight;
yEstimatedKNext+= kalmanGain3X1[1][0]*innovationRight;
thetaWorldEstimatedKNext+= kalmanGain3X1[2][0]*innovationRight;
covariancePositionEstimationK[0][0]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[0][0],2) + covariancePositionEstimationK[0][0];
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X1[0][0]*kalmanGain3X1[1][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X1[0][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X1[0][0]*kalmanGain3X1[1][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[1][1]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[1][0],2) + covariancePositionEstimationK[1][1];
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X1[1][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X1[0][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X1[1][0]*kalmanGain3X1[2][0]*compositeInnovationCovariance1x1;
covariancePositionEstimationK[2][2]=- compositeInnovationCovariance1x1*pow(kalmanGain3X1[2][0],2) + covariancePositionEstimationK[2][2];
break;
case 101://right and left
compositeInnovationCovariance2x2[0][0]=R_left + jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
compositeInnovationCovariance2x2[0][1]=jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
compositeInnovationCovariance2x2[1][0]=jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
compositeInnovationCovariance2x2[1][1]=R_right + jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
kalmanGain3X2[0][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[0][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[1][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[1][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[2][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[2][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
xEstimatedKNext+= kalmanGain3X2[0][0]*innovationLeft + kalmanGain3X2[0][1]*innovationRight;
yEstimatedKNext+= kalmanGain3X2[1][0]*innovationLeft + kalmanGain3X2[1][1]*innovationRight;
thetaWorldEstimatedKNext+= kalmanGain3X2[2][0]*innovationLeft + kalmanGain3X2[2][1]*innovationRight;
covariancePositionEstimationK[0][0]=covariancePositionEstimationK[0][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][1]=covariancePositionEstimationK[1][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][2]=covariancePositionEstimationK[2][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
break;
case 110://right and front
compositeInnovationCovariance2x2[0][0]=R_front + jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance2x2[0][1]=jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance2x2[1][0]=jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
compositeInnovationCovariance2x2[1][1]=R_right + jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
kalmanGain3X2[0][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[0][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[1][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[1][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[2][0]=(compositeInnovationCovariance2x2[1][1]*(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[1][0]*(covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
kalmanGain3X2[2][1]=(compositeInnovationCovariance2x2[0][0]*(covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]) - (compositeInnovationCovariance2x2[0][1]*(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]))/(compositeInnovationCovariance2x2[0][0]*compositeInnovationCovariance2x2[1][1] - compositeInnovationCovariance2x2[0][1]*compositeInnovationCovariance2x2[1][0]);
xEstimatedKNext+= kalmanGain3X2[0][0]*innovationFront + kalmanGain3X2[0][1]*innovationRight;
yEstimatedKNext+= kalmanGain3X2[1][0]*innovationFront + kalmanGain3X2[1][1]*innovationRight;
thetaWorldEstimatedKNext+= kalmanGain3X2[2][0]*innovationFront + kalmanGain3X2[2][1]*innovationRight;
covariancePositionEstimationK[0][0]=covariancePositionEstimationK[0][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[0][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[0][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][1]=covariancePositionEstimationK[1][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[1][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[1][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X2[0][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[0][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X2[1][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[1][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
covariancePositionEstimationK[2][2]=covariancePositionEstimationK[2][2] - kalmanGain3X2[2][0]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][0] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][0]) - kalmanGain3X2[2][1]*(kalmanGain3X2[2][0]*compositeInnovationCovariance2x2[0][1] + kalmanGain3X2[2][1]*compositeInnovationCovariance2x2[1][1]);
break;
case 111://right front and left
//get the compositeInnovationCovariance3x3
compositeInnovationCovariance3x3[0][0]=R_front + jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance3x3[0][1]=jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance3x3[0][2]=jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]);
compositeInnovationCovariance3x3[1][0]=jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
compositeInnovationCovariance3x3[1][1]=R_left + jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
compositeInnovationCovariance3x3[1][2]=jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]);
compositeInnovationCovariance3x3[2][0]=jacobianOfObservationFront[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationFront[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationFront[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
compositeInnovationCovariance3x3[2][1]=jacobianOfObservationLeft[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationLeft[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationLeft[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
compositeInnovationCovariance3x3[2][2]=R_right + jacobianOfObservationRight[0][0]*(covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][1]*(covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][2]) + jacobianOfObservationRight[0][2]*(covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]);
//compute the kalman gain
kalmanGain3X3[0][0]=(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[0][1]=-(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[0][2]=(covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[0][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] + covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[0][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] + covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[0][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[0][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] - covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[0][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] - covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[0][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[0][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[0][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[0][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[1][0]=(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[1][1]=-(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[1][2]=(covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[1][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] + covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[1][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] + covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[1][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[1][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] - covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[1][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] - covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[1][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[1][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[1][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[1][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[2][0]=(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[2][1]=-(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][2] - covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] - covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][2] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[2][1] - covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[2][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
kalmanGain3X3[2][2]=(covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[2][0]*jacobianOfObservationFront[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] + covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[2][1]*jacobianOfObservationFront[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] + covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2] - covariancePositionEstimationK[2][2]*jacobianOfObservationFront[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[2][0]*jacobianOfObservationLeft[0][0]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] - covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[2][1]*jacobianOfObservationLeft[0][1]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] - covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2] + covariancePositionEstimationK[2][2]*jacobianOfObservationLeft[0][2]*compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[2][0]*jacobianOfObservationRight[0][0]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[2][1]*jacobianOfObservationRight[0][1]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0] + covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1] - covariancePositionEstimationK[2][2]*jacobianOfObservationRight[0][2]*compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0])/(compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][2] - compositeInnovationCovariance3x3[0][0]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][2] + compositeInnovationCovariance3x3[0][1]*compositeInnovationCovariance3x3[1][2]*compositeInnovationCovariance3x3[2][0] + compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][0]*compositeInnovationCovariance3x3[2][1] - compositeInnovationCovariance3x3[0][2]*compositeInnovationCovariance3x3[1][1]*compositeInnovationCovariance3x3[2][0]);
//update the prediction
xEstimatedKNext+= kalmanGain3X3[0][0]*innovationFront + kalmanGain3X3[0][1]*innovationLeft + kalmanGain3X3[0][2]*innovationRight;
yEstimatedKNext+= kalmanGain3X3[1][0]*innovationFront + kalmanGain3X3[1][1]*innovationLeft + kalmanGain3X3[1][2]*innovationRight;
thetaWorldEstimatedKNext+= kalmanGain3X3[2][0]*innovationFront + kalmanGain3X3[2][1]*innovationLeft + kalmanGain3X3[2][2]*innovationRight;
//update covariancePositionEstimationK
covariancePositionEstimationK[0][0]=covariancePositionEstimationK[0][0] - kalmanGain3X3[0][0]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[0][1]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[0][2]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[0][1]=covariancePositionEstimationK[0][1] - kalmanGain3X3[1][0]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[1][1]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[1][2]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[0][2]=covariancePositionEstimationK[0][2] - kalmanGain3X3[2][0]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[2][1]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[2][2]*(kalmanGain3X3[0][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[0][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[0][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[1][0]=covariancePositionEstimationK[1][0] - kalmanGain3X3[0][0]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[0][1]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[0][2]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[1][1]=covariancePositionEstimationK[1][1] - kalmanGain3X3[1][0]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[1][1]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[1][2]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[1][2]=covariancePositionEstimationK[1][2] - kalmanGain3X3[2][0]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[2][1]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[2][2]*(kalmanGain3X3[1][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[1][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[1][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[2][0]=covariancePositionEstimationK[2][0] - kalmanGain3X3[0][0]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[0][1]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[0][2]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[2][1]=covariancePositionEstimationK[2][1] - kalmanGain3X3[1][0]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[1][1]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[1][2]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][2]);
covariancePositionEstimationK[2][2]=covariancePositionEstimationK[2][2] - kalmanGain3X3[2][0]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][0] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][0] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][0]) - kalmanGain3X3[2][1]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][1] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][1] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][1]) - kalmanGain3X3[2][2]*(kalmanGain3X3[2][0]*compositeInnovationCovariance3x3[0][2] + kalmanGain3X3[2][1]*compositeInnovationCovariance3x3[1][2] + kalmanGain3X3[2][2]*compositeInnovationCovariance3x3[2][2]);
break;
}
//big question, in wich coordinate space are those measurements...
//try with world coordinate system
this->xWorld=xEstimatedKNext;
this->yWorld=yEstimatedKNext;
this->thetaWorld=thetaWorldEstimatedKNext;
//try with robot one
/*
X=xEstimatedKNext;
Y=yEstimatedKNext;
theta=thetaWorldEstimatedKNext;
this->xWorld=-Y;
this->yWorld=X;
if(theta >PI/2)
this->thetaWorld=-PI+(theta-PI/2);
else
this->thetaWorld=theta+PI/2;
this->print_map_with_robot_position();
pc.printf("\n\rX= %f",this->xWorld);
pc.printf("\n\rY= %f",this->yWorld);
pc.printf("\n\rtheta= %f",this->thetaWorld);
*/
//update odometrie X Y theta...
}
