with class

Dependencies:   ISR_Mini-explorer mbed

Fork of VirtualForces by Georgios Tsamis

Revision:
33:814bcd7d3cfe
Child:
34:c208497dd079
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MiniExplorerCoimbra.cpp	Fri Jun 09 00:28:32 2017 +0000
@@ -0,0 +1,458 @@
+#include "MiniExplorerCoimbra.hpp"
+
+#define PI 3.14159
+
+MiniExplorerCoimbra::	MiniExplorerCoimbra(float defaultX, float defaultY, float defaultTheta):map(200,200,20,20),sonarLeft(10*PI/36,-4,4),sonarFront(0,0,5),sonarRight(-10*PI/36,4,4){
+	i2c1.frequency(100000);
+    initRobot(); //Initializing the robot
+    pc.baud(9600); // baud for the pc communication
+
+    measure_always_on();//TODO check if needed
+
+	this->setXYTheta(defaultX,defaultY,defaultTheta);
+	this->radiusWheels=3.25;
+	this->distanceWheels=7.2; 
+	
+	this->khro=12;
+	this->ka=30;
+	this->kb=-13;
+	this->kv=200;
+	this->kh=200;
+
+	this->rangeForce=30;
+	this->attractionConstantForce=10000;
+	this->repulsionConstantForce=1;
+} 
+
+void MiniExplorerCoimbra::setXYTheta(float x, float y, float theta){
+	X=x;
+	Y=y;
+	theta=theta;
+}
+
+//generate a position randomly and makes the robot go there while updating the map
+void MiniExplorerCoimbra::randomize_and_map() {
+    //TODO check that it's aurelien's work
+    float movementOnX=rand()%(int)(this->map.widthRealMap/2);
+    float movementOnY=rand()%(int)(this->map.heightRealMap/2);
+    
+    float signOfX=rand()%2;
+    if(signOfX < 1)
+        signOfX=-1;
+    float signOfY=rand()%2;
+    if(signOfY  < 1)
+        signOfY=-1;
+        
+    float targetX = movementOnX*signOfX;
+    float targetY = movementOnY*signOfY;
+    float targetAngle = 2*((float)(rand()%31416)-15708)/10000.0;
+    this->go_to_point_with_angle(targetX, targetY, targetAngle);
+}
+
+//go the the given position while updating the map
+void MiniExplorerCoimbra::go_to_point_with_angle(float targetX, float targetY, float targetAngle) {
+    bool keep_going=true;
+    float leftMm;
+    float frontMm; 
+    float rightMm;
+    float dt;
+    Timer t;
+    float d2;
+    do {
+        //Timer stuff
+        dt = t.read();
+        t.reset();
+        t.start();
+        
+        //Updating X,Y and theta with the odometry values
+        Odometria();
+       	leftMm = get_distance_left_sensor();
+    	frontMm = get_distance_front_sensor();
+    	rightMm = get_distance_right_sensor();
+
+        //if in dangerzone 
+        if((frontMm < 150 && frontMm > 0)|| (leftMm <150 && leftMm > 0) || (rightMm <150 && rightMm > 0) ){
+            leftMotor(1,0);
+            rightMotor(1,0);
+            this->update_sonar_values(leftMm, frontMm, rightMm);
+            //TODO Giorgos maybe you can also test the do_half_flip() function
+            Odometria();
+            //do a flip TODO
+            keep_going=false;
+            this->do_half_flip();   
+        }else{
+            //if not in danger zone continue as usual
+            this->update_sonar_values(leftMm, frontMm, rightMm);
+
+        	//Updating motor velocities
+            d2=this->update_angular_speed_wheels_go_to_point_with_angle(targetX,targetY,targetAngle,dt);
+    
+            wait(0.2);
+            //Timer stuff
+            t.stop();
+            pc.printf("\n\r dist to target= %f",d2);
+        }
+    } while(d2>1 && (abs(targetAngle-theta)>0.01) && keep_going);
+
+    //Stop at the end
+    leftMotor(1,0);
+    rightMotor(1,0);
+}
+
+void MiniExplorerCoimbra::update_sonar_values(float leftMm,float frontMm,float rightMm){
+    float xWorldCell;
+    float yWorldCell;
+    for(int i=0;i<this->map.nbCellWidth;i++){
+        for(int j=0;j<this->map.nbCellHeight;j++){
+        	xWorldCell=this->map.cell_width_coordinate_to_world(i);
+            yWorldCell=this->map.cell_height_coordinate_to_world(j);
+            //compute_probability_t(float distanceObstacleDetected, float x, float y, float[2] robotCoordinatesInWorld)
+        	this->map.update_cell_value(i,j,this->sonarRight.compute_probability_t(rightMm,xWorldCell,yWorldCell,this->get_converted_robot_X_into_world(),this->get_converted_robot_Y_into_world()));
+        	this->map.update_cell_value(i,j,this->sonarLeft.compute_probability_t(leftMm,xWorldCell,yWorldCell,this->get_converted_robot_X_into_world(),this->get_converted_robot_Y_into_world()));
+        	this->map.update_cell_value(i,j,this->sonarFront.compute_probability_t(frontMm,xWorldCell,yWorldCell,this->get_converted_robot_X_into_world(),this->get_converted_robot_Y_into_world()));
+
+       	}
+    }
+}
+
+float MiniExplorerCoimbra::get_converted_robot_X_into_world(){
+	//x world coordinate
+	return this->map.nbCellWidth*this->map.sizeCellWidth-Y;
+}
+
+float MiniExplorerCoimbra::get_converted_robot_Y_into_world(){
+	//y worldcoordinate
+	return X;
+}
+
+void MiniExplorerCoimbra::do_half_flip(){
+    Odometria();
+    float theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
+    if(theta_plus_h_pi > PI)
+        theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
+    leftMotor(0,100);
+    rightMotor(1,100);
+    while(abs(theta_plus_h_pi-theta)>0.05){
+        Odometria();
+       // pc.printf("\n\r diff=%f", abs(theta_plus_pi-theta));
+    }
+    leftMotor(1,0);
+    rightMotor(1,0);    
+}
+
+//Distance computation function
+float MiniExplorerCoimbra::dist(float robotX, float robotY, float targetX, float targetY){
+    //pc.printf("%f, %f, %f, %f",robotX,robotY,targetX,targetY);
+    return sqrt(pow(targetY-robotY,2) + pow(targetX-robotX,2));
+}
+
+float MiniExplorerCoimbra::update_angular_speed_wheels_go_to_point_with_angle(float targetX, float targetY, float targetAngle, float dt){
+    //compute_angles_and_distance
+    float alpha = atan2((targetY-Y),(targetX-X))-theta;
+    alpha = atan(sin(alpha)/cos(alpha));
+    float rho = this->dist(X, Y, targetX, targetY);
+    float d2 = rho;
+    float beta = -alpha-theta+targetAngle;        
+    
+    //Computing angle error and distance towards the target value
+    rho += dt*(-this->khro*cos(alpha)*rho);
+    float temp = alpha;
+    alpha += dt*(this->khro*sin(alpha)-this->ka*alpha-this->kb*beta);
+    beta += dt*(-this->khro*sin(temp));
+
+    //Computing linear and angular velocities
+    float linear;
+    float angular;
+    if(alpha>=-1.5708 && alpha<=1.5708){
+        linear=this->khro*rho;
+        angular=this->ka*alpha+this->kb*beta;
+    }
+    else{
+        linear=-this->khro*rho;
+        angular=-this->ka*alpha-this->kb*beta;
+    }
+    float angular_left=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
+    float angular_right=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
+    
+    //Normalize speed for motors
+    if(angular_left>angular_right) {
+        angular_right=this->speed*angular_right/angular_left;
+        angular_left=this->speed;
+    } else {
+        angular_left=this->speed*angular_left/angular_right;
+        angular_right=this->speed;
+    }
+
+    //compute_linear_angular_velocities 
+    leftMotor(1,angular_left);
+    rightMotor(1,angular_right);
+    
+    return d2;
+}
+
+void MiniExplorerCoimbra::try_to_reach_target(float targetXWorld,float targetYWorld){
+    //atan2 gives the angle beetween PI and -PI
+    float angleToTarget=atan2(targetXWorld,targetYWorld);
+    turn_to_target(angleToTarget);
+    bool reached=false;
+    int print=0;
+    while (!reached) {
+        vff(&reached,targetXWorld,targetYWorld);
+        //test_got_to_line(&reached);
+        if(print==10){
+            leftMotor(1,0);
+            rightMotor(1,0);
+            /*
+            pc.printf("\r\n theta=%f", theta);
+            pc.printf("\r\n IN ORTHO:");
+            pc.printf("\r\n X Robot=%f", this->get_converted_robot_X_into_world());
+            pc.printf("\r\n Y Robot=%f", this->get_converted_robot_Y_into_world());
+            pc.printf("\r\n X Target=%f", targetXWorld);
+            pc.printf("\r\n Y Target=%f", targetYWorld);
+            */
+            print_final_map_with_robot_position_and_target();
+            print=0;
+        }else
+            print+=1;
+    }
+    //Stop at the end
+    leftMotor(1,0);
+    rightMotor(1,0);
+    pc.printf("\r\n target reached");
+    wait(3);//
+}
+
+void MiniExplorerCoimbra::vff(bool* reached, float targetXWorld, float targetYWorld){
+    float line_a;
+    float line_b;
+    float line_c;
+    //Updating X,Y and theta with the odometry values
+    float forceX=0;
+    float forceY=0;
+    //we update the odometrie
+    Odometria();
+    //we check the sensors
+    float leftMm = get_distance_left_sensor();
+    float frontMm = get_distance_front_sensor();
+    float rightMm = get_distance_right_sensor();
+    //update the probabilities values 
+    this->update_sonar_values(leftMm, frontMm, rightMm);
+    //we compute the force on X and Y
+    this->compute_forceX_and_forceY(&forceX, &forceY,targetXWorld,targetYWorld);
+    //we compute a new ine
+    this->calculate_line(forceX, forceY, &line_a,&line_b,&line_c);
+    //Updating motor velocities
+    this->go_to_line(line_a,line_b,line_c,targetXWorld,targetYWorld);
+
+    //wait(0.1);
+    Odometria();
+    if(dist(this->get_converted_robot_X_into_world(),this->get_converted_robot_Y_into_world(),targetXWorld,targetYWorld)<10)
+        *reached=true;
+}
+
+//compute the force on X and Y
+void MiniExplorerCoimbra::compute_forceX_and_forceY(float* forceX, float* forceY, float targetXWorld, float targetYWorld){
+     float xRobotWorld=this->get_converted_robot_X_into_world();
+     float yRobotWorld=this->get_converted_robot_Y_into_world();
+
+     float forceRepulsionComputedX=0;
+     float forceRepulsionComputedY=0;
+     //for each cell of the map we compute a force of repulsion
+     for(int i=0;i<this->map.nbCellWidth;i++){
+        for(int j=0;j<this->map.nbCellHeight;j++){
+            this->update_force(i,j,&forceRepulsionComputedX,&forceRepulsionComputedY,xRobotWorld,yRobotWorld);
+        }
+    }
+    //update with attraction force
+    *forceX=+forceRepulsionComputedX;
+    *forceY=+forceRepulsionComputedY;
+    float distanceTargetRobot=sqrt(pow(targetXWorld-xRobotWorld,2)+pow(targetYWorld-yRobotWorld,2));
+    if(distanceTargetRobot != 0){
+        *forceX-=this->attractionConstantForce*(targetXWorld-xRobotWorld)/distanceTargetRobot;
+        *forceY-=this->attractionConstantForce*(targetYWorld-yRobotWorld)/distanceTargetRobot;
+    }
+    float amplitude=sqrt(pow(*forceX,2)+pow(*forceY,2));
+    if(amplitude!=0){//avoid division by 0 if forceX and forceY  == 0
+        *forceX=*forceX/amplitude;
+        *forceY=*forceY/amplitude;
+    }
+}
+
+void MiniExplorerCoimbra::update_force(int widthIndice, int heightIndice, float* forceX, float* forceY, float xRobotWorld, float yRobotWorld ){
+    //get the coordonate of the map and the robot in the ortonormal space
+    float xWorldCell=this->map.cell_width_coordinate_to_world(widthIndice);
+    float yWorldCell=this->map.cell_height_coordinate_to_world(heightIndice);
+
+    //compute the distance beetween the cell and the robot
+    float distanceCellToRobot=sqrt(pow(xWorldCell-xRobotWorld,2)+pow(yWorldCell-yRobotWorld,2));
+    //check if the cell is in range
+    if(distanceCellToRobot <= this->rangeForce) {
+        float probaCell=this->map.get_proba_cell(widthIndice,heightIndice);
+        float xForceComputed=this->repulsionConstantForce*probaCell*(xWorldCell-xRobotWorld)/pow(distanceCellToRobot,3);
+        float yForceComputed=this->repulsionConstantForce*probaCell*(yWorldCell-yRobotWorld)/pow(distanceCellToRobot,3);
+        *forceX+=xForceComputed;
+        *forceY+=yForceComputed;
+    }
+}
+
+//robotX and robotY are from Odometria, calculate line_a, line_b and line_c
+void MiniExplorerCoimbra::calculate_line(float forceX, float forceY, float *line_a, float *line_b, float *line_c){
+    /*
+    in the teachers maths it is 
+    
+    *line_a=forceY;
+    *line_b=-forceX;
+    
+    because a*x+b*y+c=0
+    a impact the vertical and b the horizontal
+    and he has to put them like this because
+    Robot space:      orthonormal space:
+      ^                 ^
+      |x                |y
+   <- R                 O ->
+    y                     x
+    but since our forceX, forceY are already computed in the orthonormal space I m not sure we need to 
+    */
+    *line_a=forceX;
+    *line_b=forceY;
+    //because the line computed always pass by the robot center we dont need lince_c
+    //*line_c=forceX*yRobotWorld+forceY*xRobotWorld;    
+    *line_c=0;
+}
+
+//currently line_c is not used
+void MiniExplorerCoimbra::go_to_line(float line_a, float line_b, float line_c,float targetXWorld, float targetYWorld){
+    float lineAngle;
+    float angleError;
+    float linear;
+    float angular; 
+    
+    bool direction=true;
+    
+    //take as parameter how much the robot is supposed to move on x and y (world)
+    float angleToTarget=atan2(targetXWorld-this->get_converted_robot_X_into_world(),targetYWorld-this->get_converted_robot_Y_into_world());
+    bool inFront=true;
+    if(angleToTarget < 0)//the target is in front
+        inFront=false;
+
+    if(theta > 0){
+        //the robot is oriented to the left
+        if(theta > PI/2){
+            //the robot is oriented lower left
+            if(inFront)
+                direction=false;//robot and target not oriented the same way
+        }else{
+            //the robot is oriented upper left
+            if(!inFront)
+                direction=false;//robot and target not oriented the same way
+        }
+    }else{
+        //the robot is oriented to the right
+        if(theta < -PI/2){
+            //the robot is oriented lower right
+            if(inFront)
+                direction=false;//robot and target not oriented the same way
+        }else{ 
+            //the robot is oriented upper right
+            if(!inFront)
+                direction=false;//robot and target not oriented the same way
+        }
+    }
+    //pc.printf("\r\n Target is in front");
+    
+     if(line_b!=0){
+        if(!direction)
+            lineAngle=atan(-line_a/line_b);
+        else
+            lineAngle=atan(line_a/-line_b);
+    }
+    else{
+        lineAngle=1.5708;
+    }
+    
+    //Computing angle error
+    angleError = lineAngle-theta;
+    angleError = atan(sin(angleError)/cos(angleError));
+
+    //Calculating velocities
+    linear=this->kv*(3.1416);
+    angular=this->kh*angleError;
+
+    float angularLeft=(linear-0.5*this->distanceWheels*angular)/this->radiusWheels;
+    float angularRight=(linear+0.5*this->distanceWheels*angular)/this->radiusWheels;
+    
+    //Normalize speed for motors
+    if(abs(angularLeft)>abs(angularRight)) {  
+        angularRight=this->speed*abs(angularRight/angularLeft)*this->sign1(angularRight);
+        angularLeft=this->speed*this->sign1(angularLeft);
+    }
+    else {
+        angularLeft=this->speed*abs(angularLeft/angularRight)*this->sign1(angularLeft);
+        angularRight=this->speed*this->sign1(angularRight);
+    }
+    leftMotor(this->sign2(angularLeft),abs(angularLeft));
+    rightMotor(this->sign2(angularRight),abs(angularRight));
+}
+
+//return 1 if positiv, -1 if negativ
+float MiniExplorerCoimbra::sign1(float value){
+    if(value>=0) 
+        return 1;
+    else 
+        return -1;
+}
+
+//return 1 if positiv, 0 if negativ
+int MiniExplorerCoimbra::sign2(float value){
+    if(value>=0) 
+        return 1;
+    else 
+        return 0;
+}
+
+/*angleToTarget is obtained through atan2 so it s:
+< 0 if the angle is bettween PI and 2pi on a trigo circle
+> 0 if it is between 0 and PI
+*/
+void MiniExplorerCoimbra::turn_to_target(float angleToTarget){
+    Odometria();
+    float theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
+    if(theta_plus_h_pi > PI)
+        theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
+     if(angleToTarget>0){   
+        leftMotor(0,1);
+        rightMotor(1,1);
+    }else{
+        leftMotor(1,1);
+        rightMotor(0,1);
+    }
+    while(abs(angleToTarget-theta_plus_h_pi)>0.05){
+        Odometria();
+        theta_plus_h_pi=theta+PI/2;//theta is between -PI and PI
+         if(theta_plus_h_pi > PI)
+            theta_plus_h_pi=-(2*PI-theta_plus_h_pi);
+        //pc.printf("\n\r diff=%f", abs(angleToTarget-theta_plus_h_pi));
+    }
+    leftMotor(1,0);
+    rightMotor(1,0);    
+}
+
+
+/*
+//x and y passed are TargetNotMap
+float get_error_angles(float x, float y,float theta){
+    float angleBeetweenRobotAndTarget=atan2(y,x);
+    if(y > 0){
+        if(angleBeetweenRobotAndTarget < PI/2)//up right
+            angleBeetweenRobotAndTarget=-PI/2+angleBeetweenRobotAndTarget;
+        else//up right
+            angleBeetweenRobotAndTarget=angleBeetweenRobotAndTarget-PI/2;
+    }else{
+        if(angleBeetweenRobotAndTarget > -PI/2)//lower right
+            angleBeetweenRobotAndTarget=angleBeetweenRobotAndTarget-PI/2;
+        else//lower left
+            angleBeetweenRobotAndTarget=2*PI+angleBeetweenRobotAndTarget-PI/2;
+    }
+    return angleBeetweenRobotAndTarget-theta;
+}
+*/