Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- Lightvalve
- Date:
- 2021-05-31
- Revision:
- 220:2976cf1b4252
- Parent:
- 219:e00e71ca3e80
- Child:
- 221:2ec0de8590d3
File content as of revision 220:2976cf1b4252:
//Hydraulic Control Board
//distributed by Sungwoo Kim
// 2020/12/28
//revised by Buyoun Cho
// 2021/04/20
// 유의사항
// 소수 적을때 뒤에 f 꼭 붙이기
// CAN 선은 ground까지 있는 3상 선으로 써야함.
// 전원은 12~24V 인가.
#include "mbed.h"
#include "FastPWM.h"
#include "INIT_HW.h"
#include "function_CAN.h"
#include "SPI_EEP_ENC.h"
#include "I2C_AS5510.h"
#include "setting.h"
#include "function_utilities.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
#include <string>
#include <iostream>
#include <cmath>
using namespace std;
Timer t;
// dac & check ///////////////////////////////////////////
DigitalOut check(PC_2);
DigitalOut check_2(PC_3);
AnalogOut dac_1(PA_4); // 0.0f ~ 1.0f
AnalogOut dac_2(PA_5); // 0.0f ~ 1.0f
AnalogIn adc1(PC_4); //pressure_1
AnalogIn adc2(PB_0); //pressure_2
AnalogIn adc3(PC_1); //current
// PWM ///////////////////////////////////////////
float dtc_v=0.0f;
float dtc_w=0.0f;
// I2C ///////////////////////////////////////////
I2C i2c(PC_9,PA_8); // SDA, SCL (for K22F)
const int i2c_slave_addr1 = 0x56; // AS5510 address
unsigned int value; // 10bit output of reading sensor AS5510
// SPI ///////////////////////////////////////////
SPI eeprom(PB_15, PB_14, PB_13); // EEPROM //(SPI_MOSI, SPI_MISO, SPI_SCK);
DigitalOut eeprom_cs(PB_12);
SPI enc(PC_12,PC_11,PC_10);
DigitalOut enc_cs(PD_2);
DigitalOut LED(PA_15);
// UART ///////////////////////////////////////////
Serial pc(PA_9,PA_10); // _ UART
// CAN ///////////////////////////////////////////
CAN can(PB_8, PB_9, 1000000);
CANMessage msg;
void onMsgReceived()
{
CAN_RX_HANDLER();
}
// Variables ///////////////////////////////////////////
State pos;
State vel;
State Vout;
State force;
State torq; // unit : N
State torq_dot;
State pres_A; // unit : bar
State pres_B;
State cur; // unit : mA
State valve_pos;
State INIT_Vout;
State INIT_Valve_Pos;
State INIT_Pos;
State INIT_torq;
extern int CID_RX_CMD;
extern int CID_RX_REF_POSITION;
extern int CID_RX_REF_OPENLOOP;
extern int CID_RX_REF_PWM;
extern int CID_TX_INFO;
extern int CID_TX_POS_VEL_TORQ;
extern int CID_TX_PWM;
extern int CID_TX_CURRENT;
extern int CID_TX_VOUT;
extern int CID_TX_VALVE_POSITION;
extern int CID_TX_SOMETHING;
float temp_P_GAIN = 0.0f;
float temp_I_GAIN = 0.0f;
int temp_VELOCITY_COMP_GAIN = 0;
inline float tanh_inv(float y) {
if(y >= 1.0f - 0.000001f) y = 1.0f - 0.000001f;
if(y <= -1.0f + 0.000001f) y = -1.0f + 0.000001f;
return log(sqrt((1.0f+y)/(1.0f-y)));
}
/*******************************************************************************
* REFERENCE MODE
******************************************************************************/
enum _REFERENCE_MODE {
MODE_REF_NO_ACT = 0,
MODE_REF_DIRECT,
MODE_REF_FINDHOME
};
/*******************************************************************************
* CONTROL MODE
******************************************************************************/
enum _CONTROL_MODE {
//control mode
MODE_NO_ACT = 0, //0
MODE_VALVE_POSITION_CONTROL, //1
MODE_JOINT_CONTROL, //2
MODE_VALVE_OPEN_LOOP, //3
MODE_JOINT_ADAPTIVE_BACKSTEPPING, //4
MODE_RL, //5
MODE_JOINT_POSITION_PRES_CONTROL_PWM, //6
MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION, //7
MODE_VALVE_POSITION_PRES_CONTROL_LEARNING, //8
MODE_TEST_CURRENT_CONTROL, //9
MODE_TEST_PWM_CONTROL, //10
MODE_CURRENT_CONTROL, //11
MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT, //12
MODE_JOINT_POSITION_PRES_CONTROL_CURRENT, //13
MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING, //14
//utility
MODE_TORQUE_SENSOR_NULLING = 20, //20
MODE_VALVE_NULLING_AND_DEADZONE_SETTING, //21
MODE_FIND_HOME, //22
MODE_VALVE_GAIN_SETTING, //23
MODE_PRESSURE_SENSOR_NULLING, //24
MODE_PRESSURE_SENSOR_CALIB, //25
MODE_ROTARY_FRICTION_TUNING, //26
MODE_DDV_POS_VS_PWM_ID = 30, //30
MODE_DDV_DEADZONE_AND_CENTER, //31
MODE_DDV_POS_VS_FLOWRATE, //32
MODE_SYSTEM_ID, //33
MODE_FREQ_TEST, //34
MODE_SEND_BUFFER, //35
MODE_SEND_OVER, //36
MODE_STEP_TEST, //37
};
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/* Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;//8
RCC_OscInitStruct.PLL.PLLN = 180; //180
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
//Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK) {
//Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
//Error_Handler();
}
}
int main()
{
/*********************************
*** Initialization
*********************************/
HAL_Init();
SystemClock_Config();
LED = 0;
pc.baud(9600);
// i2c init
// i2c.frequency(400 * 1000); // 0.4 mHz
// wait_ms(2); // Power Up wait
// look_for_hardware_i2c(); // Hardware present
// init_as5510(i2c_slave_addr1);
// make_delay();
// spi init
eeprom_cs = 1;
eeprom.format(8,3);
eeprom.frequency(5000000); //5M
eeprom_cs = 0;
make_delay();
enc_cs = 1; //sw add
enc.format(8,0);
enc.frequency(5000000); //10M
enc_cs = 0; //sw add
make_delay();
// spi _ enc
spi_enc_set_init();
make_delay();
////// bno rom
// spi_eeprom_write(RID_BNO, (int16_t) 2);
// make_delay();
////////
// rom
ROM_CALL_DATA();
make_delay();
// ADC init
Init_ADC();
make_delay();
// Pwm init
Init_PWM();
TIM4->CR1 ^= TIM_CR1_UDIS;
make_delay();
// CAN
can.attach(&CAN_RX_HANDLER);
CAN_ID_INIT();
make_delay();
//can.reset();
can.filter(msg.id, 0xFFFFF000, CANStandard);
// TMR3 init
Init_TMR3();
TIM3->CR1 ^= TIM_CR1_UDIS;
make_delay();
//Timer priority
NVIC_SetPriority(TIM3_IRQn, 2);
NVIC_SetPriority(TIM4_IRQn, 3);
//DAC init
if (SENSING_MODE == 0) {
dac_1 = FORCE_VREF / 3.3f;
dac_2 = 0.0f;
} else if (SENSING_MODE == 1) {
if (DIR_VALVE_ENC > 0) {
dac_1 = PRES_A_VREF / 3.3f;
dac_2 = PRES_B_VREF / 3.3f;
} else {
dac_1 = PRES_B_VREF / 3.3f;
dac_2 = PRES_A_VREF / 3.3f;
}
}
make_delay();
for (int i=0; i<50; i++) {
if(i%2==0)
ID_index_array[i] = - i * 0.5f;
else
ID_index_array[i] = (i+1) * 0.5f;
}
/************************************
*** Program is operating!
*************************************/
while(1) {
// UART example
// if(timer_while==100000) {
// timer_while = 0;
// pc.printf("%f\n", value);
// }
// timer_while ++;
//i2c for SW valve
//if(OPERATING_MODE == 5) {
// read_field(i2c_slave_addr1);
// if(DIR_VALVE_ENC < 0) value = 1023 - value;
// }
}
}
// Velocity feedforward for SW valve
float DDV_JOINT_POS_FF(float REF_JOINT_VEL)
{
int i = 0;
float Ref_Valve_Pos_FF = 0.0f;
for(i=0; i<VALVE_POS_NUM; i++) {
if(REF_JOINT_VEL >= min(JOINT_VEL[i],JOINT_VEL[i+1]) && REF_JOINT_VEL <= max(JOINT_VEL[i],JOINT_VEL[i+1])) {
if(i==0) {
if(JOINT_VEL[i+1] == JOINT_VEL[i]) {
Ref_Valve_Pos_FF = (float) VALVE_CENTER;
} else {
Ref_Valve_Pos_FF = ((float) 10/(JOINT_VEL[i+1] - JOINT_VEL[i]) * (REF_JOINT_VEL - JOINT_VEL[i])) + (float) VALVE_CENTER;
}
} else {
if(JOINT_VEL[i+1] == JOINT_VEL[i-1]) {
Ref_Valve_Pos_FF = (float) VALVE_CENTER;
} else {
Ref_Valve_Pos_FF = ((float) 10*(ID_index_array[i+1] - ID_index_array[i-1])/(JOINT_VEL[i+1] - JOINT_VEL[i-1]) * (REF_JOINT_VEL - JOINT_VEL[i-1])) + (float) VALVE_CENTER + (float) (10*ID_index_array[i-1]);
}
}
break;
}
}
if(REF_JOINT_VEL > max(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
Ref_Valve_Pos_FF = (float) VALVE_MAX_POS;
} else if(REF_JOINT_VEL < min(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
Ref_Valve_Pos_FF = (float) VALVE_MIN_POS;
}
Ref_Valve_Pos_FF = (float) VELOCITY_COMP_GAIN * 0.01f * (float) (Ref_Valve_Pos_FF - (float) VALVE_CENTER); //VELOCITY_COMP_GAIN : 0~100
return Ref_Valve_Pos_FF;
}
// Valve feedforward for SW valve
void VALVE_POS_CONTROL(float REF_VALVE_POS)
{
int i = 0;
if(REF_VALVE_POS > VALVE_MAX_POS) {
REF_VALVE_POS = VALVE_MAX_POS;
} else if(REF_VALVE_POS < VALVE_MIN_POS) {
REF_VALVE_POS = VALVE_MIN_POS;
}
valve_pos_err = (float) (REF_VALVE_POS - value);
valve_pos_err_diff = valve_pos_err - valve_pos_err_old;
valve_pos_err_old = valve_pos_err;
valve_pos_err_sum += valve_pos_err;
if (valve_pos_err_sum > 1000.0f) valve_pos_err_sum = 1000.0f;
if (valve_pos_err_sum<-1000.0f) valve_pos_err_sum = -1000.0f;
VALVE_PWM_RAW_FB = P_GAIN_VALVE_POSITION * valve_pos_err + I_GAIN_VALVE_POSITION * valve_pos_err_sum + D_GAIN_VALVE_POSITION * valve_pos_err_diff;
for(i=0; i<24; i++) {
if(REF_VALVE_POS >= min(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1]) && (float) REF_VALVE_POS <= max(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1])) {
if(i==0) {
VALVE_PWM_RAW_FF = (float) 1000.0f / (float) (VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i]);
} else {
VALVE_PWM_RAW_FF = (float) 1000.0f* (float) (ID_index_array[i+1] - ID_index_array[i-1])/(VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i-1]) * ((float) REF_VALVE_POS - VALVE_POS_VS_PWM[i-1]) + 1000.0f * (float) ID_index_array[i-1];
}
break;
}
}
Vout.ref = VALVE_PWM_RAW_FF + VALVE_PWM_RAW_FB;
}
// PWM duty vs. voltage output of L6205 in STM board
#define LT_MAX_IDX 57
float LT_PWM_duty[LT_MAX_IDX] = {-100.0f, -80.0f, -60.0f, -50.0f, -40.0f, -35.0f, -30.0f, -25.0f, -20.0f,
-19.0f, -18.0f, -17.0f, -16.0f, -15.0f, -14.0f, -13.0f, -12.0f, -11.0f, -10.0f,
-9.0f, -8.0f, -7.0f, -6.0f, -5.0f, -4.0f, -3.0f, -2.0f, -1.0f, 0.0f,
1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f,
11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f,
25.0f, 30.0f, 35.0f, 40.0f, 50.0f, 60.0f, 80.0f, 100.0f
}; // duty
float LT_Voltage_Output[LT_MAX_IDX] = {-230.0f, -215.0f, -192.5f, -185.0f, -177.5f, -170.0f, -164.0f, -160.0f, -150.0f,
-150.0f, -145.0f, -145.0f, -145.0f, -135.0f, -135.0f, -135.0f, -127.5f, -127.5f, -115.0f,
-115.0f, -115.0F, -100.0f, -100.0f, -100.0f, -60.0f, -60.0f, -10.0f, -5.0f, 0.0f,
7.5f, 14.0f, 14.0f, 14.0f, 42.5f, 42.5f, 42.5f, 80.0f, 80.0f, 105.0f,
105.0f, 105.0f, 120.0f, 120.0f, 120.0f, 131.0f, 131.0f, 140.0f, 140.0f, 140.0f,
155.0f, 160.0f, 170.0f, 174.0f, 182.0f, 191.0f, 212.0f, 230.0f
}; // mV
float PWM_duty_byLT(float Ref_V)
{
float PWM_duty = 0.0f;
if(Ref_V<LT_Voltage_Output[0]) {
PWM_duty = (Ref_V-LT_Voltage_Output[0])/1.5f+LT_PWM_duty[0];
} else if (Ref_V>=LT_Voltage_Output[LT_MAX_IDX-1]) {
PWM_duty = (Ref_V-LT_Voltage_Output[LT_MAX_IDX-1])/1.5f+LT_PWM_duty[LT_MAX_IDX-1];
} else {
int idx = 0;
for(idx=0; idx<LT_MAX_IDX-1; idx++) {
float ini_x = LT_Voltage_Output[idx];
float fin_x = LT_Voltage_Output[idx+1];
float ini_y = LT_PWM_duty[idx];
float fin_y = LT_PWM_duty[idx+1];
if(Ref_V>=ini_x && Ref_V<fin_x) {
PWM_duty = (fin_y-ini_y)/(fin_x-ini_x)*(Ref_V-ini_x) + ini_y;
break;
}
}
}
return PWM_duty;
}
/*******************************************************************************
TIMER INTERRUPT
*******************************************************************************/
//------------------------------------------------
// TMR4 : Sensor Read & Data Handling
//-----------------------------------------------
float FREQ_TMR4 = (float)FREQ_20k;
float DT_TMR4 = (float)DT_20k;
long CNT_TMR4 = 0;
int TMR4_FREQ_10k = (int)FREQ_10k;
extern "C" void TIM4_IRQHandler(void)
{
if (TIM4->SR & TIM_SR_UIF ) {
// Current ===================================================
//ADC3->CR2 |= 0x40000000; // adc _ 12bit
cur.UpdateSen(((float)ADC3->DR-2047.5f)/2047.5f*10.0f, FREQ_TMR4, 500.0f); // unit : mA
// Encoder ===================================================
if (CNT_TMR4 % (int) ((int) FREQ_TMR4/TMR4_FREQ_10k) == 0) {
ENC_UPDATE();
}
// Force or Pressure Transducer =============================================
ADC1->CR2 |= 0x40000000;
if (SENSING_MODE == 0) { // Force sensing
force.UpdateSen((((float)ADC1->DR) - 2047.5f)/TORQUE_SENSOR_PULSE_PER_TORQUE, FREQ_TMR4, 100.0f); // unit : N
} else if (SENSING_MODE == 1) { // Pressure sensing
float pres_A_new, pres_B_new;
if (DIR_VALVE_ENC > 0) {
pres_A_new = (((float)ADC1->DR) - PRES_A_NULL_pulse)/ PRES_SENSOR_A_PULSE_PER_BAR; // unit : bar
pres_B_new = (((float)ADC2->DR) - PRES_B_NULL_pulse)/ PRES_SENSOR_B_PULSE_PER_BAR;
} else {
pres_A_new = (((float)ADC2->DR) - PRES_A_NULL_pulse)/ PRES_SENSOR_A_PULSE_PER_BAR; // unit : bar
pres_B_new = (((float)ADC1->DR) - PRES_B_NULL_pulse)/ PRES_SENSOR_B_PULSE_PER_BAR;
}
pres_A.UpdateSen(pres_A_new,FREQ_TMR4,200.0f);
pres_B.UpdateSen(pres_B_new,FREQ_TMR4,200.0f);
if ((OPERATING_MODE & 0x01) == 0) { // Rotary Actuator
float torq_new = (PISTON_AREA_A * pres_A.sen - PISTON_AREA_B * pres_B.sen) * 0.0001f; // mm^3*bar >> Nm
torq.UpdateSen(torq_new,FREQ_TMR4,1000.0f); // unit : Nm
} else if ((OPERATING_MODE & 0x01) == 1) { // Linear Actuator
float force_new = (PISTON_AREA_A * pres_A.sen - PISTON_AREA_B * pres_B.sen) * 0.1f; // mm^2*bar >> N
force.UpdateSen(force_new,FREQ_TMR4,1000.0f); // unit : N
}
}
CNT_TMR4++;
}
TIM4->SR = 0x0; // reset the status register
}
int j =0;
float FREQ_TMR3 = (float)FREQ_5k;
float DT_TMR3 = (float)DT_5k;
int cnt_trans = 0;
double VALVE_POS_RAW_FORCE_FB_LOGGING = 0.0f;
int can_rest =0;
extern "C" void TIM3_IRQHandler(void)
{
if (TIM3->SR & TIM_SR_UIF ) {
if(MODE_POS_FT_TRANS == 1) {
if (alpha_trans == 1.0f) MODE_POS_FT_TRANS = 2;
alpha_trans = (float)(1.0f - cos(3.141592f * (float)cnt_trans * DT_TMR3 /3.0f))/2.0f;
cnt_trans++;
torq.err_sum = 0;
if((float)cnt_trans * DT_TMR3 > 3.0f)
MODE_POS_FT_TRANS = 2;
} else if(MODE_POS_FT_TRANS == 3) {
if (alpha_trans == 0.0f) MODE_POS_FT_TRANS = 0;
alpha_trans = (float)(1.0f + cos(3.141592f * (float)cnt_trans * DT_TMR3 /3.0f))/2.0f;
cnt_trans++;
torq.err_sum = 0;
if((float) cnt_trans * DT_TMR3 > 3.0f )
MODE_POS_FT_TRANS = 0;
} else if(MODE_POS_FT_TRANS == 2) {
alpha_trans = 1.0f;
cnt_trans = 0;
} else {
alpha_trans = 0.0f;
cnt_trans = 0;
}
// Reference Update ==========================================================
switch (REFERENCE_MODE) {
case MODE_REF_NO_ACT: {
break;
}
case MODE_REF_DIRECT: {
pos.ref = REF_POSITION;
vel.ref = REF_VELOCITY;
torq.ref = REF_TORQUE;
force.ref = REF_FORCE;
break;
}
case MODE_REF_FINDHOME: {
pos.ref = REF_POSITION_FINDHOME;
vel.ref = 0.0f;
torq.ref = 0.0f;
force.ref = 0.0f;
break;
}
default:
break;
}
if (((OPERATING_MODE&0b010)>>1) == 0) {
K_v = 1.03f; // Q = K_v*sqrt(deltaP)*tanh(C_d*Xv);
K_v = 0.16f;
mV_PER_mA = 500.0f; // 5000mV/10mA
mV_PER_pulse = 0.5f; // 5000mV/10000pulse
mA_PER_pulse = 0.001f; // 10mA/10000pulse
} else if (((OPERATING_MODE&0b010)>>1) == 1) {
K_v = 0.5f; // KNR (LPM >> mA) , 100bar
mV_PER_mA = 166.6666f; // 5000mV/30mA
mV_PER_pulse = 0.5f; // 5000mV/10000pulse
mA_PER_pulse = 0.003f; // 30mA/10000pulse
}
// =====================================================================
// CONTROL LOOP --------------------------------------------------------
// =====================================================================
int UTILITY_MODE = 0;
int CONTROL_MODE = 0;
if (CONTROL_UTILITY_MODE >= 20 || CONTROL_UTILITY_MODE == 0) {
UTILITY_MODE = CONTROL_UTILITY_MODE;
CONTROL_MODE = MODE_NO_ACT;
} else {
CONTROL_MODE = CONTROL_UTILITY_MODE;
UTILITY_MODE = MODE_NO_ACT;
}
// UTILITY MODE ------------------------------------------------------------
switch (UTILITY_MODE) {
case MODE_NO_ACT: {
break;
}
case MODE_TORQUE_SENSOR_NULLING:
{
static float FORCE_pulse_sum = 0.0;
static float PresA_pulse_sum = 0.0;
static float PresB_pulse_sum = 0.0;
// DAC Voltage reference set
float VREF_TuningGain = -0.000003f;
if (TMR3_COUNT_TORQUE_NULL < TMR_FREQ_5k * 5) {
LED = 1;
if(SENSING_MODE == 0) { // Force Sensor (Loadcell)
FORCE_pulse_sum = FORCE_pulse_sum + force.sen*TORQUE_SENSOR_PULSE_PER_TORQUE;
if (TMR3_COUNT_TORQUE_NULL % 10 == 0) {
float FORCE_pluse_mean = FORCE_pulse_sum / 10.0f;
FORCE_pulse_sum = 0.0f;
FORCE_VREF += VREF_TuningGain * (0.0f - FORCE_pluse_mean);
if (FORCE_VREF > 3.3f) FORCE_VREF = 3.3f;
if (FORCE_VREF < 0.0f) FORCE_VREF = 0.0f;
dac_1 = FORCE_VREF / 3.3f;
}
} else if (SENSING_MODE == 1) { // Pressure Sensor
PresA_pulse_sum += pres_A.sen*PRES_SENSOR_A_PULSE_PER_BAR;
PresB_pulse_sum += pres_B.sen*PRES_SENSOR_B_PULSE_PER_BAR;
if (TMR3_COUNT_TORQUE_NULL % 10 == 0) {
float PresA_pluse_mean = PresA_pulse_sum / 10.0f;
float PresB_pluse_mean = PresB_pulse_sum / 10.0f;
PresA_pulse_sum = 0.0f;
PresB_pulse_sum = 0.0f;
PRES_A_VREF += VREF_TuningGain * (0.0f - PresA_pluse_mean);
if (PRES_A_VREF > 3.3f) PRES_A_VREF = 3.3f;
if (PRES_A_VREF < 0.0f) PRES_A_VREF = 0.0f;
dac_1 = PRES_A_VREF / 3.3f;
PRES_B_VREF += VREF_TuningGain * (0.0f - PresB_pluse_mean);
if (PRES_B_VREF > 3.3f) PRES_B_VREF = 3.3f;
if (PRES_B_VREF < 0.0f) PRES_B_VREF = 0.0f;
dac_2 = PRES_B_VREF / 3.3f;
}
}
TMR3_COUNT_TORQUE_NULL++;
} else {
if(SENSING_MODE == 0 ) { // Force Sensor (Loadcell)
FORCE_pulse_sum = 0.0f;
dac_1 = FORCE_VREF / 3.3f;
spi_eeprom_write(RID_FORCE_SENSOR_VREF, (int16_t)(FORCE_VREF * 1000.0f));
} else if (SENSING_MODE == 1) {
PresA_pulse_sum = 0.0f;
PresB_pulse_sum = 0.0f;
dac_1 = PRES_A_VREF / 3.3f;
dac_2 = PRES_B_VREF / 3.3f;
spi_eeprom_write(RID_PRES_A_SENSOR_VREF, (int16_t)(PRES_A_VREF * 1000.0f));
spi_eeprom_write(RID_PRES_B_SENSOR_VREF, (int16_t)(PRES_B_VREF * 1000.0f));
}
CONTROL_UTILITY_MODE = MODE_NO_ACT;
TMR3_COUNT_TORQUE_NULL = 0;
}
break;
}
case MODE_FIND_HOME:
{
static int cnt_findhome = 0;
static int cnt_terminate_findhome = 0;
static float FINDHOME_POSITION_pulse = 0.0f;
static float FINDHOME_POSITION_pulse_OLD = 0.0f;
static float FINDHOME_VELOCITY_pulse = 0.0f;
static float REF_POSITION_FINDHOME_INIT = 0.0f;
if (FINDHOME_STAGE == FINDHOME_INIT) {
REFERENCE_MODE = MODE_REF_FINDHOME;
cnt_findhome = 0;
cnt_terminate_findhome = 0;
pos.ref = pos.sen;
vel.ref = 0.0f;
REF_POSITION_FINDHOME = pos.ref;
FINDHOME_STAGE = FINDHOME_GOTOLIMIT;
} else if (FINDHOME_STAGE == FINDHOME_GOTOLIMIT) {
int cnt_check_enc = (TMR_FREQ_5k/20); // 5000/20 = 250tic = 50msec
if(cnt_findhome%cnt_check_enc == 0) {
FINDHOME_POSITION_pulse = pos.sen*ENC_PULSE_PER_POSITION;
FINDHOME_VELOCITY_pulse = FINDHOME_POSITION_pulse - FINDHOME_POSITION_pulse_OLD;
FINDHOME_POSITION_pulse_OLD = FINDHOME_POSITION_pulse;
}
cnt_findhome++;
if (fabs(FINDHOME_VELOCITY_pulse) <= 1) {
cnt_terminate_findhome = cnt_terminate_findhome + 1;
} else {
cnt_terminate_findhome = 0;
}
if ((cnt_terminate_findhome < 3*TMR_FREQ_5k) && cnt_findhome < 10*TMR_FREQ_5k) { // wait for 3sec
double GOTOHOME_SPEED = 10.0f; // 20mm/s or 20deg/s
if (HOMEPOS_OFFSET > 0) {
REF_POSITION_FINDHOME = REF_POSITION_FINDHOME + GOTOHOME_SPEED*DT_5k;
} else {
REF_POSITION_FINDHOME = REF_POSITION_FINDHOME - GOTOHOME_SPEED*DT_5k;
}
CONTROL_MODE = MODE_JOINT_CONTROL;
alpha_trans = 0.0f;
} else {
ENC_SET((long)((long)HOMEPOS_OFFSET*10));
REF_POSITION_FINDHOME_INIT = (float)((long)HOMEPOS_OFFSET*10);
FINDHOME_POSITION_pulse = 0;
FINDHOME_POSITION_pulse_OLD = 0;
FINDHOME_VELOCITY_pulse = 0;
cnt_findhome = 0;
cnt_terminate_findhome = 0;
pos.ref = 0.0f;
FINDHOME_STAGE = FINDHOME_ZEROPOSE;
}
} else if (FINDHOME_STAGE == FINDHOME_ZEROPOSE) {
// int T_move = 2*TMR_FREQ_5k;
int T_move = 10000;
REF_POSITION_FINDHOME = ((0.0f - REF_POSITION_FINDHOME_INIT)*0.5f*(1.0f - cos(3.14159f * (float)cnt_findhome / (float)T_move)) + (float)REF_POSITION_FINDHOME_INIT)/ENC_PULSE_PER_POSITION;
cnt_findhome++;
REFERENCE_MODE = MODE_REF_FINDHOME;
CONTROL_MODE = MODE_JOINT_CONTROL;
alpha_trans = 0.0f;
if (cnt_findhome >= T_move) {
cnt_findhome = 0;
pos.ref = 0.0f;
FINDHOME_STAGE = FINDHOME_INIT;
CONTROL_UTILITY_MODE = MODE_JOINT_CONTROL;
REFERENCE_MODE = MODE_REF_DIRECT;
}
}
break;
}
default:
break;
}
// CONTROL MODE ------------------------------------------------------------
switch (CONTROL_MODE) {
case MODE_NO_ACT: {
V_out = 0.0f;
break;
}
case MODE_VALVE_POSITION_CONTROL: {
if (OPERATING_MODE == 5) { //SW Valve
VALVE_POS_CONTROL(valve_pos.ref);
V_out = Vout.ref;
} else if (CURRENT_CONTROL_MODE == 0) { //PWM
V_out = valve_pos.ref;
} else {
I_REF = valve_pos.ref * 0.001f; // Unit : pulse >> mA
float I_MAX = 10.0f; // Max : 10mA
if (I_REF > I_MAX) {
I_REF = I_MAX;
} else if (I_REF < -I_MAX) {
I_REF = -I_MAX;
}
}
break;
}
case MODE_JOINT_CONTROL:
{
float temp_vel_pos = 0.0f; // desired velocity for position control
float temp_vel_FT = 0.0f; // desired velocity for force/torque control
float temp_vel_ff = 0.0f; // desired velocity for feedforward control
float temp_vel = 0.0f;
float wn_Pos = 2.0f * PI * 5.0f; // f_cut : 5Hz Position Control
pos.err = pos.ref - pos.sen; // Unit : mm or deg
vel.err = vel.ref - vel.sen; // Unit : mm/s or deg/s
// position control command ===============================================================================================================================================
if ((OPERATING_MODE & 0x01) == 0) { // Rotary Mode
temp_vel_pos = 0.01f * (P_GAIN_JOINT_POSITION * wn_Pos * pos.err) * PI / 180.0f; // rad/s
// L when P-gain = 100, f_cut = 10Hz
} else {
temp_vel_pos = 0.01f * (P_GAIN_JOINT_POSITION * wn_Pos * pos.err); // mm/s
// L when P-gain = 100, f_cut = 10Hz
}
// torque control command ===============================================================================================================================================
float alpha_SpringDamper = 1.0f/(1.0f+TMR_FREQ_5k/(2.0f*PI*30.0f));
K_LPF = alpha_SpringDamper * K_LPF + (1.0f-alpha_SpringDamper) * K_SPRING;
D_LPF = alpha_SpringDamper * D_LPF + (1.0f-alpha_SpringDamper) * D_DAMPER;
if ((OPERATING_MODE & 0x01) == 0) { // Rotary Mode
float torq_ref_act = torq.ref + K_SPRING * pos.err + D_DAMPER * vel.err; // unit : Nm
torq.err = torq_ref_act - torq.sen;
torq.err_int += torq.err/((float)TMR_FREQ_5k);
temp_vel_FT = 0.0001f * (P_GAIN_JOINT_TORQUE * torq.err + I_GAIN_JOINT_TORQUE * torq.err_int); // Nm >> rad/s
} else {
float force_ref_act = force.ref + K_SPRING * pos.err + D_DAMPER * vel.err; // unit : N
force.err = force_ref_act - force.sen;
force.err_int += force.err/((float)TMR_FREQ_5k);
temp_vel_FT = 0.0001f * (P_GAIN_JOINT_TORQUE * force.err + I_GAIN_JOINT_TORQUE * force.err_int); // N >> mm/s
}
// velocity feedforward command ========================================================================================================================================
if ((OPERATING_MODE & 0x01) == 0) { // Rotary Mode
temp_vel_ff = 0.01f * (float)VELOCITY_COMP_GAIN * vel.ref * PI / 180.0f; // rad/s
} else {
temp_vel_ff = 0.01f * (float)VELOCITY_COMP_GAIN * vel.ref; // mm/s
}
// command integration =================================================================================================================================================
temp_vel = (1.0f - alpha_trans) * temp_vel_pos + alpha_trans * temp_vel_FT + temp_vel_ff; // Position Control + Torque Control + Velocity Feedforward
float Qact = 0.0f; // required flow rate
if( temp_vel > 0.0f ) {
Qact = temp_vel * ((float)PISTON_AREA_A * 0.00006f); // mm^3/sec >> LPM
I_REF = tanh_inv(Qact/(K_v * sqrt(PRES_SUPPLY * alpha3 / (alpha3 + 1.0f))))/C_d;
} else {
Qact = temp_vel * ((float)PISTON_AREA_B * 0.00006f); // mm^3/sec >> LPM
I_REF = tanh_inv(Qact/(K_v * sqrt(PRES_SUPPLY / (alpha3 + 1.0f))))/C_d;
}
// Anti-windup for FT
if (I_GAIN_JOINT_TORQUE != 0.0f) {
float I_MAX = 10.0f; // Maximum Current : 10mA
float Ka = 2.0f;
if (I_REF > I_MAX) {
float I_rem = I_REF - I_MAX;
I_REF = I_MAX;
float temp_vel_rem = K_v * sqrt(PRES_SUPPLY * alpha3 / (alpha3 + 1.0f)) * tanh(C_d*I_rem) / ((double) PISTON_AREA_A * 0.00006f); // Unit : mm/s [linear] / rad/s [rotary]
torq.err_int = torq.err_int - Ka * temp_vel_rem * (10000.0f/I_GAIN_JOINT_TORQUE)*(float)TMR_FREQ_5k; // Need to Check!
} else if (I_REF < -I_MAX) {
double I_rem = I_REF - (-I_MAX);
I_REF = -I_MAX;
float temp_vel_rem = K_v * sqrt(PRES_SUPPLY / (alpha3 + 1.0f)) * tanh(C_d*I_rem) / ((double) PISTON_AREA_B * 0.00006f); // Unit : mm/s [linear] / rad/s [rotary]
torq.err_int = torq.err_int - Ka * temp_vel_rem * (10000.0f/I_GAIN_JOINT_TORQUE)*(float)TMR_FREQ_5k; // Need to Check!
}
}
break;
}
case MODE_VALVE_OPEN_LOOP: {
V_out = (float) Vout.ref;
break;
}
// case MODE_JOINT_ADAPTIVE_BACKSTEPPING: {
//
// float Va = (1256.6f + Amm * pos.sen/(float)(ENC_PULSE_PER_POSITION)) * 0.000000001f; // 4mm pipe * 100mm + (25mm Cylinder 18mm Rod) * x, unit : m^3
// float Vb = (1256.6f + Amm * (79.0f - pos.sen/(float)(ENC_PULSE_PER_POSITION))) * 0.000000001f; // 4mm pipe * 100mm + (25mm Cylinder 18mm Rod) * (79.0mm-x), unit : m^3
//
// V_adapt = 1.0f / (1.0f/Va + 1.0f/Vb); //initial 0.0000053f
//
// //float f3 = -Amm*Amm*beta*0.000001f*0.000001f/V_adapt * vel.sen/(float)(ENC_PULSE_PER_POSITION)*0.001f; // unit : N/s //xdot=10mm/s일때 -137076
// float f3_hat = -a_hat * vel.sen/(float)(ENC_PULSE_PER_POSITION)*0.001f; // unit : N/s //xdot=10mm/s일때 -137076
//
// float g3_prime = 0.0f;
// if (torq.sen > Amm*(Ps-Pt)*0.000001f) {
// g3_prime = 1.0f;
// } else if (torq.sen < -Amm*(Ps-Pt)*0.000001f) {
// g3_prime = -1.0f;
// } else {
// if ((value-VALVE_CENTER) > 0) {
// g3_prime = sqrt(Ps-Pt-torq.sen/Amm*1000000.0f);
//// g3_prime = sqrt(Ps-Pt);
// } else {
// g3_prime = sqrt(Ps-Pt+torq.sen/Amm*1000000.0f);
//// g3_prime = sqrt(Ps-Pt);
// }
// }
// float tau = 0.01f;
// float K_valve = 0.0004f;
//
// float x_v = 0.0f; //x_v : -1~1
// if(value>=VALVE_CENTER) {
// x_v = 1.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MAX_POS - (double)VALVE_CENTER);
// } else {
// x_v = -1.0f*((double)value - (double)VALVE_CENTER)/((double)VALVE_MIN_POS - (double)VALVE_CENTER);
// }
// float f4 = -x_v/tau;
// float g4 = K_valve/tau;
//
// float torq_ref_dot = torq.ref_diff * 500.0f;
//
// pos.err = (pos.ref - pos.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm]
// vel.err = (0.0f - vel.sen)/(float)(ENC_PULSE_PER_POSITION); //[mm/s]
// pos.err_sum += pos.err/(float) TMR_FREQ_5k; //[mm]
//
// torq.err = torq.ref - torq.sen; //[N]
// torq.err_sum += torq.err/(float) TMR_FREQ_5k; //[N]
//
// float k3 = 2000.0f; //2000 //20000
// float k4 = 10.0f;
// float rho3 = 3.2f;
// float rho4 = 10000000.0f; //25000000.0f;
// float x_4_des = (-f3_hat + torq_ref_dot - k3*(-torq.err))/(gamma_hat*g3_prime);
// if (x_4_des > 1) x_4_des = 1;
// else if (x_4_des < -1) x_4_des = -1;
//
// if (x_4_des > 0) {
// valve_pos.ref = x_4_des * (float)(VALVE_MAX_POS - VALVE_CENTER) + (float) VALVE_CENTER;
// } else {
// valve_pos.ref = x_4_des * (float)(VALVE_CENTER - VALVE_MIN_POS) + (float) VALVE_CENTER;
// }
//
// float x_4_des_dot = (x_4_des - x_4_des_old)*(float) TMR_FREQ_5k;
// x_4_des_old = x_4_des;
// V_out = (-f4 + x_4_des_dot - k4*(x_v-x_4_des)- rho3/rho4*gamma_hat*g3_prime*(-torq.err))/g4;
//
// float rho_a = 0.00001f;
// float a_hat_dot = -rho3/rho_a*vel.sen/(float)(ENC_PULSE_PER_POSITION)*0.001f*(-torq.err);
// a_hat = a_hat + a_hat_dot / (float) TMR_FREQ_5k;
//
// if(a_hat > -3000000.0f) a_hat = -3000000.0f;
// else if(a_hat < -30000000.0f) a_hat = -30000000.0f;
//
// break;
// }
default:
break;
}
if (((OPERATING_MODE&0b110)>>1) == 0 || ((OPERATING_MODE&0b110)>>1) == 1) { //Moog Valve or KNR Valve
////////////////////////////////////////////////////////////////////////////
//////////////////////////// CURRENT CONTROL //////////////////////////////
////////////////////////////////////////////////////////////////////////////
if (CURRENT_CONTROL_MODE) {
double alpha_update_Iref = 1.0f / (1.0f + 5000.0f / (2.0f * 3.14f * 300.0f)); // f_cutoff : 500Hz
I_REF_fil = (1.0f - alpha_update_Iref) * I_REF_fil + alpha_update_Iref*I_REF;
if (I_REF_fil > 0.0f) I_REF_fil_DZ = I_REF_fil + (double)VALVE_DEADZONE_PLUS*mA_PER_pulse; // unit: mA
else if (I_REF_fil < 0.0f) I_REF_fil_DZ = I_REF_fil + (double)VALVE_DEADZONE_MINUS*mA_PER_pulse; // unit: mA
else I_REF_fil_DZ = I_REF_fil + (double)(VALVE_DEADZONE_PLUS+VALVE_DEADZONE_MINUS)/2.0f*mA_PER_pulse; // unit: mA
I_ERR = I_REF_fil_DZ - (double)cur.sen;
I_ERR_INT = I_ERR_INT + (I_ERR) * 0.0002f;
// Moog Valve Current Control Gain
double R_model = 500.0f; // ohm
double L_model = 1.2f;
double w0 = 2.0f * 3.14f * 150.0f;
double KP_I = 0.1f * L_model*w0;
double KI_I = 0.1f * R_model*w0;
// KNR Valve Current Control Gain
if (((OPERATING_MODE & 0b110)>>1) == 1) { // KNR Valve
R_model = 163.0f; // ohm
L_model = 1.0f;
w0 = 2.0f * 3.14f * 80.0f;
KP_I = 1.0f * L_model*w0;
KI_I = 0.08f * R_model*w0;
}
double FF_gain = 1.0f;
VALVE_PWM_RAW = KP_I * 2.0f * I_ERR + KI_I * 2.0f* I_ERR_INT;
I_REF_fil_diff = I_REF_fil_DZ - I_REF_fil_old;
I_REF_fil_old = I_REF_fil_DZ;
// VALVE_PWM_RAW = VALVE_PWM_RAW + FF_gain * (R_model * I_REF_fil + L_model * I_REF_fil_diff * 5000.0f); // Unit : mV
VALVE_PWM_RAW = VALVE_PWM_RAW + FF_gain * (R_model * I_REF_fil_DZ); // Unit : mV
double V_MAX = 12000.0f; // Maximum Voltage : 12V = 12000mV
double Ka = 3.0f / KP_I;
if (VALVE_PWM_RAW > V_MAX) {
V_rem = VALVE_PWM_RAW - V_MAX;
V_rem = Ka*V_rem;
VALVE_PWM_RAW = V_MAX;
I_ERR_INT = I_ERR_INT - V_rem * 0.0002f;
} else if (VALVE_PWM_RAW < -V_MAX) {
V_rem = VALVE_PWM_RAW - (-V_MAX);
V_rem = Ka*V_rem;
VALVE_PWM_RAW = -V_MAX;
I_ERR_INT = I_ERR_INT - V_rem * 0.0002f;
}
} else {
VALVE_PWM_RAW = I_REF * mV_PER_mA;
}
////////////////////////////////////////////////////////////////////////////
///////////////// Dead Zone Cancellation & Linearization //////////////////
////////////////////////////////////////////////////////////////////////////
// Output Voltage Linearization
double CUR_PWM_nonlin = (double)VALVE_PWM_RAW; // Unit : mV
double CUR_PWM_lin = PWM_duty_byLT(CUR_PWM_nonlin); // -8000~8000
// Dead Zone Cancellation (Electrical dead-zone)
if (CUR_PWM_lin > 0) V_out = (float) (CUR_PWM_lin + 169.0f);
else if (CUR_PWM_lin < 0) V_out = (float) (CUR_PWM_lin - 174.0f);
else V_out = (float) (CUR_PWM_lin);
} else { //////////////////////////sw valve
// Output Voltage Linearization & Dead Zone Cancellation (Electrical dead-zone) by SW
if (V_out > 0 ) V_out = (V_out + 180.0f)/0.8588f;
else if (V_out < 0) V_out = (V_out - 200.0f)/0.8651f;
else V_out = 0.0f;
}
////////////////////////////////////////////////////////////////////
/////////////////// PWM Command ///////////////////////////////////
////////////////////////////////////////////////////////////////////
if(DIR_VALVE<0) {
V_out = -V_out;
}
if (V_out >= VALVE_VOLTAGE_LIMIT*1000.0f) {
V_out = VALVE_VOLTAGE_LIMIT*1000.0f;
} else if(V_out<=-VALVE_VOLTAGE_LIMIT*1000.0f) {
V_out = -VALVE_VOLTAGE_LIMIT*1000.0f;
}
PWM_out= V_out/(SUPPLY_VOLTAGE*1000.0f);
// Saturation of output voltage
if(PWM_out > 1.0f) PWM_out=1.0f;
else if (PWM_out < -1.0f) PWM_out=-1.0f;
if (PWM_out>0.0f) {
dtc_v=0.0f;
dtc_w=PWM_out;
} else {
dtc_v=-PWM_out;
dtc_w=0.0f;
}
//pwm
TIM4->CCR2 = (PWM_ARR)*(1.0f-dtc_v);
TIM4->CCR1 = (PWM_ARR)*(1.0f-dtc_w);
////////////////////////////////////////////////////////////////////////////
////////////////////// Data transmission through CAN //////////////////////
////////////////////////////////////////////////////////////////////////////
if (TMR2_COUNT_CAN_TX % (int) ((int) TMR_FREQ_5k/CAN_FREQ) == 0) {
// Position, Velocity, and Torque (ID:1200)
if (flag_data_request[0] == HIGH) {
if ((OPERATING_MODE & 0b01) == 0) { // Rotary Actuator
CAN_TX_POSITION_FT((int16_t) (pos.sen*200.0f), (int16_t) (vel.sen*20.0f), (int16_t) (torq.sen*TORQUE_SENSOR_PULSE_PER_TORQUE*10.0f));
// CAN_TX_POSITION_FT((int16_t) (PRES_A_VREF*10.0f*200.0f), (int16_t) (vel.sen*20.0f), (int16_t) (pres_A.sen*TORQUE_SENSOR_PULSE_PER_TORQUE*10.0f));
} else if ((OPERATING_MODE & 0b01) == 1) { // Linear Actuator
CAN_TX_POSITION_FT((int16_t) (pos.sen*200.0f), (int16_t) (vel.sen*20.0f), (int16_t) (force.sen*TORQUE_SENSOR_PULSE_PER_TORQUE*10.0f));
// CAN_TX_POSITION_FT((int16_t) (PRES_B_VREF*10.0f*200.0f), (int16_t) (vel.sen*20.0f), (int16_t) (pres_B.sen*TORQUE_SENSOR_PULSE_PER_TORQUE*10.0f));
}
}
// Valve Position (ID:1300)
if (flag_data_request[1] == HIGH) {
CAN_TX_PWM((int16_t)(cur.sen/mA_PER_pulse));
}
// Others : Pressure A, B, Supply Pressure, etc. (for Debugging) (ID:1400)
if (flag_data_request[2] == HIGH) {
CAN_TX_SOMETHING((int16_t)(pres_A.sen*100.0f), (int16_t)(pres_B.sen*100.0f), (int16_t) (PRES_SUPPLY), (int16_t) (PRES_SUPPLY_NOM));
}
TMR2_COUNT_CAN_TX = 0;
}
TMR2_COUNT_CAN_TX++;
}
TIM3->SR = 0x0; // reset the status register
}