Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed Eigen FastPWM
main.cpp
- Committer:
- Lightvalve
- Date:
- 2019-09-27
- Revision:
- 26:8317d883d4f2
- Parent:
- 25:3e6b574cab5c
- Child:
- 27:a2254a485f23
File content as of revision 26:8317d883d4f2:
#include "mbed.h"
#include "FastPWM.h"
#include "INIT_HW.h"
#include "function_CAN.h"
#include "SPI_EEP_ENC.h"
#include "I2C_AS5510.h"
#include "setting.h"
#include "function_utilities.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
// dac & check ///////////////////////////////////////////
DigitalOut check(PC_2);
DigitalOut check_2(PC_3);
AnalogOut dac_1(PA_4);
AnalogOut dac_2(PA_5);
AnalogIn adc1(PC_4); //pressure_1
AnalogIn adc2(PB_0); //pressure_2
AnalogIn adc3(PC_1); //current
// PWM ///////////////////////////////////////////
double dtc_v=0.0;
double dtc_w=0.0;
// I2C ///////////////////////////////////////////
I2C i2c(PC_9,PA_8); // SDA, SCL (for K22F)
const int i2c_slave_addr1 = 0x56;
unsigned int value; // 10bit output of reading sensor AS5510
// SPI ///////////////////////////////////////////
//SPI eeprom(PB_15, PB_14, PB_13); // EEPROM //(SPI_MOSI, SPI_MISO, SPI_SCK);
//DigitalOut eeprom_cs(PB_12);
//FlashWriter writer(6);//2부터 7까지 되는듯 아마 sector
SPI enc(PC_12,PC_11,PC_10);
DigitalOut enc_cs(PD_2);
DigitalOut LED(PA_15);
// UART ///////////////////////////////////////////
Serial pc(PA_9,PA_10); // _ UART
// CAN ///////////////////////////////////////////
CAN can(PB_8, PB_9, 1000000);
CANMessage msg;
void onMsgReceived()
{
CAN_RX_HANDLER();
}
// Variables ///////////////////////////////////////////
State pos;
State vel;
State Vout;
State torq;
State pres_A;
State pres_B;
State cur;
State valve_pos;
State INIT_Vout;
State INIT_Valve_Pos;
State INIT_Pos;
State INIT_torq;
double V_out=0.0;
double V_rem=0.0; // for anti-windup
double V_MAX = 12000.0; // Maximum Voltage : 12V = 12000mV
double PWM_out=0.0;
int timer_while = 0;
int while_index = 0;
extern int CID_RX_CMD;
extern int CID_RX_REF_POSITION;
extern int CID_RX_REF_TORQUE;
extern int CID_RX_REF_PRES_DIFF;
extern int CID_RX_REF_VOUT;
extern int CID_RX_REF_VALVE_POSITION;
extern int CID_RX_REF_CURRENT;
extern int CID_TX_INFO;
extern int CID_TX_POSITION;
extern int CID_TX_TORQUE;
extern int CID_TX_PRES;
extern int CID_TX_VOUT;
extern int CID_TX_VALVE_POSITION;
// =============================================================================
// =============================================================================
// =============================================================================
/*******************************************************************************
* REFERENCE MODE
******************************************************************************/
enum _REFERENCE_MODE {
MODE_REF_NO_ACT = 0, //0
MODE_REF_DIRECT, //1
MODE_REF_COS_INC, //2
MODE_REF_LINE_INC, //3
MODE_REF_SIN_WAVE, //4
MODE_REF_SQUARE_WAVE, //5
};
/*******************************************************************************
* CONTROL MODE
******************************************************************************/
enum _CONTROL_MODE {
//control mode
MODE_NO_ACT = 0, //0
MODE_VALVE_OPEN_LOOP, //1
MODE_VALVE_POSITION_CONTROL, //2
MODE_JOINT_POSITION_TORQUE_CONTROL_PWM, //3
MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION, //4
MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING, //5
MODE_JOINT_POSITION_PRES_CONTROL_PWM, //6
MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION, //7
MODE_VALVE_POSITION_PRES_CONTROL_LEARNING, //8
MODE_TEST_CURRENT_CONTROL, //9
MODE_TEST_PWM_CONTROL, //10
MODE_CURRENT_CONTROL, //11
MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT, //12
MODE_JOINT_POSITION_PRES_CONTROL_CURRENT, //13
//utility
MODE_TORQUE_SENSOR_NULLING = 20, //20
MODE_VALVE_NULLING_AND_DEADZONE_SETTING, //21
MODE_FIND_HOME, //22
MODE_VALVE_GAIN_SETTING, //23
MODE_PRESSURE_SENSOR_NULLING, //24
MODE_PRESSURE_SENSOR_CALIB, //25
MODE_ROTARY_FRICTION_TUNING, //26
MODE_DDV_POS_VS_PWM_ID = 30, //30
MODE_DDV_DEADZONE_AND_CENTER, //31
MODE_DDV_POS_VS_FLOWRATE, //32
};
int main()
{
/*********************************
*** Initialization
*********************************/
//LED = 1;
//pc.baud(9600);
// i2c init
i2c.frequency(400 * 1000); // 0.4 mHz
wait_ms(2); // Power Up wait
look_for_hardware_i2c(); // Hardware present
init_as5510(i2c_slave_addr1);
make_delay();
// // spi init
//eeprom.format(8,3);
//eeprom.frequency(5000000); //5M
enc.format(8,0);
enc.frequency(5000000); //5M
make_delay();
//rom
ROM_CALL_DATA();
make_delay();
// ADC init
Init_ADC();
make_delay();
// Pwm init
Init_PWM();
TIM4->CR1 ^= TIM_CR1_UDIS;
make_delay();
// TMR3 init
Init_TMR3();
TIM3->CR1 ^= TIM_CR1_UDIS;
make_delay();
// TMR5 init
Init_TMR2();
TIM2->CR1 ^= TIM_CR1_UDIS;
make_delay();
// CAN
can.attach(&CAN_RX_HANDLER);
CAN_ID_INIT();
make_delay();
//Timer priority
NVIC_SetPriority(TIM3_IRQn, 2);
NVIC_SetPriority(TIM2_IRQn, 3);
NVIC_SetPriority(TIM4_IRQn, 4);
//can.reset();
can.filter(msg.id, 0xFFFFF000, CANStandard);
// spi _ enc
spi_enc_set_init();
make_delay();
//DAC init
dac_1 = PRES_A_VREF / 3.3;
dac_2 = PRES_B_VREF / 3.3;
make_delay();
for (int i=0; i<50; i++) {
if(i%2==0)
ID_index_array[i] = - i * 0.5;
else
ID_index_array[i] = (i+1) * 0.5;
}
/************************************
*** Program is operating!
*************************************/
while(1) {
if(timer_while==1000) {
//i2c
read_field(i2c_slave_addr1);
if(DIR_VALVE_ENC < 0) value = 1023 - value;
// if(LED==1) {
// LED=0;
// } else
// LED = 1;
timer_while = 0;
}
timer_while ++;
}
}
int DDV_JOINT_POS_FF(double REF_JOINT_VEL)
{
int i = 0;
int Ref_Valve_Pos_FF = DDV_CENTER;
for(i=0; i<VALVE_POS_NUM; i++) {
if(REF_JOINT_VEL >= min(JOINT_VEL[i],JOINT_VEL[i+1]) && REF_JOINT_VEL <= max(JOINT_VEL[i],JOINT_VEL[i+1])) {
if(i==0) {
Ref_Valve_Pos_FF = ((int) 10.0/(JOINT_VEL[i+1] - JOINT_VEL[i]) * (REF_JOINT_VEL - JOINT_VEL[i])) + DDV_CENTER;
} else {
Ref_Valve_Pos_FF = ((int) 10.0*(ID_index_array[i+1] - ID_index_array[i-1])/(JOINT_VEL[i+1] - JOINT_VEL[i-1]) * (REF_JOINT_VEL - JOINT_VEL[i-1])) + DDV_CENTER + 10*ID_index_array[i-1];
}
break;
}
}
if(REF_JOINT_VEL > max(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
Ref_Valve_Pos_FF = VALVE_MAX_POS;
} else if(REF_JOINT_VEL < min(JOINT_VEL[VALVE_POS_NUM-1], JOINT_VEL[VALVE_POS_NUM-2])) {
Ref_Valve_Pos_FF = VALVE_MIN_POS;
}
//Ref_Valve_Pos_FF = DDV_CENTER;
return Ref_Valve_Pos_FF;
}
void VALVE_POS_CONTROL(double REF_VALVE_POS)
{
int i = 0;
valve_pos_err = REF_VALVE_POS - value;
valve_pos_err_diff = valve_pos_err - valve_pos_err_old;
valve_pos_err_old = valve_pos_err;
valve_pos_err_sum += valve_pos_err;
if (valve_pos_err_sum > 1000) valve_pos_err_sum = 1000;
if (valve_pos_err_sum<-1000) valve_pos_err_sum = -1000;
VALVE_PWM_RAW_FB = P_GAIN_VALVE_POSITION * valve_pos_err + I_GAIN_VALVE_POSITION * valve_pos_err_sum + D_GAIN_VALVE_POSITION * valve_pos_err_diff;
if(REF_VALVE_POS > VALVE_MAX_POS) {
REF_VALVE_POS = VALVE_MAX_POS;
} else if(REF_VALVE_POS < VALVE_MIN_POS) {
REF_VALVE_POS = VALVE_MIN_POS;
}
// if(REF_VALVE_POS >= VALVE_POS_VS_PWM[0])
// {
// if(REF_VALVE_POS <= VALVE_POS_VS_PWM[1]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[1] - VALVE_POS_VS_PWM[0]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[0]);
// }else if(REF_VALVE_POS <= VALVE_POS_VS_PWM[3]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[3] - VALVE_POS_VS_PWM[1]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[1]) + 3000.0* (double) ID_index_array[1];
// }else if(REF_VALVE_POS <= VALVE_POS_VS_PWM[5]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[5] - VALVE_POS_VS_PWM[3]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[3]) + 3000.0* (double) ID_index_array[3];
// }else if(REF_VALVE_POS <= VALVE_POS_VS_PWM[7]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[7] - VALVE_POS_VS_PWM[5]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[5]) + 3000.0* (double) ID_index_array[5];
// }else
// VALVE_PWM_RAW_FF = 12000.0;
// }
// else
// {
// if(REF_VALVE_POS >= VALVE_POS_VS_PWM[2]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[0] - VALVE_POS_VS_PWM[2]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[2]) + 3000.0* (double) ID_index_array[2];
// }else if(REF_VALVE_POS >= VALVE_POS_VS_PWM[4]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[2] - VALVE_POS_VS_PWM[4]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[4]) + 3000.0* (double) ID_index_array[4];
// }else if(REF_VALVE_POS >= VALVE_POS_VS_PWM[6]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[4] - VALVE_POS_VS_PWM[6]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[6]) + 3000.0* (double) ID_index_array[6];
// }else if(REF_VALVE_POS >= VALVE_POS_VS_PWM[8]) {
// VALVE_PWM_RAW_FF = (double) 3000.0 / (double) (VALVE_POS_VS_PWM[6] - VALVE_POS_VS_PWM[8]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[8]) + 3000.0* (double) ID_index_array[8];
// }else
// VALVE_PWM_RAW_FF = -12000.0;
// }
for(i=0; i<24; i++) {
if(REF_VALVE_POS >= min(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1]) && REF_VALVE_POS <= max(VALVE_POS_VS_PWM[i],VALVE_POS_VS_PWM[i+1])) {
if(i==0) {
VALVE_PWM_RAW_FF = (double) 1000.0 / (double) (VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[i]);
} else {
VALVE_PWM_RAW_FF = (double) 1000.0* (double) (ID_index_array[i+1] - ID_index_array[i-1])/(VALVE_POS_VS_PWM[i+1] - VALVE_POS_VS_PWM[i-1]) * ((double) REF_VALVE_POS - VALVE_POS_VS_PWM[i-1]) + 1000.0* (double) ID_index_array[i-1];
}
break;
}
}
V_out = VALVE_PWM_RAW_FF + VALVE_PWM_RAW_FB;
}
#define LT_MAX_IDX 57
double LT_PWM_duty[LT_MAX_IDX] = {-100.0, -80.0, -60.0, -50.0, -40.0, -35.0, -30.0, -25.0, -20.0,
-19.0, -18.0, -17.0, -16.0, -15.0, -14.0, -13.0, -12.0, -11.0, -10.0,
-9.0, -8.0, -7.0, -6.0, -5.0, -4.0, -3.0, -2.0, -1.0, 0.0,
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0,
25.0, 30.0, 35.0, 40.0, 50.0, 60.0, 80.0, 100.0
}; // duty
double LT_Voltage_Output[LT_MAX_IDX] = {-321.4, -291.3, -261.5, -246.8, -231.7, -223.9, -216.1, -207.9, -198.8,
-196.9, -195.0, -192.5, -188.8, -184.5, -180.2, -175.9, -171.5, -166.3, -161.0,
-156.0, -149.5, -139.0, -126.0, -107.0, -87.5, -64.0, -38.5, -9.4, 0.0,
12.0, 43.5, 69.0, 94.0, 114.0, 132.0, 146.0, 155.5, 162.3, 168.2,
173.1, 178.2, 182.8, 187.4, 191.8, 196.0, 199.7, 201.9, 203.8, 205.6,
214.6, 222.5, 230.4, 238.2, 253.3, 268.0, 297.6, 327.7
}; // mV
double PWM_duty_byLT(double Ref_V)
{
double PWM_duty = 0.0;
if(Ref_V<LT_Voltage_Output[0]) {
PWM_duty = (Ref_V-LT_Voltage_Output[0])/1.5+LT_PWM_duty[0];
} else if (Ref_V>=LT_Voltage_Output[LT_MAX_IDX-1]) {
PWM_duty = (Ref_V-LT_Voltage_Output[LT_MAX_IDX-1])/1.5+LT_PWM_duty[LT_MAX_IDX-1];
} else {
int idx = 0;
for(idx=0; idx<LT_MAX_IDX-1; idx++) {
double ini_x = LT_Voltage_Output[idx];
double fin_x = LT_Voltage_Output[idx+1];
double ini_y = LT_PWM_duty[idx];
double fin_y = LT_PWM_duty[idx+1];
if(Ref_V>=ini_x && Ref_V<fin_x) {
PWM_duty = (fin_y-ini_y)/(fin_x-ini_x)*(Ref_V-ini_x) + ini_y;
break;
}
}
}
return PWM_duty;
}
/*******************************************************************************
TIMER INTERRUPT
*******************************************************************************/
//unsigned long CNT_TMR4 = 0;
double FREQ_TMR4 = (double)FREQ_10k;
double DT_TMR4 = (double)DT_10k;
extern "C" void TIM4_IRQHandler(void)
{
if (TIM4->SR & TIM_SR_UIF ) {
/*******************************************************
*** Sensor Read & Data Handling
********************************************************/
//Using LoadCell
// ADC1->CR2 |= 0x40000000; // adc _ 12bit
// //while((ADC1->SR & 0b10));
// double alpha_update_torque = 1.0/(1.0+(FREQ_TMR4/2.0)/(2.0*3.14*1000.0));
// double torque_new = ((double)ADC1->DR - PRES_A_NULL) / TORQUE_SENSOR_PULSE_PER_TORQUE + 1.0;
// torq.sen = torq.sen*(1.0-alpha_update_torque)+torque_new*(alpha_update_torque);
//Pressure sensor A
ADC1->CR2 |= 0x40000000; // adc _ 12bit
//while((ADC1->SR & 0b10));
double alpha_update_pres_A = 1.0/(1.0+(FREQ_TMR4/2.0)/(2.0*3.14*1000.0));
double pres_A_new = ((double)ADC1->DR - PRES_A_NULL) / PRES_SENSOR_A_PULSE_PER_BAR;
pres_A.sen = pres_A.sen*(1.0-alpha_update_pres_A)+pres_A_new*(alpha_update_pres_A);
//Pressure sensor 1B
//ADC2->CR2 |= 0x40000000; // adc _ 12bit
//while((ADC2->SR & 0b10));
double alpha_update_pres_B = 1.0/(1.0+(FREQ_TMR4/2.0)/(2.0*3.14*1000.0));
double pres_B_new = ((double)ADC2->DR - PRES_B_NULL) / PRES_SENSOR_B_PULSE_PER_BAR;
pres_B.sen = pres_B.sen*(1.0-alpha_update_pres_B)+pres_B_new*(alpha_update_pres_B);
torq.sen = pres_A.sen * (double) PISTON_AREA_A - pres_B.sen * (double) PISTON_AREA_B;
//Current
//ADC3->CR2 |= 0x40000000; // adc _ 12bit
// a1=ADC2->DR;
//int raw_cur = ADC3->DR;
//while((ADC3->SR & 0b10));
double alpha_update_cur = 1.0/(1.0+(FREQ_TMR4/2.0)/(2.0*3.14*1000.0)); // f_cutoff : 500Hz
double cur_new = ((double)ADC3->DR-2048.0)*20.0/4096.0; // unit : mA
cur.sen=cur.sen*(1.0-alpha_update_cur)+cur_new*(alpha_update_cur);
//cur.sen = raw_cur;
/*******************************************************
*** Timer Counting & etc.
********************************************************/
//CNT_TMR4++;
}
TIM4->SR = 0x0; // reset the status register
}
int j =0;
//unsigned long CNT_TMR3 = 0;
//double FREQ_TMR3 = (double)FREQ_5k;
double FREQ_TMR3 = (double)FREQ_1k;
//double DT_TMR3 = (double)DT_5k;
double DT_TMR3 = (double)DT_1k;
extern "C" void TIM3_IRQHandler(void)
{
if (TIM3->SR & TIM_SR_UIF ) {
ENC_UPDATE();
// CONTROL LOOP ------------------------------------------------------------
switch (CONTROL_MODE) {
case MODE_NO_ACT: {
V_out = 0;
break;
}
case MODE_VALVE_OPEN_LOOP: {
V_out = (double) Vout.ref;
break;
}
case MODE_VALVE_POSITION_CONTROL: {
VALVE_POS_CONTROL(valve_pos.ref);
break;
}
case MODE_JOINT_POSITION_TORQUE_CONTROL_PWM: {
double PWM_RAW_POS_FB = 0.0; // PWM by Position Feedback
double PWM_RAW_POS_FF = 0.0; // PWM by Position Feedforward
double PWM_RAW_FORCE_FB = 0.0; // PWM by Force Feedback
// feedback input for position control
pos.err = pos.ref - (double) pos.sen;
pos.err_diff = pos.err - pos.err_old;
pos.err_old = pos.err;
pos.err_sum += pos.err;
if (pos.err_sum > 1000) pos.err_sum = 1000;
if (pos.err_sum<-1000) pos.err_sum = -1000;
// PWM_RAW_POS_FB = (double) P_GAIN_JOINT_POSITION * pos.err + (double) I_GAIN_JOINT_POSITION * pos.err_sum + (double) D_GAIN_JOINT_POSITION * pos.err_diff;
PWM_RAW_POS_FB = (double) P_GAIN_JOINT_POSITION * pos.err;
PWM_RAW_POS_FB = PWM_RAW_POS_FB * 0.01;
// feedforward input for position control
double Ref_Vel_Act = vel.ref/(double)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
double K_ff = 0.9;
if(Ref_Vel_Act > 0) K_ff = 0.90; // open
if(Ref_Vel_Act > 0) K_ff = 0.75; // close
PWM_RAW_POS_FF = K_ff*Ref_Vel_Act/0.50;
// torque feedback
// torq.err = torq.ref - torq.sen;
// torq.err_diff = torq.err - torq.err_old;
// torq.err_old = torq.err;
// torq.err_sum += torq.err;
// if (torq.err_sum > 1000) torq.err_sum = 1000;
// if (torq.err_sum<-1000) torq.err_sum = -1000;
// VALVE_PWM_RAW_TORQ = (double) P_GAIN_JOINT_TORQUE * torq.err + (double) I_GAIN_JOINT_TORQUE * torq.err_sum + (double) D_GAIN_JOINT_TORQUE * torq.err_diff;
// VALVE_PWM_RAW_TORQ = VALVE_PWM_RAW_TORQ * 0.01;
PWM_RAW_FORCE_FB = 0.0;
V_out = PWM_RAW_POS_FF + PWM_RAW_POS_FB + PWM_RAW_FORCE_FB;
break;
}
case MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION: {
double VALVE_POS_RAW_POS_FB = 0.0; // Valve Position by Position Feedback
//double VALVE_POS_RAW_POS_FF = 0.0; // Valve Position by Position Feedforward
double VALVE_POS_RAW_FORCE_FB = 0.0; // Valve Position by Force Feedback
//int DDV_JOINT_CAN = 0;
// feedback input for position control
pos.err = pos.ref - (double) pos.sen;
pos.err_diff = pos.err - pos.err_old;
pos.err_old = pos.err;
pos.err_sum += pos.err;
if (pos.err_sum > 1000) pos.err_sum = 1000;
if (pos.err_sum<-1000) pos.err_sum = -1000;
VALVE_POS_RAW_POS_FB = (double) P_GAIN_JOINT_POSITION * 0.01 * pos.err + (double) I_GAIN_JOINT_POSITION * pos.err_sum + (double) D_GAIN_JOINT_POSITION * pos.err_diff;
VALVE_POS_RAW_POS_FB = VALVE_POS_RAW_POS_FB * 0.01;
//Ref_Joint_Vel = Ref_Vel_Test;
// feedforward input for position control
// double Ref_Joint_Vel_Act = Ref_Joint_Vel/(double)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
// double K_ff = 0.9;
// if(Ref_Joint_Vel_Act > 0) K_ff = 0.90; // open
// if(Ref_Joint_Vel_Act > 0) K_ff = 0.75; // close
// VALVE_POS_RAW_POS_FF = K_ff*Ref_Joint_Vel_Act/0.50;
// torque feedback
// torq.err = torq.ref - torq.sen;
// torq.err_diff = torq.err - torq.err_old;
// torq.err_old = torq.err;
// torq.err_sum += torq.err;
// if (torq.err_sum > 1000) torq.err_sum = 1000;
// if (torq.err_sum<-1000) torq.err_sum = -1000;
// VALVE_PWM_RAW_TORQ = (double) P_GAIN_JOINT_TORQUE * torq.err + (double) I_GAIN_JOINT_TORQUE * torq.err_sum + (double) D_GAIN_JOINT_TORQUE * torq.err_diff;
// VALVE_PWM_RAW_TORQ = VALVE_PWM_RAW_TORQ * 0.01;
VALVE_POS_RAW_FORCE_FB = 0.0;
valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_JOINT_POS_FF(vel.ref) + VALVE_POS_RAW_FORCE_FB;
//valve_pos.ref = VALVE_POS_RAW_POS_FB + DDV_CENTER;
VALVE_POS_CONTROL(valve_pos.ref);
break;
}
case MODE_VALVE_POSITION_TORQUE_CONTROL_LEARNING: {
break;
}
case MODE_JOINT_POSITION_PRES_CONTROL_PWM: {
pos.err = pos.ref - (double) pos.sen;
pos.err_diff = pos.err - pos.err_old;
pos.err_old = pos.err;
pos.err_sum += pos.err;
if (pos.err_sum > 1000) pos.err_sum = 1000;
if (pos.err_sum<-1000) pos.err_sum = -1000;
VALVE_PWM_RAW_POS = ((double) P_GAIN_JOINT_POSITION * pos.err + (double) I_GAIN_JOINT_POSITION * pos.err_sum + (double) D_GAIN_JOINT_POSITION * pos.err_diff) * 0.01;
torq.err = torq.ref - torq.sen;
torq.err_diff = torq.err - torq.err_old;
torq.err_old = torq.err;
torq.err_sum += torq.err;
if (torq.err_sum > 1000) torq.err_sum = 1000;
if (torq.err_sum<-1000) torq.err_sum = -1000;
VALVE_PWM_RAW_TORQ = (double) P_GAIN_JOINT_TORQUE * torq.err + (double) I_GAIN_JOINT_TORQUE * torq.err_sum + (double) D_GAIN_JOINT_TORQUE * torq.err_diff;
VALVE_PWM_RAW_TORQ = VALVE_PWM_RAW_TORQ * 0.01;
V_out = VALVE_PWM_RAW_POS + (double) COMPLIANCE_GAIN * 0.01 * VALVE_PWM_RAW_TORQ;
CUR_FLOWRATE = (double) CUR_VELOCITY * 0.00009587;
CUR_FLOWRATE = CUR_FLOWRATE * 0.5757; // 0.4791=2*pi/65536*5000(pulse/tic to rad/s) 0.5757=0.02525*0.02*0.0095*2*60*1000 (radius * area * 2 * 60(sec --> min) * 1000(m^3 --> L))
if (DIR_VALVE > 0) {
if (CUR_FLOWRATE >= 0 && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[0]*1.0)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - 0.0) / (VALVE_GAIN_LPM_PER_V[0]*1.0 - 0.0) + 0.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[0]*1.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[2]*2.)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[0]*1.0) / (VALVE_GAIN_LPM_PER_V[2]*2.0 - VALVE_GAIN_LPM_PER_V[0]*1.) + 1.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[2]*2.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[4]*3.)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[2]*2.0) / (VALVE_GAIN_LPM_PER_V[4]*3.0 - VALVE_GAIN_LPM_PER_V[2]*2.) + 2.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[4]*3.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[6]*4.)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[4]*3.0) / (VALVE_GAIN_LPM_PER_V[6]*4.0 - VALVE_GAIN_LPM_PER_V[4]*3.) + 3.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[6]*4.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*5.)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[6]*4.0) / (VALVE_GAIN_LPM_PER_V[8]*5.0 - VALVE_GAIN_LPM_PER_V[6]*4.) + 4.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[8]*5.0)) VALVE_FF_VOLTAGE = 5.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[1]*(-1.0)) && CUR_FLOWRATE < 0.0) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[1]*(-1.0)) / (0.0 - VALVE_GAIN_LPM_PER_V[1]*(-1.)) - 1.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[3]*(-2.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[1]*(-1.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[3]*(-2.0)) / ((VALVE_GAIN_LPM_PER_V[1]*(-1.0)) - VALVE_GAIN_LPM_PER_V[3]*(-2.)) - 2.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[5]*(-3.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[3]*(-2.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[5]*(-3.0)) / ((VALVE_GAIN_LPM_PER_V[3]*(-2.0)) - VALVE_GAIN_LPM_PER_V[5]*(-3.)) - 3.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[7]*(-4.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[5]*(-3.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[7]*(-4.0)) / ((VALVE_GAIN_LPM_PER_V[5]*(-3.0)) - VALVE_GAIN_LPM_PER_V[7]*(-4.)) - 4.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[9]*(-5.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[7]*(-4.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[9]*(-5.0)) / ((VALVE_GAIN_LPM_PER_V[7]*(-4.0)) - VALVE_GAIN_LPM_PER_V[9]*(-5.)) - 5.0;
else if (CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[9]*(-5.0))) VALVE_FF_VOLTAGE = -5;
else VALVE_FF_VOLTAGE = 0;
} else {
if (CUR_FLOWRATE >= 0 && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[0]*1.0)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - 0.0) / (VALVE_GAIN_LPM_PER_V[0]*1.0 - 0.0) + 0.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[1]*1.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[2]*2.0)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[0]*1.0) / (VALVE_GAIN_LPM_PER_V[2]*2.0 - VALVE_GAIN_LPM_PER_V[0]*1.) + 1.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[3]*2.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[4]*3.0)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[2]*2.0) / (VALVE_GAIN_LPM_PER_V[4]*3.0 - VALVE_GAIN_LPM_PER_V[2]*2.) + 2.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[5]*3.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[6]*4.0)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[4]*3.0) / (VALVE_GAIN_LPM_PER_V[6]*4.0 - VALVE_GAIN_LPM_PER_V[4]*3.) + 3.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[7]*4.0) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*5.0)) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[6]*4.0) / (VALVE_GAIN_LPM_PER_V[8]*5.0 - VALVE_GAIN_LPM_PER_V[6]*4.) + 4.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[9]*5.0)) VALVE_FF_VOLTAGE = 5.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[0]*(-1.0)) && CUR_FLOWRATE < 0.0) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[1]*(-1.0)) / (0.0 - VALVE_GAIN_LPM_PER_V[1]*(-1.0)) - 1.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[2]*(-2.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[1]*(-1.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[3]*(-2.0)) / ((VALVE_GAIN_LPM_PER_V[1]*(-1.0)) - VALVE_GAIN_LPM_PER_V[3]*(-2.0)) - 2.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[4]*(-3.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[3]*(-2.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[5]*(-3.0)) / ((VALVE_GAIN_LPM_PER_V[3]*(-2.0)) - VALVE_GAIN_LPM_PER_V[5]*(-3.0)) - 3.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[6]*(-4.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[5]*(-3.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[7]*(-4.0)) / ((VALVE_GAIN_LPM_PER_V[5]*(-3.0)) - VALVE_GAIN_LPM_PER_V[7]*(-4.0)) - 4.0;
else if (CUR_FLOWRATE >= (VALVE_GAIN_LPM_PER_V[8]*(-5.0)) && CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[7]*(-4.0))) VALVE_FF_VOLTAGE = (CUR_FLOWRATE - VALVE_GAIN_LPM_PER_V[9]*(-5.0)) / ((VALVE_GAIN_LPM_PER_V[7]*(-4.0)) - VALVE_GAIN_LPM_PER_V[9]*(-5.0)) - 5.0;
else if (CUR_FLOWRATE < (VALVE_GAIN_LPM_PER_V[8]*(-5.0))) VALVE_FF_VOLTAGE = -5;
else VALVE_FF_VOLTAGE = 0;
}
// VALVE_FF_VOLTAGE = CUR_FLOWRATE * 0.5;
if (CUR_FLOWRATE >= 0) VALVE_FF_VOLTAGE = (double) VELOCITY_COMP_GAIN * 0.001 * VALVE_FF_VOLTAGE * sqrt((double) PRES_SUPPLY - CUR_PRES_A_BAR) * 0.0707; // 0.0707 = 1/sqrt(200.))
else if (CUR_FLOWRATE < 0) VALVE_FF_VOLTAGE = (double) VELOCITY_COMP_GAIN * 0.001 * VALVE_FF_VOLTAGE * sqrt((double) PRES_SUPPLY - CUR_PRES_B_BAR) * 0.0707;
V_out = V_out + VALVE_FF_VOLTAGE;
break;
}
case MODE_JOINT_POSITION_PRES_CONTROL_VALVE_POSITION: {
pos.err = pos.ref - (double) pos.sen;
pos.err_diff = pos.err - pos.err_old;
pos.err_old = pos.err;
pos.err_sum += pos.err;
if (pos.err_sum > 1000) pos.err_sum = 1000;
if (pos.err_sum<-1000) pos.err_sum = -1000;
VALVE_PWM_RAW_POS = ((double) P_GAIN_JOINT_POSITION * pos.err + (double) I_GAIN_JOINT_POSITION * pos.err_sum + (double) D_GAIN_JOINT_POSITION * pos.err_diff) * 0.01;
torq.err = torq.ref - torq.sen;
torq.err_diff = torq.err - torq.err_old;
torq.err_old = torq.err;
torq.err_sum += torq.err;
if (torq.err_sum > 1000) torq.err_sum = 1000;
if (torq.err_sum<-1000) torq.err_sum = -1000;
VALVE_PWM_RAW_TORQ = (double) P_GAIN_JOINT_TORQUE * torq.err + (double) I_GAIN_JOINT_TORQUE * torq.err_sum + (double) D_GAIN_JOINT_TORQUE * torq.err_diff;
valve_pos.ref = VALVE_PWM_RAW_POS + VALVE_PWM_RAW_TORQ;
VALVE_POS_CONTROL(valve_pos.ref);
break;
}
case MODE_VALVE_POSITION_PRES_CONTROL_LEARNING: {
break;
}
case MODE_TEST_CURRENT_CONTROL: {
if (TMR3_COUNT_IREF == TMR_FREQ_5k) {
TMR3_COUNT_IREF = 0;
}
TMR3_COUNT_IREF++;
// Set Current Reference
double TMR3_CNT_MAX = (double)TMR_FREQ_5k/2.0;
double I_REF_MID = 0.0;
if (TMR3_COUNT_IREF < TMR3_CNT_MAX) {
I_REF = I_REF_MID + 1.0;
} else {
I_REF = I_REF_MID - 1.0;
}
// double T = 1.0; // wave period
// I_REF = (5. * sin(2. * 3.1415 * (double) TMR3_COUNT_IREF / (double)TMR_FREQ_5k/ T));
// I_REF = (2.0 * sin(2. * 2. * 3.14 * (double) TMR3_COUNT_IREF / 5000.)+(2.0 * sin(2. * 1. * 3.14 * (double)TMR3_COUNT_IREF/ 5000.))+(2.0 * sin(2. * 5. * 3.14 * (double)TMR3_COUNT_IREF/ 5000.))+(2.0 * sin(2. * 10. * 3.14 * (double)TMR3_COUNT_IREF/ 5000.)));
if (TMR3_COUNT_IREF % (int) (TMR_FREQ_5k / CAN_FREQ) == 0) {
//CAN_TX_PRES((int16_t)(I_REF*1000.0), (int16_t) (CUR_CURRENT*1000.0)); // to check the datas
}
break;
}
case MODE_TEST_PWM_CONTROL: {
if (TMR3_COUNT_IREF == TMR_FREQ_5k) {
TMR3_COUNT_IREF = 0;
}
TMR3_COUNT_IREF++;
// Set PWM reference
double TMR3_CNT_MAX = (double)TMR_FREQ_5k/2.0;
//double I_REF_MID = 0.0;
if (TMR3_COUNT_IREF < TMR3_CNT_MAX) {
CUR_PWM = 1000;
} else {
CUR_PWM = -1000;
}
if (TMR3_COUNT_IREF % (int) (TMR_FREQ_5k / CAN_FREQ) == 0) {
//CAN_TX_PRES((int16_t)(u_CUR[0]*1000.0), (int16_t) (CUR_CURRENT*1000.0)); // to check the datas
}
break;
}
case MODE_CURRENT_CONTROL: {
cur.ref = cur.ref; // Unit : mA
CurrentControl();
break;
}
case MODE_JOINT_POSITION_TORQUE_CONTROL_CURRENT: {
double I_REF_POS_FB = 0.0; // I_REF by Position Feedback
double I_REF_POS_FF = 0.0; // I_REF by Position Feedforward
double I_REF_FORCE_FB = 0.0; // I_REF by Force Feedback
double I_REF_FORCE_FF = 0.0; // I_REF by Force Feedforward
// feedback input for position control
pos.err = pos.ref - pos.sen;
double alpha_update_vel = 1.0/(1.0+(double)FREQ_TMR4/(2.0*3.1415*50.0)); // f_cutoff : 50Hz
double err_diff = (pos.err - pos.err_old)*(double)FREQ_5k;
pos.err_diff = (1.0-alpha_update_vel)*pos.err_diff + alpha_update_vel*err_diff;
pos.err_old = pos.err;
I_REF_POS_FB = 0.001*((double)P_GAIN_JOINT_POSITION * pos.err + (double)D_GAIN_JOINT_POSITION * pos.err_diff * 0.1);
// feedforward input for position control
double Vel_Act_Ref = vel.ref; // [pulse/s] >> [deg/s]
double K_ff = 1.3;
double K_v = 0.0;
if(Vel_Act_Ref > 0) K_v = 1.0/100.0; // open, tuning. (deg/s >> mA)
if(Vel_Act_Ref < 0) K_v = 1.0/100.0; // close, tuning. (deg/s >> mA)
I_REF_POS_FF = K_ff*K_v*Vel_Act_Ref;
// feedback input for position control
I_REF_FORCE_FB = 0.0;
// feedforward input for position control
I_REF_FORCE_FF = 0.0;
cur.ref = I_REF_POS_FF + I_REF_POS_FB + I_REF_FORCE_FB + I_REF_FORCE_FF;
CurrentControl();
break;
}
case MODE_JOINT_POSITION_PRES_CONTROL_CURRENT: {
//double T_REF = 0.0; // Torque Reference
double I_REF_FORCE_FB = 0.; // I_REF by Force Feedback
double I_REF_VC = 0.; // I_REF for velocity compensation
// feedback input for position control
//double Joint_Pos_Err = 34.0-(double) pos.sen/(double)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
//double Joint_Vel_Err = 0.0-(double) vel.sen/(double)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
//double K_spring = 0.7;
//double D_damper = 0.02;
// T_REF = K_spring * pos.err + D_damper * Joint_Vel_Err; // unit : Nm
// torque feedback
torq.err = torq.ref - torq.sen;
// torq.err_diff = torq.err - torq.err_old;
// torq.err_old = torq.err;
torq.err_sum = torq.err_sum + torq.err/(double)TMR_FREQ_5k;
I_REF_FORCE_FB = 0.001*((double)P_GAIN_JOINT_TORQUE * torq.err + (double)I_GAIN_JOINT_TORQUE * torq.err_sum);
// velocity compensation for torque control
double Joint_Vel_Act = vel.sen/(double)ENC_PULSE_PER_POSITION; // [pulse/s] >> [deg/s]
double K_vc = 1.5; // Velocity comp. gain
double K_v = 0.0; // Valve gain
if(Joint_Vel_Act > 0) K_v = 1.0/100.0; // open, tuning
if(Joint_Vel_Act < 0) K_v = 1.0/100.0; // close, tuning
I_REF_VC = K_vc*K_v*Joint_Vel_Act;
cur.ref = I_REF_VC + I_REF_FORCE_FB;
// cur.ref = I_REF_FORCE_FB;
double I_MAX = 10.00; // Maximum Current : 10mV
double Ka = 1.0/I_GAIN_JOINT_TORQUE;
if(cur.ref > I_MAX) {
double I_rem = cur.ref-I_MAX;
I_rem = Ka*I_rem;
cur.ref = I_MAX;
torq.err_sum = torq.err_sum - I_rem/(double)TMR_FREQ_5k;
} else if(cur.ref < -I_MAX) {
double I_rem = cur.ref-(-I_MAX);
I_rem = Ka*I_rem;
cur.ref = -I_MAX;
torq.err_sum = torq.err_sum - I_rem/(double)TMR_FREQ_5k;
}
CurrentControl();
/*
double I_REF_POS_FB = 0.0; // I_REF by Position Feedback
double I_REF_POS_FF = 0.0; // I_REF by Position Feedforward
double I_REF_FORCE_FB = 0.0; // I_REF by Force Feedback
double I_REF_FORCE_FF = 0.0; // I_REF by Force Feedforward
// feedback input for position control
pos.err = pos.ref - pos.sen;
double alpha_update_vel = 1.0/(1.0+(double)FREQ_TMR4/(2.0*3.1415*50.0)); // f_cutoff : 50Hz
double err_diff = (pos.err - pos.err_old)*(double)FREQ_5k;
pos.err_diff = (1.0-alpha_update_vel)*pos.err_diff + alpha_update_vel*err_diff;
pos.err_old = pos.err;
I_REF_POS_FB = 0.001*((double)P_GAIN_JOINT_POSITION * pos.err + (double)D_GAIN_JOINT_POSITION * pos.err_diff * 0.1);
// feedforward input for position control
double Vel_Act_Ref = vel.ref; // [pulse/s] >> [deg/s]
double K_ff = 1.3;
double K_v = 0.0;
if(Vel_Act_Ref > 0) K_v = 1.0/100.0; // open, tuning. (deg/s >> mA)
if(Vel_Act_Ref < 0) K_v = 1.0/100.0; // close, tuning. (deg/s >> mA)
I_REF_POS_FF = K_ff*K_v*Vel_Act_Ref;
// feedback input for position control
I_REF_FORCE_FB = 0.0;
// feedforward input for position control
I_REF_FORCE_FF = 0.0;
cur.ref = I_REF_POS_FF + I_REF_POS_FB + I_REF_FORCE_FB + I_REF_FORCE_FF;
CurrentControl();
*/
break;
}
case MODE_TORQUE_SENSOR_NULLING: {
// DAC Voltage reference set
if (TMR3_COUNT_TORQUE_NULL < TMR_FREQ_5k * 2) {
CUR_TORQUE_sum += torq.sen;
if (TMR3_COUNT_TORQUE_NULL % 10 == 0) {
CUR_TORQUE_mean = CUR_TORQUE_sum / 10.0;
CUR_TORQUE_sum = 0;
TORQUE_VREF += 0.0001 * (TORQUE_NULL - CUR_TORQUE_mean);
if (TORQUE_VREF > 3.3) TORQUE_VREF = 3.3;
if (TORQUE_VREF < 0) TORQUE_VREF = 0;
ROM_RESET_DATA();
//spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0));
dac_1 = TORQUE_VREF / 3.3;
}
} else {
CONTROL_MODE = MODE_NO_ACT;
TMR3_COUNT_TORQUE_NULL = 0;
CUR_TORQUE_sum = 0;
CUR_TORQUE_mean = 0;
ROM_RESET_DATA();
//spi_eeprom_write(RID_TORQUE_SENSOR_VREF, (int16_t) (TORQUE_VREF * 1000.0));
//pc.printf("%f\n", TORQUE_VREF);
dac_1 = TORQUE_VREF / 3.3;
}
TMR3_COUNT_TORQUE_NULL++;
break;
}
case MODE_VALVE_NULLING_AND_DEADZONE_SETTING: {
if (TMR3_COUNT_DEADZONE == 0) {
if (pos_plus_end == pos_minus_end) need_enc_init = true;
else temp_time = 0;
}
if (need_enc_init) {
if (TMR3_COUNT_DEADZONE < (int) (0.5 * (double) TMR_FREQ_5k)) {
V_out = VALVE_VOLTAGE_LIMIT;
pos_plus_end = pos.sen;
} else if (TMR3_COUNT_DEADZONE < TMR_FREQ_5k) {
V_out = -VALVE_VOLTAGE_LIMIT;
pos_minus_end = pos.sen;
} else if (TMR3_COUNT_DEADZONE == TMR_FREQ_5k) need_enc_init = false;
temp_time = TMR_FREQ_5k;
}
if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
VALVE_CENTER = VALVE_DEADZONE_PLUS = VALVE_DEADZONE_MINUS = 0;
} else if (temp_time <= TMR3_COUNT_DEADZONE && TMR3_COUNT_DEADZONE < (temp_time + (int) (1.9 * (double) TMR_FREQ_5k))) {
V_out = 0;
CUR_VELOCITY_sum += CUR_VELOCITY;
} else if (TMR3_COUNT_DEADZONE == (temp_time + 2 * TMR_FREQ_5k)) {
if (CUR_VELOCITY_sum == 0) DZ_dir = 1;
else if (CUR_VELOCITY_sum > 0) DZ_dir = 1;
else if (CUR_VELOCITY_sum < 0) DZ_dir = -1;
else DZ_temp_cnt2 = DZ_end;
CUR_VELOCITY_sum = 0;
} else if (TMR3_COUNT_DEADZONE > (temp_time + 2 * TMR_FREQ_5k)) {
if (TMR3_COUNT_DEADZONE > (temp_time + 10 * TMR_FREQ_5k)) DZ_temp_cnt2 = DZ_end;
// Position of Dead Zone
// (CUR_VELOCITY < 0) (CUR_VELOCITY == 0) (CUR_VELOCITY > 0)
// | / | / |/
// | ______/ ___|___/ ______/|
// |/ / | / |
// /| / | / |
// 0V 0V 0V
if (DZ_temp_cnt2 < DZ_end) {
if (TMR3_COUNT_DEADZONE % 20 != 0) {
CUR_VELOCITY_sum += CUR_VELOCITY;
} else {
V_out -= DZ_dir;
if (CUR_VELOCITY_sum * DZ_dir < 0) DZ_temp_cnt++;
CUR_VELOCITY_sum = 0;
}
if (DZ_temp_cnt == 5) {
if (DZ_dir >= 0) VALVE_DEADZONE_MINUS = (int16_t) V_out;
else VALVE_DEADZONE_PLUS = (int16_t) V_out;
DZ_dir = -DZ_dir;
DZ_temp_cnt = 0;
DZ_temp_cnt2++;
}
} else {
TMR3_COUNT_DEADZONE = -1;
VALVE_CENTER = VALVE_DEADZONE_PLUS / 2 + VALVE_DEADZONE_MINUS / 2;
if (VALVE_DEADZONE_PLUS < VALVE_DEADZONE_MINUS) {
VALVE_DEADZONE_PLUS = VALVE_CENTER;
VALVE_DEADZONE_MINUS = VALVE_CENTER;
}
V_out = 0;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, VALVE_DEADZONE_PLUS);
//spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, VALVE_DEADZONE_MINUS);
CONTROL_MODE = MODE_NO_ACT;
DZ_temp_cnt2 = 0;
}
}
TMR3_COUNT_DEADZONE++;
break;
}
case MODE_FIND_HOME: {
////////////////////////////////////////////FIND_HOME_PWM/////////////////////////////////////////////////////
if (FLAG_FIND_HOME == true) {
cnt_findhome = 0;
cnt_vel_findhome = 0;
//REFERENCE_MODE = MODE_REF_NO_ACT; // Stop taking reference data from PODO
pos.ref = pos.sen;
FLAG_FIND_HOME = false;
}
int check_enc = (TMR_FREQ_5k/10);
if(cnt_findhome%check_enc == 0) {
FINDHOME_POSITION = pos.sen;
FINDHOME_VELOCITY = FINDHOME_POSITION - FINDHOME_POSITION_OLD;
FINDHOME_POSITION_OLD = FINDHOME_POSITION;
}
cnt_findhome++;
if(cnt_findhome == 10000) cnt_findhome = 0;
if (abs(FINDHOME_VELOCITY) <= 1) {
cnt_vel_findhome = cnt_vel_findhome + 1;
} else {
cnt_vel_findhome = 0;
}
if (cnt_vel_findhome < 2*TMR_FREQ_5k) {
//REFERENCE_MODE = MODE_REF_NO_ACT;
if (HOMEPOS_OFFSET > 0) pos.ref = pos.ref + 1.0;
else pos.ref = pos.ref - 1.0;
pos.err = pos.ref - (double) pos.sen;
V_out = ((double) P_GAIN_JOINT_POSITION * pos.err) * 0.01;
// if (HOMEPOS_OFFSET > 0) V_out = 100;
// else V_out = -100;
} else {
ENC_SET(HOMEPOS_OFFSET);
FLAG_REFERENCE_JOINT_POSITION = 1;
INIT_REF_POS = HOMEPOS_OFFSET;
REF_MOVE_TIME_5k = 2 * TMR_FREQ_5k;
TMR3_COUNT_REFERENCE = 0;
vel.ref = 0.0;
//REFERENCE_MODE = MODE_REF_COS_INC;
CONTROL_MODE = MODE_JOINT_POSITION_TORQUE_CONTROL_PWM;
FINDHOME_POSITION = 0;
FINDHOME_POSITION_OLD = 0;
FINDHOME_VELOCITY = 0;
cnt_findhome = 0;
cnt_vel_findhome = 0;
}
/*
////////////////////////////////////////////FIND_HOME_CURRENT/////////////////////////////////////////////////////
if (FLAG_FIND_HOME == true) {
cnt_findhome = 0;
cnt_vel_findhome = 0;
REFERENCE_MODE = MODE_REF_NO_ACT; // Stop taking reference data from PODO
Ref_Joint_Pos = pos.sen;
FLAG_FIND_HOME = false;
}
int cnt_check_enc = (TMR_FREQ_5k/500);
if(cnt_findhome%cnt_check_enc == 0){
FINDHOME_POSITION = pos.sen;
FINDHOME_VELOCITY = FINDHOME_POSITION - FINDHOME_POSITION_OLD;
FINDHOME_POSITION_OLD = FINDHOME_POSITION;
} cnt_findhome++;
if(cnt_findhome == 10000) cnt_findhome = 0;
if (abs(FINDHOME_VELOCITY) <= 1) {
cnt_vel_findhome = cnt_vel_findhome + 1;
} else {
cnt_vel_findhome = 0;
}
if (cnt_vel_findhome < 3*TMR_FREQ_5k) { // wait for 3sec
REFERENCE_MODE = MODE_REF_NO_ACT;
if (HOMEPOS_OFFSET > 0) Ref_Joint_Pos = Ref_Joint_Pos + 1.0;
else Ref_Joint_Pos = Ref_Joint_Pos - 1.0;
pos.err = Ref_Joint_Pos - pos.sen;
I_REF = 0.001*((double)pos.err);
if(I_REF>5.0) I_REF = 5.0;
if(I_REF<-5.0) I_REF = -5.0;
cur.ref = I_REF;
CurrentControl();
} else {
ENC_SET(HOMEPOS_OFFSET);
FLAG_REFERENCE_JOINT_POSITION = 1;
INIT_REF_POS = HOMEPOS_OFFSET;
REF_MOVE_TIME_5k = 2 * TMR_FREQ_5k;
TMR3_COUNT_REFERENCE = 0;
Ref_Joint_Vel = 0.0;
REFERENCE_MODE = MODE_REF_COS_INC;
CONTROL_MODE = MODE_JOINT_POSITION_TORQUE_CONTROL_VALVE_POSITION;
FINDHOME_POSITION = 0;
FINDHOME_POSITION_OLD = 0;
FINDHOME_VELOCITY = 0;
cnt_findhome = 0;
cnt_vel_findhome = 0;
}
*/
break;
}
case MODE_VALVE_GAIN_SETTING: {
if (TMR3_COUNT_FLOWRATE == 0) {
if (pos_plus_end == pos_minus_end) need_enc_init = true;
else {
V_out = -VALVE_VOLTAGE_LIMIT;
temp_time = (int) (0.5 * (double) TMR_FREQ_5k);
}
}
if (need_enc_init) {
if (TMR3_COUNT_FLOWRATE < (int) (0.5 * (double) TMR_FREQ_5k)) {
V_out = VALVE_VOLTAGE_LIMIT;
pos_plus_end = pos.sen;
} else if (TMR3_COUNT_FLOWRATE < TMR_FREQ_5k) {
V_out = -VALVE_VOLTAGE_LIMIT;
pos_minus_end = pos.sen;
} else if (TMR3_COUNT_FLOWRATE == TMR_FREQ_5k) {
need_enc_init = false;
check_vel_pos_init = (int) (0.9 * (double) (pos_plus_end - pos_minus_end));
check_vel_pos_fin = (int) (0.95 * (double) (pos_plus_end - pos_minus_end));
check_vel_pos_interv = check_vel_pos_fin - check_vel_pos_init;
}
temp_time = TMR_FREQ_5k;
}
TMR3_COUNT_FLOWRATE++;
if (TMR3_COUNT_FLOWRATE > temp_time) {
if (flag_flowrate % 2 == 0) { // (+)
VALVE_VOLTAGE = 1000.0 * (double) (flag_flowrate / 2 + 1);
V_out = VALVE_VOLTAGE;
if (pos.sen > (pos_minus_end + check_vel_pos_init) && pos.sen < (pos_minus_end + check_vel_pos_fin)) {
fl_temp_cnt++;
} else if (pos.sen >= (pos_minus_end + check_vel_pos_fin) && CUR_VELOCITY == 0) {
VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873 * 0.5757 * (double) TMR_FREQ_5k / 10000.0 * (double) check_vel_pos_interv / (double) fl_temp_cnt / VALVE_VOLTAGE; // 0.9587=6*pi/65536*10000 0.5757=0.02525*0.02*0.0095*2*60*1000
// VALVE_GAIN_LPM_PER_V[flag_flowrate] = (double) TMR_FREQ_10k * (double) check_vel_pos_interv / (double) fl_temp_cnt / VALVE_VOLTAGE; // PULSE/sec
fl_temp_cnt2++;
}
} else if (flag_flowrate % 2 == 1) { // (-)
VALVE_VOLTAGE = -1. * (double) (flag_flowrate / 2 + 1);
V_out = VALVE_VOLTAGE;
if (pos.sen < (pos_plus_end - check_vel_pos_init) && pos.sen > (pos_plus_end - check_vel_pos_fin)) {
fl_temp_cnt++;
} else if (pos.sen <= (pos_plus_end - check_vel_pos_fin) && CUR_VELOCITY == 0) {
VALVE_GAIN_LPM_PER_V[flag_flowrate] = 0.95873 * 0.5757 * (double) TMR_FREQ_5k / 10000.0 * (double) check_vel_pos_interv / (double) fl_temp_cnt / (-VALVE_VOLTAGE);
// VALVE_GAIN_LPM_PER_V[flag_flowrate] = (double) TMR_FREQ_10k * (double) check_vel_pos_interv / (double) fl_temp_cnt / (-VALVE_VOLTAGE); // PULSE/sec
fl_temp_cnt2++;
}
}
if (fl_temp_cnt2 == 100) {
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_GAIN_PLUS_1 + flag_flowrate, (int16_t) (VALVE_GAIN_LPM_PER_V[flag_flowrate] * 100.0));
cur_vel_sum = 0;
fl_temp_cnt = 0;
fl_temp_cnt2 = 0;
flag_flowrate++;
}
if (flag_flowrate == 10) {
V_out = 0;
flag_flowrate = 0;
TMR3_COUNT_FLOWRATE = 0;
valve_gain_repeat_cnt++;
if (valve_gain_repeat_cnt >= 1) {
CONTROL_MODE = MODE_NO_ACT;
valve_gain_repeat_cnt = 0;
}
}
break;
}
}
case MODE_PRESSURE_SENSOR_NULLING: {
// DAC Voltage reference set
if (TMR3_COUNT_PRES_NULL < TMR_FREQ_5k * 2) {
CUR_PRES_A_sum += pres_A.sen;
CUR_PRES_B_sum += pres_B.sen;
if (TMR3_COUNT_PRES_NULL % 10 == 0) {
CUR_PRES_A_mean = CUR_PRES_A_sum / 10.0;
CUR_PRES_B_mean = CUR_PRES_B_sum / 10.0;
CUR_PRES_A_sum = 0;
CUR_PRES_B_sum = 0;
double VREF_NullingGain = 0.003;
PRES_A_VREF -= VREF_NullingGain * (PRES_A_NULL - CUR_PRES_A_mean);
PRES_B_VREF -= VREF_NullingGain * (PRES_B_NULL - CUR_PRES_B_mean);
if (PRES_A_VREF > 3.3) PRES_A_VREF = 3.3;
if (PRES_A_VREF < 0) PRES_A_VREF = 0;
if (PRES_B_VREF > 3.3) PRES_B_VREF = 3.3;
if (PRES_B_VREF < 0) PRES_B_VREF = 0;
dac_1 = PRES_A_VREF / 3.3;
dac_2 = PRES_B_VREF / 3.3;
}
} else {
CONTROL_MODE = MODE_NO_ACT;
TMR3_COUNT_PRES_NULL = 0;
CUR_PRES_A_sum = 0;
CUR_PRES_B_sum = 0;
CUR_PRES_A_mean = 0;
CUR_PRES_B_mean = 0;
ROM_RESET_DATA();
dac_1 = PRES_A_VREF / 3.3;
dac_2 = PRES_B_VREF / 3.3;
//pc.printf("nulling end");
}
TMR3_COUNT_PRES_NULL++;
break;
}
case MODE_PRESSURE_SENSOR_CALIB: {
if (TMR3_COUNT_PRES_CALIB < 2 * TMR_FREQ_5k) {
V_out = -VALVE_VOLTAGE_LIMIT;
if (TMR3_COUNT_PRES_CALIB >= TMR_FREQ_5k) {
CUR_PRES_A_sum += CUR_PRES_A;
}
} else if (TMR3_COUNT_PRES_CALIB < 4 * TMR_FREQ_5k) {
V_out = VALVE_VOLTAGE_LIMIT;
if (TMR3_COUNT_PRES_CALIB >= 3 * TMR_FREQ_5k) {
CUR_PRES_B_sum += CUR_PRES_B;
}
} else {
CONTROL_MODE = MODE_NO_ACT;
TMR3_COUNT_PRES_CALIB = 0;
V_out = 0;
PRES_SENSOR_A_PULSE_PER_BAR = CUR_PRES_A_sum / ((double) TMR_FREQ_5k - 1.0) - PRES_A_NULL;
PRES_SENSOR_A_PULSE_PER_BAR = PRES_SENSOR_A_PULSE_PER_BAR / ((double) PRES_SUPPLY - 1.0);
PRES_SENSOR_B_PULSE_PER_BAR = CUR_PRES_B_sum / ((double) TMR_FREQ_5k - 1.0) - PRES_B_NULL;
PRES_SENSOR_B_PULSE_PER_BAR = PRES_SENSOR_B_PULSE_PER_BAR / ((double) PRES_SUPPLY - 1.0);
CUR_PRES_A_sum = 0;
CUR_PRES_B_sum = 0;
CUR_PRES_A_mean = 0;
CUR_PRES_B_mean = 0;
ROM_RESET_DATA();
//spi_eeprom_write(RID_PRES_SENSOR_A_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_A_PULSE_PER_BAR * 100.0));
//spi_eeprom_write(RID_PRES_SENSOR_B_PULSE_PER_BAR, (int16_t) (PRES_SENSOR_B_PULSE_PER_BAR * 100.0));
}
TMR3_COUNT_PRES_CALIB++;
break;
}
case MODE_ROTARY_FRICTION_TUNING: {
if (TMR3_COUNT_ROTARY_FRIC_TUNE % (5 * TMR_FREQ_5k) == 0) freq_fric_tune = 4 + 3. * sin(2 * 3.14159 * 0.5 * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001 * 0.05);
V_out = PWM_out * sin(2 * 3.14159 * freq_fric_tune * TMR3_COUNT_ROTARY_FRIC_TUNE * 0.0001);
if (V_out > 0) V_out = VALVE_VOLTAGE_LIMIT;
else V_out = -VALVE_VOLTAGE_LIMIT;
TMR3_COUNT_ROTARY_FRIC_TUNE++;
if (TMR3_COUNT_ROTARY_FRIC_TUNE > TUNING_TIME * TMR_FREQ_5k) {
TMR3_COUNT_ROTARY_FRIC_TUNE = 0;
V_out = 0;
CONTROL_MODE = MODE_NO_ACT;
}
break;
}
case MODE_DDV_POS_VS_PWM_ID: {
VALVE_ID_timer = VALVE_ID_timer + 1;
if(VALVE_ID_timer < TMR_FREQ_5k*1) {
V_out = 3000.0 * sin(2*3.14*VALVE_ID_timer/TMR_FREQ_5k * 100.0);
} else if(VALVE_ID_timer < TMR_FREQ_5k*2) {
V_out = 1000.0*(ID_index_array[ID_index]);
} else if(VALVE_ID_timer == TMR_FREQ_5k*2) {
VALVE_POS_TMP = 0;
data_num = 0;
} else if(VALVE_ID_timer < TMR_FREQ_5k*3) {
data_num = data_num + 1;
VALVE_POS_TMP = VALVE_POS_TMP + value;
} else if(VALVE_ID_timer == TMR_FREQ_5k*3) {
VALVE_POS_AVG[ID_index] = VALVE_POS_TMP / data_num;
VALVE_ID_timer = 0;
ID_index= ID_index +1;
}
if(ID_index>=25) {
int i;
VALVE_POS_AVG_OLD = VALVE_POS_AVG[0];
for(i=0; i<25; i++) {
VALVE_POS_VS_PWM[i] = (int16_t) (VALVE_POS_AVG[i]);
if(VALVE_POS_AVG[i] > VALVE_POS_AVG_OLD) {
VALVE_MAX_POS = VALVE_POS_AVG[i];
VALVE_POS_AVG_OLD = VALVE_MAX_POS;
} else if(VALVE_POS_AVG[i] < VALVE_POS_AVG_OLD) {
VALVE_MIN_POS = VALVE_POS_AVG[i];
VALVE_POS_AVG_OLD = VALVE_MIN_POS;
}
}
ROM_RESET_DATA();
ID_index = 0;
CONTROL_MODE = MODE_NO_ACT;
}
break;
}
case MODE_DDV_DEADZONE_AND_CENTER: {
VALVE_DZ_timer = VALVE_DZ_timer + 1;
if(first_check == 0) {
if(VALVE_DZ_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = VALVE_VOLTAGE_LIMIT;
} else if(VALVE_DZ_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = VALVE_VOLTAGE_LIMIT;
pos_plus_end = pos.sen;
} else if(VALVE_DZ_timer < (int) (2.0 * (double) TMR_FREQ_5k)) {
V_out = -VALVE_VOLTAGE_LIMIT;
} else if(VALVE_DZ_timer == (int) (2.0 * (double) TMR_FREQ_5k)) {
V_out = -VALVE_VOLTAGE_LIMIT;
pos_minus_end = pos.sen;
} else if(VALVE_DZ_timer < (int) (3.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01 * (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
} else if(VALVE_DZ_timer < (int) (4.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01 * (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
data_num = data_num + 1;
VALVE_POS_TMP = VALVE_POS_TMP + value;
} else if(VALVE_DZ_timer == (int) (4.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01 * (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
DDV_POS_AVG = VALVE_POS_TMP / data_num;
START_POS = pos.sen;
//CAN_TX_PRES((int16_t) (DDV_POS_AVG), (int16_t) (data_num));
VALVE_POS_TMP = 0;
data_num = 0;
} else if(VALVE_DZ_timer < (int) (5.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = DDV_POS_AVG;
VALVE_POS_CONTROL(valve_pos.ref);
//CAN_TX_PRES((int16_t) (VALVE_MAX_POS), (int16_t) (VALVE_MIN_POS));
} else if(VALVE_DZ_timer < (int) (6.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = DDV_POS_AVG;
VALVE_POS_CONTROL(valve_pos.ref);
if(CUR_VELOCITY >= 0)
VEL_POINT = VEL_POINT + 1;
else
VEL_POINT = VEL_POINT - 1;
} else if(VALVE_DZ_timer == (int) (6.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = DDV_POS_AVG;
VALVE_POS_CONTROL(valve_pos.ref);
FINAL_POS = pos.sen;
// if(VEL_POINT >= 0)
// {
// DZ_case = 1;
// }
// else
// {
// DZ_case = -1;
// }
// if(abs(FINAL_POS - START_POS) < 100)
// {
// DZ_case = 0;
// }
if((FINAL_POS - START_POS)>100) {
DZ_case = 1;
} else if((FINAL_POS - START_POS)<-100) {
DZ_case = -1;
} else {
DZ_case = 0;
}
VEL_POINT = 0;
first_check = 1;
DZ_DIRECTION = 1;
VALVE_DZ_timer = 0;
Ref_Valve_Pos_Old = DDV_POS_AVG;
DZ_NUM = 1;
DZ_index = 1;
//CAN_TX_PRES((int16_t) (DZ_case), (int16_t) (DZ_NUM));
}
} else {
if((DZ_case == -1 && DZ_NUM == 1) | (DZ_case == 1 && DZ_NUM == 1)) {
if(VALVE_DZ_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01 * (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
} else if(VALVE_DZ_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
START_POS = pos.sen;
} else if(VALVE_DZ_timer < (int) (2.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = Ref_Valve_Pos_Old - DZ_case * DZ_DIRECTION * 64 / DZ_index;
if(valve_pos.ref <= VALVE_MIN_POS) {
valve_pos.ref = VALVE_MIN_POS;
} else if(valve_pos.ref >= VALVE_MAX_POS) {
valve_pos.ref = VALVE_MAX_POS;
}
VALVE_POS_CONTROL(valve_pos.ref);
if(CUR_VELOCITY >= 0)
VEL_POINT = VEL_POINT + 1;
else
VEL_POINT = VEL_POINT - 1;
} else if(VALVE_DZ_timer == (int) (2.0 * (double) TMR_FREQ_5k)) {
Ref_Valve_Pos_Old = valve_pos.ref;
FINAL_POS = pos.sen;
// if(VEL_POINT >= 0)
// DZ_DIRECTION = 1 * DZ_case;
// else
// DZ_DIRECTION = -1 * DZ_case;
// if(abs(FINAL_POS - START_POS) < 100)
// DZ_DIRECTION = 1 * DZ_case;
if((FINAL_POS - START_POS)>100) {
DZ_DIRECTION = 1 * DZ_case;
} else if((FINAL_POS - START_POS)<-100) {
DZ_DIRECTION = -1 * DZ_case;
} else {
DZ_DIRECTION = 1 * DZ_case;
}
VEL_POINT = 0;
VALVE_DZ_timer = 0;
DZ_index= DZ_index *2;
if(DZ_index >= 128) {
FIRST_DZ = valve_pos.ref;
DZ_NUM = 2;
Ref_Valve_Pos_Old = FIRST_DZ;
DZ_index = 1;
DZ_DIRECTION = 1;
}
//CAN_TX_PRES((int16_t) (1), (int16_t) (DZ_index));
}
} else if((DZ_case == -1 && DZ_NUM == 2) | (DZ_case == 1 && DZ_NUM == 2)) {
if(VALVE_DZ_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01 * (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
} else if(VALVE_DZ_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
START_POS = pos.sen;
} else if(VALVE_DZ_timer < (int) (2.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = Ref_Valve_Pos_Old + DZ_DIRECTION * 64 / DZ_index;
if(valve_pos.ref <= VALVE_MIN_POS) {
valve_pos.ref = VALVE_MIN_POS;
} else if(valve_pos.ref >= VALVE_MAX_POS) {
valve_pos.ref = VALVE_MAX_POS;
}
VALVE_POS_CONTROL(valve_pos.ref);
if(CUR_VELOCITY >= 0)
VEL_POINT = VEL_POINT + 1;
else
VEL_POINT = VEL_POINT - 1;
} else if(VALVE_DZ_timer == (int) (2.0 * (double) TMR_FREQ_5k)) {
Ref_Valve_Pos_Old = valve_pos.ref;
FINAL_POS = pos.sen;
// if(VEL_POINT >= 0)
// DZ_DIRECTION = 1 * DZ_case;
// else
// DZ_DIRECTION = -1 * DZ_case;
// if(abs(FINAL_POS - START_POS) < 100)
// DZ_DIRECTION = -1 * DZ_case;
if((FINAL_POS - START_POS)>100) {
DZ_DIRECTION = -1;
} else if((FINAL_POS - START_POS)<-100) {
DZ_DIRECTION = 1;
} else {
DZ_DIRECTION = 1;
}
VEL_POINT = 0;
VALVE_DZ_timer = 0;
DZ_index= DZ_index *2;
if(DZ_index >= 128) {
SECOND_DZ = valve_pos.ref;
DDV_CENTER = (int) (0.5 * (double) (FIRST_DZ) + 0.5 * (double) (SECOND_DZ));
first_check = 0;
VALVE_DEADZONE_MINUS = FIRST_DZ;
VALVE_DEADZONE_PLUS = SECOND_DZ;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, FIRST_DZ);
//spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, SECOND_DZ);
//spi_eeprom_write(RID_DDV_CENTER, DDV_CENTER);
//CAN_TX_PRES((int16_t) FIRST_DZ, (int16_t) SECOND_DZ);
CONTROL_MODE = MODE_NO_ACT;
DZ_index = 1;
}
//CAN_TX_PRES((int16_t) (2), (int16_t) (DZ_index));
}
} else if(DZ_case == 0 && DZ_NUM ==1) {
if(VALVE_DZ_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01* (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
} else if(VALVE_DZ_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
START_POS = pos.sen;
} else if(VALVE_DZ_timer < (int) (2.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = Ref_Valve_Pos_Old - DZ_DIRECTION * 64 / DZ_index;
if(valve_pos.ref <= VALVE_MIN_POS) {
valve_pos.ref = VALVE_MIN_POS;
} else if(valve_pos.ref >= VALVE_MAX_POS) {
valve_pos.ref = VALVE_MAX_POS;
}
VALVE_POS_CONTROL(valve_pos.ref);
if(CUR_VELOCITY >= 0)
VEL_POINT = VEL_POINT + 1;
else
VEL_POINT = VEL_POINT - 1;
} else if(VALVE_DZ_timer == (int) (2.0 * (double) TMR_FREQ_5k)) {
Ref_Valve_Pos_Old = valve_pos.ref;
FINAL_POS = pos.sen;
// if(VEL_POINT >= 0)
// DZ_DIRECTION = 1;
// else
// DZ_DIRECTION = -1;
// if(abs(FINAL_POS - START_POS) < 100)
// DZ_DIRECTION = 1;
if((FINAL_POS - START_POS)>100) {
DZ_DIRECTION = 1;
} else if((FINAL_POS - START_POS)<-100) {
DZ_DIRECTION = -1;
} else {
DZ_DIRECTION = 1;
}
VEL_POINT = 0;
//CAN_TX_PRES((int16_t) (7), (int16_t) (DZ_DIRECTION));
VALVE_DZ_timer = 0;
DZ_index= DZ_index *2;
if(DZ_index >= 128) {
FIRST_DZ = valve_pos.ref;
DZ_NUM = 2;
Ref_Valve_Pos_Old = FIRST_DZ;
DZ_index = 1;
DZ_DIRECTION = 1;
}
}
} else {
if(VALVE_DZ_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01* (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
} else if(VALVE_DZ_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
START_POS = pos.sen;
} else if(VALVE_DZ_timer < (int) (2.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = Ref_Valve_Pos_Old + DZ_DIRECTION * 64 / DZ_index;
if(valve_pos.ref <= VALVE_MIN_POS) {
valve_pos.ref = VALVE_MIN_POS;
} else if(valve_pos.ref > VALVE_MAX_POS) {
valve_pos.ref = VALVE_MAX_POS - 1;
}
VALVE_POS_CONTROL(valve_pos.ref);
if(CUR_VELOCITY >= 0)
VEL_POINT = VEL_POINT + 1;
else
VEL_POINT = VEL_POINT - 1;
} else if(VALVE_DZ_timer == (int) (2.0 * (double) TMR_FREQ_5k)) {
Ref_Valve_Pos_Old = valve_pos.ref;
FINAL_POS = pos.sen;
if(VEL_POINT >= 0)
DZ_DIRECTION = -1;
else
DZ_DIRECTION = 1;
if(abs(FINAL_POS - START_POS) < 100)
DZ_DIRECTION = 1;
VEL_POINT = 0;
VALVE_DZ_timer = 0;
//CAN_TX_PRES((int16_t) (3), (int16_t) (DZ_index));
DZ_index= DZ_index *2;
if(DZ_index >= 128) {
SECOND_DZ = valve_pos.ref;
DDV_CENTER = (int) (0.5 * (double) (FIRST_DZ) + 0.5 * (double) (SECOND_DZ));
first_check = 0;
VALVE_DEADZONE_MINUS = FIRST_DZ;
//spi_eeprom_write(RID_VALVE_DEADZONE_PLUS, FIRST_DZ);
VALVE_DEADZONE_PLUS = SECOND_DZ;
ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_DEADZONE_MINUS, SECOND_DZ);
//spi_eeprom_write(RID_DDV_CENTER, DDV_CENTER);
//CAN_TX_PRES((int16_t) FIRST_DZ, (int16_t) SECOND_DZ);
CONTROL_MODE = MODE_NO_ACT;
DZ_index = 1;
}
//CAN_TX_PRES((int16_t) (4), (int16_t) (DZ_index));
}
}
}
break;
}
case MODE_DDV_POS_VS_FLOWRATE: {
VALVE_FR_timer = VALVE_FR_timer + 1;
if(first_check == 0) {
if(VALVE_FR_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = VALVE_VOLTAGE_LIMIT;
//CAN_TX_PRES((int16_t) (VALVE_FR_timer), (int16_t) (6));
} else if(VALVE_FR_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = VALVE_VOLTAGE_LIMIT;
pos_plus_end = pos.sen;
// CAN_TX_PRES((int16_t) (V_out), (int16_t) (7));
} else if(VALVE_FR_timer < (int) (2.0 * (double) TMR_FREQ_5k)) {
V_out = -VALVE_VOLTAGE_LIMIT;
} else if(VALVE_FR_timer == (int) (2.0 * (double) TMR_FREQ_5k)) {
// CAN_TX_PRES((int16_t) (V_out), (int16_t) (8));
V_out = -VALVE_VOLTAGE_LIMIT;
pos_minus_end = pos.sen;
first_check = 1;
VALVE_FR_timer = 0;
valve_pos.ref = DDV_CENTER;
ID_index = 0;
max_check = 0;
min_check = 0;
}
} else {
if(VALVE_FR_timer < (int) (1.0 * (double) TMR_FREQ_5k)) {
V_out = (double) P_GAIN_JOINT_POSITION * 0.01* (0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen);
} else if(VALVE_FR_timer == (int) (1.0 * (double) TMR_FREQ_5k)) {
data_num = 0;
valve_pos.ref = 10*(ID_index_array[ID_index]) + DDV_CENTER;
VALVE_POS_CONTROL(valve_pos.ref);
START_POS = pos.sen;
} else if(VALVE_FR_timer < (int) (5.0 * (double) TMR_FREQ_5k)) {
valve_pos.ref = 10*(ID_index_array[ID_index]) + DDV_CENTER;
VALVE_POS_CONTROL(valve_pos.ref);
data_num = data_num + 1;
if(abs(0.5 * (double) pos_plus_end + 0.5 * (double) pos_minus_end - (double) pos.sen) > 20000.0) {
FINAL_POS = pos.sen;
one_period_end = 1;
}
} else if(VALVE_FR_timer == (int) (5.0 * (double) TMR_FREQ_5k)) {
FINAL_POS = pos.sen;
one_period_end = 1;
}
if(one_period_end == 1) {
if(valve_pos.ref > VALVE_MAX_POS) {
max_check = 1;
} else if(valve_pos.ref < VALVE_MIN_POS) {
min_check = 1;
}
JOINT_VEL[ID_index] = (FINAL_POS - START_POS) / data_num * TMR_FREQ_5k; // pulse/sec
//ROM_RESET_DATA();
//spi_eeprom_write(RID_VALVE_POS_VS_FLOWRATE_0 + ID_index, (int16_t) (JOINT_VEL[ID_index] & 0xFFFF));
//spi_eeprom_write(RID_VALVE_POS_VS_FLOWRATE_0_1 + ID_index, (int16_t) ((JOINT_VEL[ID_index] >> 16) & 0xFFFF));
VALVE_FR_timer = 0;
one_period_end = 0;
ID_index= ID_index +1;
// CAN_TX_PRES((int16_t) (valve_pos.ref), (int16_t) (ID_index));
V_out = 0.0;
}
if(max_check == 1 && min_check == 1) {
//spi_eeprom_write(RID_VALVE_POS_NUM, (int16_t) (ID_index));
VALVE_POS_NUM = ID_index;
ROM_RESET_DATA();
ID_index = 0;
first_check = 0;
VALVE_FR_timer = 0;
// CAN_TX_PRES((int16_t) (123), (int16_t) (123));
CONTROL_MODE = MODE_NO_ACT;
}
}
break;
}
default:
break;
}
if (FLAG_VALVE_OUTPUT_CALIB) {
// Valve Dead Zone (Mechanical dead-zone canceling)
// if (CONTROL_MODE != MODE_VALVE_NULLING_AND_DEADZONE_SETTING) {
// if (V_out > 0.) {
// VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_DEADZONE_PLUS;
// } else if (V_out < 0.) {
// VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_DEADZONE_MINUS;
// } else VALVE_PWM_VALVE_DZ = (int) V_out + VALVE_CENTER;
// } else VALVE_PWM_VALVE_DZ = (int) V_out;
if(V_out>0) V_out = V_out + VALVE_DEADZONE_PLUS;
else if(V_out<0) V_out = V_out + VALVE_DEADZONE_MINUS;
VALVE_PWM_VALVE_DZ = V_out + VALVE_CENTER;
// Output Voltage Linearization and Dead Zone Cancellation (Electrical dead-zone)
double CUR_PWM_nonlin = VALVE_PWM_VALVE_DZ/5.0*1000.0; // convert PWM duty to mV
double CUR_PWM_DZ = PWM_duty_byLT(CUR_PWM_nonlin);
if (CUR_PWM_DZ > 0) V_out = (int)CUR_PWM_DZ + 143;
else if (CUR_PWM_DZ < 0) V_out = (int)CUR_PWM_DZ - 138;
else V_out = CUR_PWM_DZ;
} else {
V_out = V_out;
}
/*******************************************************
*** PWM
********************************************************/
PWM_out= V_out/SUPPLY_VOLTAGE; // Full duty : 12000.0mV
// Saturation of output voltage to 5.0V
// if(PWM_out > 0.41667) PWM_out=0.41667; //5.0/12.0 = 0.41667
// else if (PWM_out < -0.41667) PWM_out=-0.41667;
// Saturation of output voltage to 12.0V
if(PWM_out > 1.0) PWM_out=1.0;
else if (PWM_out < -1.0) PWM_out=-1.0;
if (PWM_out>0.0) {
dtc_v=0.0;
dtc_w=PWM_out;
} else {
dtc_v=-PWM_out;
dtc_w=0.0;
}
//pwm
TIM4->CCR2 = (PWM_ARR)*(1.0-dtc_v);
TIM4->CCR1 = (PWM_ARR)*(1.0-dtc_w);
}
TIM3->SR = 0x0; // reset the status register
}
//unsigned long CNT_TMR5 = 0;
//double FREQ_TMR5 = (double)FREQ_500;
//double DT_TMR5 = (double)DT_500;
extern "C" void TIM2_IRQHandler(void)
{
if (TIM2->SR & TIM_SR_UIF ) {
//CAN ----------------------------------------------------------------------
if (flag_data_request[0] == HIGH) {
//position+velocity
CAN_TX_POSITION((int32_t) pos.sen, (int32_t) vel.sen);
//CAN_TX_POSITION((int32_t) valve_pos.ref, (int32_t) 0);
//CAN_TX_POSITION((int32_t) VALVE_PWM_RAW_FF, (int32_t) VALVE_POS_VS_PWM[10]);
//pc.printf("can good");
// CAN_TX_POSITION((long) CUR_PRES_A_BAR, (long) CUR_PRES_B_BAR);
}
if (flag_data_request[1] == HIGH) {
//torque
//CAN_TX_TORQUE((int16_t) (CUR_TORQUE_NM * 100.));
//CAN_TX_TORQUE((int16_t) (CUR_TORQUE_NM));
CAN_TX_TORQUE((int16_t) (cur.sen));
// CAN_TX_TORQUE((int16_t) DZ_temp_cnt);
}
if (flag_data_request[2] == HIGH) {
//pressure A and B
//CAN_TX_PRES((int16_t) (pres_A.sen), (int16_t) (PRES_A_VREF)); // CUR_PRES_X : 0(0bar)~4096(210bar)
CAN_TX_PRES((int16_t) (pres_A.sen), (int16_t) (pres_B.sen)); // CUR_PRES_X : 0(0bar)~4096(210bar)
// CAN_TX_PRES((int16_t) (CUR_PRES_A_BAR * 100.), (int16_t) (CUR_PRES_B_BAR * 100.));
// CAN_TX_PRES((int16_t) ((DEADZONE_MINUS + 1.)*1000.), (int16_t) ((DEADZONE_PLUS + 1.))*1000.);
// CAN_TX_PRES((int16_t) DZ_dir, (int16_t) ((VALVE_DEADZONE_PLUS + 1.))*1000.);
}
if (flag_data_request[3] == HIGH) {
//PWM
CAN_TX_PWM((int16_t) CUR_PWM);
// CAN_TX_PWM((int16_t) cnt_vel_findhome);
// CAN_TX_PWM((int16_t) (VALVE_VOLTAGE * 1000.));
// CAN_TX_PWM((int16_t) (VALVE_VOLTAGE_VALVE_DZ * 1000.));
}
if (flag_data_request[4] == HIGH) {
//valve position
CAN_TX_VALVE_POSITION((int16_t) (value));
//SPI_ROM_WRITE(RID_VALVE_POS_VS_FLOWRATE_0, (int16_t) (JOINT_VEL[ID_index] & 0xFFFF));
//SPI_ROM_WRITE(RID_VALVE_POS_VS_FLOWRATE_0_1, (int16_t) ((0xFEF1>>16) & 0xFFFF));
//CAN_TX_VALVE_POSITION((int16_t) (VALVE_POS_NUM));
// CAN_TX_VALVE_POSITIOfxN((int16_t) (VALVE_FF_VOLTAGE / SUPPLY_VOLTAGE));
// CAN_TX_VALVE_POSITION((int16_t) P_GAIN_JOINT_POSITION);
// CAN_TX_VALVE_POSITION((int16_t) Ref_Joint_Pos);
// CAN_TX_VALVE_POSITION((int16_t) flag_flowrate);
}
}
TIM2->SR = 0x0; // reset the status register
}
void CurrentControl()
{
cur.err = cur.ref - cur.sen;
cur.err_int = cur.err_int + cur.err*DT_TMR4;
cur.err_diff = (cur.err - cur.err_old)*FREQ_TMR4;
cur.err_old = cur.err;
double R_model = 150.0; // ohm
double L_model = 0.3;
double w0 = 2.0*3.14*90.0;
double KP_I = L_model*w0;
double KI_I = R_model*w0;
double KD_I = 0.0;
double FF_gain = 0.0;
V_out = (int) (KP_I * cur.err + KI_I * cur.err_int + KD_I * cur.err_diff);
// V_out = V_out + FF_gain * (R_model*I_REF); // Unit : mV
V_out = V_out + FF_gain * (R_model*cur.ref + L_model*cur.ref_diff); // Unit : mV
double Ka = 5.0/KP_I;
if(V_out > V_MAX) {
V_rem = V_out-V_MAX;
V_rem = Ka*V_rem;
V_out = V_MAX;
cur.err_int = cur.err_int - V_rem*DT_5k;
} else if(V_out < -V_MAX) {
V_rem = V_out-(-V_MAX);
V_rem = Ka*V_rem;
V_out = -V_MAX;
cur.err_int = cur.err_int - V_rem*DT_5k;
}
}