Stephane ROCHON
/
WAVEplayer
Revision 0:4cda52c0c66e, committed 2010-01-02
- Comitter:
- Kerpower
- Date:
- Sat Jan 02 17:07:38 2010 +0000
- Commit message:
Changed in this revision
diff -r 000000000000 -r 4cda52c0c66e FATFileSystem.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/FATFileSystem.lib Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_unsupported/code/fatfilesystem/ \ No newline at end of file
diff -r 000000000000 -r 4cda52c0c66e SDFileSystem.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SDFileSystem.cpp Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,300 @@ +/* mbed Microcontroller Library - SDFileSystem + * Copyright (c) 2008-2009, sford + * + * Introduction + * ------------ + * SD and MMC cards support a number of interfaces, but common to them all + * is one based on SPI. This is the one I'm implmenting because it means + * it is much more portable even though not so performant, and we already + * have the mbed SPI Interface! + * + * The main reference I'm using is Chapter 7, "SPI Mode" of: + * http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf + * + * SPI Startup + * ----------- + * The SD card powers up in SD mode. The SPI interface mode is selected by + * asserting CS low and sending the reset command (CMD0). The card will + * respond with a (R1) response. + * + * CMD8 is optionally sent to determine the voltage range supported, and + * indirectly determine whether it is a version 1.x SD/non-SD card or + * version 2.x. I'll just ignore this for now. + * + * ACMD41 is repeatedly issued to initialise the card, until "in idle" + * (bit 0) of the R1 response goes to '0', indicating it is initialised. + * + * You should also indicate whether the host supports High Capicity cards, + * and check whether the card is high capacity - i'll also ignore this + * + * SPI Protocol + * ------------ + * The SD SPI protocol is based on transactions made up of 8-bit words, with + * the host starting every bus transaction by asserting the CS signal low. The + * card always responds to commands, data blocks and errors. + * + * The protocol supports a CRC, but by default it is off (except for the + * first reset CMD0, where the CRC can just be pre-calculated, and CMD8) + * I'll leave the CRC off I think! + * + * Standard capacity cards have variable data block sizes, whereas High + * Capacity cards fix the size of data block to 512 bytes. I'll therefore + * just always use the Standard Capacity cards with a block size of 512 bytes. + * This is set with CMD16. + * + * You can read and write single blocks (CMD17, CMD25) or multiple blocks + * (CMD18, CMD25). For simplicity, I'll just use single block accesses. When + * the card gets a read command, it responds with a response token, and then + * a data token or an error. + * + * SPI Command Format + * ------------------ + * Commands are 6-bytes long, containing the command, 32-bit argument, and CRC. + * + * +---------------+------------+------------+-----------+----------+--------------+ + * | 01 | cmd[5:0] | arg[31:24] | arg[23:16] | arg[15:8] | arg[7:0] | crc[6:0] | 1 | + * +---------------+------------+------------+-----------+----------+--------------+ + * + * As I'm not using CRC, I can fix that byte to what is needed for CMD0 (0x95) + * + * All Application Specific commands shall be preceded with APP_CMD (CMD55). + * + * SPI Response Format + * ------------------- + * The main response format (R1) is a status byte (normally zero). Key flags: + * idle - 1 if the card is in an idle state/initialising + * cmd - 1 if an illegal command code was detected + * + * +-------------------------------------------------+ + * R1 | 0 | arg | addr | seq | crc | cmd | erase | idle | + * +-------------------------------------------------+ + * + * R1b is the same, except it is followed by a busy signal (zeros) until + * the first non-zero byte when it is ready again. + * + * Data Response Token + * ------------------- + * Every data block written to the card is acknowledged by a byte + * response token + * + * +----------------------+ + * | xxx | 0 | status | 1 | + * +----------------------+ + * 010 - OK! + * 101 - CRC Error + * 110 - Write Error + * + * Single Block Read and Write + * --------------------------- + * + * Block transfers have a byte header, followed by the data, followed + * by a 16-bit CRC. In our case, the data will always be 512 bytes. + * + * +------+---------+---------+- - - -+---------+-----------+----------+ + * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] | + * +------+---------+---------+- - - -+---------+-----------+----------+ + */ + +#include "SDFileSystem.h" + +#define SD_COMMAND_TIMEOUT 5000 + +SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name) : + FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs) { + _cs = 1; +} + +int SDFileSystem::disk_initialize() { + + _spi.frequency(100000); // Set to 100kHz for initialisation + + // Initialise the card by clocking it with cs = 1 + _cs = 1; + for(int i=0; i<16; i++) { + _spi.write(0xFF); + } + + // send CMD0, should return with all zeros except IDLE STATE set (bit 0) + if(_cmd(0, 0) != 0x01) { + fprintf(stderr, "Not in idle state\n"); + return 1; + } + + // ACMD41 to give host capacity support (repeat until not busy) + // ACMD41 is application specific command, so we send APP_CMD (CMD55) beforehand + for(int i=0;; i++) { + _cmd(55, 0); + int response = _cmd(41, 0); + if(response == 0) { + break; + } else if(i > SD_COMMAND_TIMEOUT) { + fprintf(stderr, "Timeout waiting for card\n"); + return 1; + } + } + + _sectors = _sd_sectors(); + + // Set block length to 512 (CMD16) + if(_cmd(16, 512) != 0) { + fprintf(stderr, "Set block timeout\n"); + return 1; + } + + _spi.frequency(1000000); // Set to 1MHz for data transfer + return 0; +} + +int SDFileSystem::disk_write(const char *buffer, int block_number) { + // set write address for single block (CMD24) + if(_cmd(24, block_number * 512) != 0) { + return 1; + } + + // send the data block + _write(buffer, 512); + return 0; +} + +int SDFileSystem::disk_read(char *buffer, int block_number) { + // set read address for single block (CMD17) + if(_cmd(17, block_number * 512) != 0) { + return 1; + } + + // receive the data + _read(buffer, 512); + return 0; +} + +int SDFileSystem::disk_status() { return 0; } +int SDFileSystem::disk_sync() { return 0; } +int SDFileSystem::disk_sectors() { return _sectors; } + +// PRIVATE FUNCTIONS + +int SDFileSystem::_cmd(int cmd, int arg) { + _cs = 0; + + // send a command + _spi.write(0x40 | cmd); + _spi.write(arg >> 24); + _spi.write(arg >> 16); + _spi.write(arg >> 8); + _spi.write(arg >> 0); + _spi.write(0x95); + + // wait for the repsonse (response[7] == 0) + for(int i=0; i<SD_COMMAND_TIMEOUT; i++) { + int response = _spi.write(0xFF); + if(!(response & 0x80)) { + _cs = 1; + _spi.write(0xFF); + return response; + } + } + _cs = 1; + _spi.write(0xFF); + return -1; // timeout +} + +int SDFileSystem::_read(char *buffer, int length) { + _cs = 0; + + // read until start byte (0xFF) + while(_spi.write(0xFF) != 0xFE); + + // read data + for(int i=0; i<length; i++) { + buffer[i] = _spi.write(0xFF); + } + _spi.write(0xFF); // checksum + _spi.write(0xFF); + + _cs = 1; + _spi.write(0xFF); + return 0; +} + +int SDFileSystem::_write(const char *buffer, int length) { + _cs = 0; + + // indicate start of block + _spi.write(0xFE); + + // write the data + for(int i=0; i<length; i++) { + _spi.write(buffer[i]); + } + + // write the checksum + _spi.write(0xFF); + _spi.write(0xFF); + + // check the repsonse token + if((_spi.write(0xFF) & 0x1F) != 0x05) { + _cs = 1; + _spi.write(0xFF); + return 1; + } + + // wait for write to finish + while(_spi.write(0xFF) == 0); + + _cs = 1; + _spi.write(0xFF); + return 0; +} + +static int ext_bits(char *data, int msb, int lsb) { + int bits = 0; + int size = 1 + msb - lsb; + for(int i=0; i<size; i++) { + int position = lsb + i; + int byte = 15 - (position >> 3); + int bit = position & 0x7; + int value = (data[byte] >> bit) & 1; + bits |= value << i; + } + return bits; +} + +int SDFileSystem::_sd_sectors() { + + // CMD9, Response R2 (R1 byte + 16-byte block read) + if(_cmd(9, 0) != 0) { + fprintf(stderr, "Didn't get a response from the disk\n"); + return 0; + } + + char csd[16]; + if(_read(csd, 16) != 0) { + fprintf(stderr, "Couldn't read csd response from disk\n"); + return 0; + } + + // csd_structure : csd[127:126] + // c_size : csd[73:62] + // c_size_mult : csd[49:47] + // read_bl_len : csd[83:80] + + int csd_structure = ext_bits(csd, 127, 126); + int c_size = ext_bits(csd, 73, 62); + int c_size_mult = ext_bits(csd, 49, 47); + int read_bl_len = ext_bits(csd, 83, 80); + + if(csd_structure != 0) { + fprintf(stderr, "This disk tastes funny! I only know about type 0 CSD structures"); + return 0; + } + + int blocks = (c_size + 1) * (1 << (c_size_mult + 2)); + int block_size = 1 << read_bl_len; + + if(block_size != 512) { + fprintf(stderr, "This disk tastes funny! I only like 512-byte blocks"); + return 0; + } + + return blocks; +}
diff -r 000000000000 -r 4cda52c0c66e SDFileSystem.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SDFileSystem.h Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,56 @@ +/* mbed Microcontroller Library - SDFileSystem + * Copyright (c) 2008-2009, sford + */ + +#ifndef SDFILESYSTEM_H +#define SDFILESYSTEM_H + +#include "mbed.h" +#include "FATFileSystem.h" + +/* Class: SDFileSystem + * Access the filesystem on an SD Card using SPI + * + * Example: + * > SDFileSystem sd(p5, p6, p7, p12, "sd"); + * > + * > int main() { + * > FILE *fp = fopen("/sd/myfile.txt", "w"); + * > fprintf(fp, "Hello World!\n"); + * > fclose(fp); + * > } + */ +class SDFileSystem : public FATFileSystem { +public: + + /* Constructor: SDFileSystem + * Create the File System for accessing an SD Card using SPI + * + * Variables: + * mosi - SPI mosi pin connected to SD Card + * miso - SPI miso pin conencted to SD Card + * sclk - SPI sclk pin connected to SD Card + * cs - DigitalOut pin used as SD Card chip select + * name - The name used to access the filesystem + */ + SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name); + virtual int disk_initialize(); + virtual int disk_write(const char *buffer, int block_number); + virtual int disk_read(char *buffer, int block_number); + virtual int disk_status(); + virtual int disk_sync(); + virtual int disk_sectors(); + +protected: + + int _cmd(int cmd, int arg); + int _read(char *buffer, int length); + int _write(const char *buffer, int length); + int _sd_sectors(); + int _sectors; + + SPI _spi; + DigitalOut _cs; +}; + +#endif
diff -r 000000000000 -r 4cda52c0c66e main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,190 @@ +#include "mbed.h" +#include "SDFileSystem.h" + +AnalogOut DACout(p18); +DigitalOut led1(LED1); +DigitalOut led2(LED2); +DigitalOut led3(LED3); +DigitalOut led4(p8); +DigitalOut digout(LED4); +Ticker tick; +SDFileSystem sd(p11, p12, p13, p14, "sd"); + +#define SAMPLE_FREQ 40000 +#define BUF_SIZE (SAMPLE_FREQ/10) +#define SLICE_BUF_SIZE 1 + +void dac_out(void); +void play_wave(char *); +void cleanup(char *); +void fill_adc_buf(short *, unsigned); +void swapword(unsigned *); + +// a FIFO for the DAC +short DAC_fifo[256]; +short DAC_wptr; +short DAC_rptr; +short DAC_on; + +typedef struct uFMT_STRUCT { + short comp_code; + short num_channels; + unsigned sample_rate; + unsigned avg_Bps; + short block_align; + short sig_bps; +} FMT_STRUCT; + + +int main() { + led1=0; wait(.5); led1=1; wait(.5); led1=0; + printf("Hello, world!\n"); + play_wave("/sd/baddonut.wav"); + printf("Back from play_wave()\n"); + play_wave("/sd/clint16.wav"); + printf("Back from play_wave()\n"); + printf("Goodbye, world!\n"); + led1=1; wait(.5); led1=0; wait(.5); led1=1; +} + +void play_wave(char *wavname) +{ + unsigned chunk_id,chunk_size,channel; +// unsigned *data_wptr,data,samp_int,i; + unsigned data,samp_int,i; + short dac_data; + char *slice_buf; + short *data_sptr; +// char *data_bptr; + FMT_STRUCT wav_format; + FILE *wavfile; + long slice,num_slices; + DAC_wptr=0; + DAC_rptr=0; + for (i=0;i<256;i+=2) { + DAC_fifo[i]=0; + DAC_fifo[i+1]=3000; + } + DAC_wptr=4; + DAC_on=0; + + led1=led2=led3=led4=0; + + printf("Playing wave file '%s'\n",wavname); + + wavfile=fopen(wavname,"rb"); + if (!wavfile) { + printf("Unable to open wav file '%s'\n",wavname); + exit(1); + } + + fread(&chunk_id,4,1,wavfile); + fread(&chunk_size,4,1,wavfile); + while (!feof(wavfile)) { + printf("Read chunk ID 0x%x, size 0x%x\n",chunk_id,chunk_size); + switch (chunk_id) { + case 0x46464952: + fread(&data,4,1,wavfile); + printf("RIFF chunk\n"); + printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size); + printf(" RIFF type 0x%x\n",data); + break; + case 0x20746d66: + fread(&wav_format,sizeof(wav_format),1,wavfile); + printf("FORMAT chunk\n"); + printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size); + printf(" compression code %d\n",wav_format.comp_code); + printf(" %d channels\n",wav_format.num_channels); + printf(" %d samples/sec\n",wav_format.sample_rate); + printf(" %d bytes/sec\n",wav_format.avg_Bps); + printf(" block align %d\n",wav_format.block_align); + printf(" %d bits per sample\n",wav_format.sig_bps); + if (chunk_size > sizeof(wav_format)) + fseek(wavfile,chunk_size-sizeof(wav_format),SEEK_CUR); +// create a slice buffer large enough to hold multiple slices + slice_buf=(char *)malloc(wav_format.block_align*SLICE_BUF_SIZE); + if (!slice_buf) { + printf("Unable to malloc slice buffer"); + exit(1); + } + break; + case 0x61746164: + slice_buf=(char *)malloc(wav_format.block_align*SLICE_BUF_SIZE); + if (!slice_buf) { + printf("Unable to malloc slice buffer"); + exit(1); + } num_slices=chunk_size/wav_format.block_align; + printf("DATA chunk\n"); + printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size); + printf(" %d slices\n",num_slices); + printf(" Ideal sample interval=%d\n",(unsigned)(1000000.0/wav_format.sample_rate)); + samp_int=1000000/(wav_format.sample_rate); + printf(" programmed interrupt tick interval=%d\n",samp_int); + +// starting up ticker to write samples out -- no printfs until tick.detach is called + tick.attach_us(&dac_out, samp_int); + DAC_on=1; + led2=1; + for (slice=0;slice<num_slices;slice+=SLICE_BUF_SIZE) { + fread(slice_buf,wav_format.block_align*SLICE_BUF_SIZE,1,wavfile); + if (feof(wavfile)) { + printf("Oops -- not enough slices in the wave file\n"); + exit(1); + } + data_sptr=(short *)slice_buf; + for (i=0;i<SLICE_BUF_SIZE;i++) { + dac_data=0; + +// for a stereo wave file average the two channels. + for (channel=0;channel<wav_format.num_channels;channel++) { + switch (wav_format.sig_bps) { + case 16: + dac_data+=( ((int)(*data_sptr++)) +32768)>>5; + break; + } + } + dac_data>>=1; + DAC_fifo[DAC_wptr]=dac_data; + DAC_wptr=(DAC_wptr+1) & 0xff; + while (DAC_wptr==DAC_rptr) { + led1=1; + } + led1=0; + } + } + DAC_on=0; + led2=0; + tick.detach(); + printf("Ticker detached\n"); + led3=1; + free(slice_buf); + break; + case 0x5453494c: + printf("INFO chunk, size %d\n",chunk_size); + fseek(wavfile,chunk_size,SEEK_CUR); + break; + default: + printf("unknown chunk type 0x%x, size %d\n",chunk_id,chunk_size); + data=fseek(wavfile,chunk_size,SEEK_CUR); + break; + } + fread(&chunk_id,4,1,wavfile); + fread(&chunk_size,4,1,wavfile); + } + printf("Done with wave file\n"); + fclose(wavfile); + led1=0; +} + + +void dac_out() +{ + if (DAC_on) { + digout=1; + DACout.write_u16(DAC_fifo[DAC_rptr]); + DAC_rptr=(DAC_rptr+1) & 0xff; + digout=0; + } +} + +
diff -r 000000000000 -r 4cda52c0c66e mbed.bld --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/49a220cc26e0