Chen Wei Ting
/
middleyuan
read EMG, IMU, encoder
Fork of LSM9DS1_project by
Revision 3:567765d3bcd1, committed 2018-08-01
- Comitter:
- JJting
- Date:
- Wed Aug 01 01:01:13 2018 +0000
- Parent:
- 2:c889fecf9afe
- Commit message:
- original 20180801
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1.cpp Wed Aug 01 01:01:13 2018 +0000 @@ -0,0 +1,401 @@ +#include "LSM9DS1.h" + +LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) : i2c(sda, scl) +{ + // xgAddress and mAddress will store the 7-bit I2C address, if using I2C. + xgAddress = xgAddr; + mAddress = mAddr; +} + +uint16_t LSM9DS1::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl, + gyro_odr gODR, accel_odr aODR, mag_odr mODR) +{ + // Store the given scales in class variables. These scale variables + // are used throughout to calculate the actual g's, DPS,and Gs's. + gScale = gScl; + aScale = aScl; + mScale = mScl; + + // Once we have the scale values, we can calculate the resolution + // of each sensor. That's what these functions are for. One for each sensor + calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable + calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable + calcaRes(); // Calculate g / ADC tick, stored in aRes variable + + + // To verify communication, we can read from the WHO_AM_I register of + // each device. Store those in a variable so we can return them. + // The start of the addresses we want to read from + char cmd[2] = { + WHO_AM_I_XG, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I + + // Reset to the address of the mag who am i + cmd[1] = WHO_AM_I_M; + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(mAddress, cmd+1, 1); + uint8_t mTest = cmd[1]; // Read the mag WHO_AM_I + + // Gyro initialization stuff: + initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. + setGyroODR(gODR); // Set the gyro output data rate and bandwidth. + setGyroScale(gScale); // Set the gyro range + + // Accelerometer initialization stuff: + initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. + setAccelODR(aODR); // Set the accel data rate. + setAccelScale(aScale); // Set the accel range. + + // Magnetometer initialization stuff: + initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. + setMagODR(mODR); // Set the magnetometer output data rate. + setMagScale(mScale); // Set the magnetometer's range. + + // Once everything is initialized, return the WHO_AM_I registers we read: + return (xgTest << 8) | mTest; +} + +void LSM9DS1::initGyro() +{ + char cmd[4] = { + CTRL_REG1_G, + gScale | G_ODR_119_BW_14, + 0, // Default data out and int out + 0 // Default power mode and high pass settings + }; + + // Write the data to the gyro control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM9DS1::initAccel() +{ + char cmd[4] = { + CTRL_REG5_XL, + 0x38, // Enable all axis and don't decimate data in out Registers + (A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW + 0 // Default resolution mode and filtering settings + }; + + // Write the data to the accel control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM9DS1::initMag() +{ + char cmd[4] = { + CTRL_REG1_M, + 0x10, // Default data rate, xy axes mode, and temp comp + mScale << 5, // Set mag scale + 0 // Enable I2C, write only SPI, not LP mode, Continuous conversion mode + }; + + // Write the data to the mag control registers + i2c.write(mAddress, cmd, 4); +} + +void LSM9DS1::readAccel() +{ + // The data we are going to read from the accel + char data[6]; + + // The start of the addresses we want to read from + char subAddress = OUT_X_L_XL; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(xgAddress, data, 6); + + // Reassemble the data and convert to g + ax_raw = data[0] | (data[1] << 8); + ay_raw = data[2] | (data[3] << 8); + az_raw = data[4] | (data[5] << 8); + ax = ax_raw * aRes; + ay = ay_raw * aRes; + az = az_raw * aRes; +} + +void LSM9DS1::readMag() +{ + // The data we are going to read from the mag + char data[6]; + + // The start of the addresses we want to read from + char subAddress = OUT_X_L_M; + + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(mAddress, data, 6); + + // Reassemble the data and convert to degrees + mx_raw = data[0] | (data[1] << 8); + my_raw = data[2] | (data[3] << 8); + mz_raw = data[4] | (data[5] << 8); + mx = mx_raw * mRes; + my = my_raw * mRes; + mz = mz_raw * mRes; +} + +void LSM9DS1::readTemp() +{ + // The data we are going to read from the temp + char data[2]; + + // The start of the addresses we want to read from + char subAddress = OUT_TEMP_L; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(xgAddress, data, 2); + + // Temperature is a 12-bit signed integer + temperature_raw = data[0] | (data[1] << 8); + + temperature_c = (float)temperature_raw / 8.0 + 25; + temperature_f = temperature_c * 1.8 + 32; +} + + +void LSM9DS1::readGyro() +{ + // The data we are going to read from the gyro + char data[6]; + + // The start of the addresses we want to read from + char subAddress = OUT_X_L_G; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddress, 1, true); + // Read in all 8 bit registers containing the axes data + i2c.read(xgAddress, data, 6); + + // Reassemble the data and convert to degrees/sec + gx_raw = data[0] | (data[1] << 8); + gy_raw = data[2] | (data[3] << 8); + gz_raw = data[4] | (data[5] << 8); + gx = gx_raw * gRes; + gy = gy_raw * gRes; + gz = gz_raw * gRes; +} + +void LSM9DS1::setGyroScale(gyro_scale gScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG1_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= gScl << 3; + + // Write the gyroscale out to the gyro + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update gScale: + gScale = gScl; + // Then calculate a new gRes, which relies on gScale being set correctly: + calcgRes(); +} + +void LSM9DS1::setAccelScale(accel_scale aScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG6_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= aScl << 3; + + // Write the accelscale out to the accel + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update aScale: + aScale = aScl; + // Then calculate a new aRes, which relies on aScale being set correctly: + calcaRes(); +} + +void LSM9DS1::setMagScale(mag_scale mScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG2_M, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(mAddress, cmd+1, 1); + + // Then mask out the mag scale bits: + cmd[1] &= 0xFF^(0x3 << 5); + // Then shift in our new scale bits: + cmd[1] |= mScl << 5; + + // Write the magscale out to the mag + i2c.write(mAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update mScale: + mScale = mScl; + // Then calculate a new mRes, which relies on mScale being set correctly: + calcmRes(); +} + +void LSM9DS1::setGyroODR(gyro_odr gRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG1_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro odr bits: + cmd[1] &= (0x3 << 3); + // Then shift in our new odr bits: + cmd[1] |= gRate; + + // Write the gyroodr out to the gyro + i2c.write(xgAddress, cmd, 2); +} + +void LSM9DS1::setAccelODR(accel_odr aRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG6_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel odr bits: + cmd[1] &= 0xFF^(0x7 << 5); + // Then shift in our new odr bits: + cmd[1] |= aRate << 5; + + // Write the accelodr out to the accel + i2c.write(xgAddress, cmd, 2); +} + +void LSM9DS1::setMagODR(mag_odr mRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL_REG1_M, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(mAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(mAddress, cmd+1, 1); + + // Then mask out the mag odr bits: + cmd[1] &= 0xFF^(0x7 << 2); + // Then shift in our new odr bits: + cmd[1] |= mRate << 2; + + // Write the magodr out to the mag + i2c.write(mAddress, cmd, 2); +} + +void LSM9DS1::calcgRes() +{ + // Possible gyro scales (and their register bit settings) are: + // 245 DPS (00), 500 DPS (01), 2000 DPS (10). + switch (gScale) + { + case G_SCALE_245DPS: + gRes = 245.0 / 32768.0; + break; + case G_SCALE_500DPS: + gRes = 500.0 / 32768.0; + break; + case G_SCALE_2000DPS: + gRes = 2000.0 / 32768.0; + break; + } +} + +void LSM9DS1::calcaRes() +{ + // Possible accelerometer scales (and their register bit settings) are: + // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). + switch (aScale) + { + case A_SCALE_2G: + aRes = 2.0 / 32768.0; + break; + case A_SCALE_4G: + aRes = 4.0 / 32768.0; + break; + case A_SCALE_8G: + aRes = 8.0 / 32768.0; + break; + case A_SCALE_16G: + aRes = 16.0 / 32768.0; + break; + } +} + +void LSM9DS1::calcmRes() +{ + // Possible magnetometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). + switch (mScale) + { + case M_SCALE_4GS: + mRes = 4.0 / 32768.0; + break; + case M_SCALE_8GS: + mRes = 8.0 / 32768.0; + break; + case M_SCALE_12GS: + mRes = 12.0 / 32768.0; + break; + case M_SCALE_16GS: + mRes = 16.0 / 32768.0; + break; + } +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM9DS1.h Wed Aug 01 01:01:13 2018 +0000 @@ -0,0 +1,386 @@ +#ifndef _LSM9DS1_H__ +#define _LSM9DS1_H__ + +#include "mbed.h" + +#define Acce_gain_z_2 -9.825751072961373f +#define Acce_gain_y_2 -9.810204081632654f +#define Acce_gain_x_2 -9.579654120040694 +#define Acce_gain_z -10.0512295081967213f +#define Acce_gain_y -9.9090909090909090f +#define Acce_gain_x -9.4236311239193f +#define Gyro_gain_x 0.02035972509905115f +#define Gyro_gain_y 0.01825192507334282f +#define Gyro_gain_z 0.02154843475f +#define Gyro_gain_x_2 -0.02035972509905115f +#define Gyro_gain_y_2 -0.01825192507334282f +#define Gyro_gain_z_2 -0.02154843475f +#define pi 3.1415926f +///////////////////////////////////////// +// LSM9DS1 Accel/Gyro (XL/G) Registers // +///////////////////////////////////////// +#define ACT_THS 0x04 +#define ACT_DUR 0x05 +#define INT_GEN_CFG_XL 0x06 +#define INT_GEN_THS_X_XL 0x07 +#define INT_GEN_THS_Y_XL 0x08 +#define INT_GEN_THS_Z_XL 0x09 +#define INT_GEN_DUR_XL 0x0A +#define REFERENCE_G 0x0B +#define INT1_CTRL 0x0C +#define INT2_CTRL 0x0D +#define WHO_AM_I_XG 0x0F +#define CTRL_REG1_G 0x10 +#define CTRL_REG2_G 0x11 +#define CTRL_REG3_G 0x12 +#define ORIENT_CFG_G 0x13 +#define INT_GEN_SRC_G 0x14 +#define OUT_TEMP_L 0x15 +#define OUT_TEMP_H 0x16 +#define STATUS_REG_0 0x17 +#define OUT_X_L_G 0x18 +#define OUT_X_H_G 0x19 +#define OUT_Y_L_G 0x1A +#define OUT_Y_H_G 0x1B +#define OUT_Z_L_G 0x1C +#define OUT_Z_H_G 0x1D +#define CTRL_REG4 0x1E +#define CTRL_REG5_XL 0x1F +#define CTRL_REG6_XL 0x20 +#define CTRL_REG7_XL 0x21 +#define CTRL_REG8 0x22 +#define CTRL_REG9 0x23 +#define CTRL_REG10 0x24 +#define INT_GEN_SRC_XL 0x26 +#define STATUS_REG_1 0x27 +#define OUT_X_L_XL 0x28 +#define OUT_X_H_XL 0x29 +#define OUT_Y_L_XL 0x2A +#define OUT_Y_H_XL 0x2B +#define OUT_Z_L_XL 0x2C +#define OUT_Z_H_XL 0x2D +#define FIFO_CTRL 0x2E +#define FIFO_SRC 0x2F +#define INT_GEN_CFG_G 0x30 +#define INT_GEN_THS_XH_G 0x31 +#define INT_GEN_THS_XL_G 0x32 +#define INT_GEN_THS_YH_G 0x33 +#define INT_GEN_THS_YL_G 0x34 +#define INT_GEN_THS_ZH_G 0x35 +#define INT_GEN_THS_ZL_G 0x36 +#define INT_GEN_DUR_G 0x37 + +/////////////////////////////// +// LSM9DS1 Magneto Registers // +/////////////////////////////// +#define OFFSET_X_REG_L_M 0x05 +#define OFFSET_X_REG_H_M 0x06 +#define OFFSET_Y_REG_L_M 0x07 +#define OFFSET_Y_REG_H_M 0x08 +#define OFFSET_Z_REG_L_M 0x09 +#define OFFSET_Z_REG_H_M 0x0A +#define WHO_AM_I_M 0x0F +#define CTRL_REG1_M 0x20 +#define CTRL_REG2_M 0x21 +#define CTRL_REG3_M 0x22 +#define CTRL_REG4_M 0x23 +#define CTRL_REG5_M 0x24 +#define STATUS_REG_M 0x27 +#define OUT_X_L_M 0x28 +#define OUT_X_H_M 0x29 +#define OUT_Y_L_M 0x2A +#define OUT_Y_H_M 0x2B +#define OUT_Z_L_M 0x2C +#define OUT_Z_H_M 0x2D +#define INT_CFG_M 0x30 +#define INT_SRC_M 0x30 +#define INT_THS_L_M 0x32 +#define INT_THS_H_M 0x33 + +//////////////////////////////// +// LSM9DS1 WHO_AM_I Responses // +//////////////////////////////// +#define WHO_AM_I_AG_RSP 0x68 +#define WHO_AM_I_M_RSP 0x3D + +// Possible I2C addresses for the accel/gyro and mag +#define LSM9DS1_AG_I2C_ADDR(sa0) ((sa0) ? 0xD6 : 0xD4) +#define LSM9DS1_M_I2C_ADDR(sa1) ((sa1) ? 0x3C : 0x38) + +/** + * LSM9DS1 Class - driver for the 9 DoF IMU + */ +class LSM9DS1 +{ +public: + + /// gyro_scale defines the possible full-scale ranges of the gyroscope: + enum gyro_scale + { + G_SCALE_245DPS = 0x0 << 3, // 00 << 3: +/- 245 degrees per second + G_SCALE_500DPS = 0x1 << 3, // 01 << 3: +/- 500 dps + G_SCALE_2000DPS = 0x3 << 3 // 11 << 3: +/- 2000 dps + }; + + /// gyro_odr defines all possible data rate/bandwidth combos of the gyro: + enum gyro_odr + { // ODR (Hz) --- Cutoff + G_POWER_DOWN = 0x00, // 0 0 + G_ODR_15_BW_0 = 0x20, // 14.9 0 + G_ODR_60_BW_16 = 0x40, // 59.5 16 + G_ODR_119_BW_14 = 0x60, // 119 14 + G_ODR_119_BW_31 = 0x61, // 119 31 + G_ODR_238_BW_14 = 0x80, // 238 14 + G_ODR_238_BW_29 = 0x81, // 238 29 + G_ODR_238_BW_63 = 0x82, // 238 63 + G_ODR_238_BW_78 = 0x83, // 238 78 + G_ODR_476_BW_21 = 0xA0, // 476 21 + G_ODR_476_BW_28 = 0xA1, // 476 28 + G_ODR_476_BW_57 = 0xA2, // 476 57 + G_ODR_476_BW_100 = 0xA3, // 476 100 + G_ODR_952_BW_33 = 0xC0, // 952 33 + G_ODR_952_BW_40 = 0xC1, // 952 40 + G_ODR_952_BW_58 = 0xC2, // 952 58 + G_ODR_952_BW_100 = 0xC3 // 952 100 + }; + + /// accel_scale defines all possible FSR's of the accelerometer: + enum accel_scale + { + A_SCALE_2G, // 00: +/- 2g + A_SCALE_16G,// 01: +/- 16g + A_SCALE_4G, // 10: +/- 4g + A_SCALE_8G // 11: +/- 8g + }; + + /// accel_oder defines all possible output data rates of the accelerometer: + enum accel_odr + { + A_POWER_DOWN, // Power-down mode (0x0) + A_ODR_10, // 10 Hz (0x1) + A_ODR_50, // 50 Hz (0x2) + A_ODR_119, // 119 Hz (0x3) + A_ODR_238, // 238 Hz (0x4) + A_ODR_476, // 476 Hz (0x5) + A_ODR_952 // 952 Hz (0x6) + }; + + // accel_bw defines all possible bandwiths for low-pass filter of the accelerometer: + enum accel_bw + { + A_BW_AUTO_SCALE = 0x0, // Automatic BW scaling (0x0) + A_BW_408 = 0x4, // 408 Hz (0x4) + A_BW_211 = 0x5, // 211 Hz (0x5) + A_BW_105 = 0x6, // 105 Hz (0x6) + A_BW_50 = 0x7 // 50 Hz (0x7) + }; + + /// mag_scale defines all possible FSR's of the magnetometer: + enum mag_scale + { + M_SCALE_4GS, // 00: +/- 4Gs + M_SCALE_8GS, // 01: +/- 8Gs + M_SCALE_12GS, // 10: +/- 12Gs + M_SCALE_16GS, // 11: +/- 16Gs + }; + + /// mag_odr defines all possible output data rates of the magnetometer: + enum mag_odr + { + M_ODR_0625, // 0.625 Hz (0x00) + M_ODR_125, // 1.25 Hz (0x01) + M_ODR_25, // 2.5 Hz (0x02) + M_ODR_5, // 5 Hz (0x03) + M_ODR_10, // 10 (0x04) + M_ODR_20, // 20 Hz (0x05) + M_ODR_40, // 40 Hz (0x06) + M_ODR_80 // 80 Hz (0x07) + }; + + // We'll store the gyro, accel, and magnetometer readings in a series of + // public class variables. Each sensor gets three variables -- one for each + // axis. Call readGyro(), readAccel(), and readMag() first, before using + // these variables! + // These values are the RAW signed 16-bit readings from the sensors. + int16_t gx_raw, gy_raw, gz_raw; // x, y, and z axis readings of the gyroscope + int16_t ax_raw, ay_raw, az_raw; // x, y, and z axis readings of the accelerometer + int16_t mx_raw, my_raw, mz_raw; // x, y, and z axis readings of the magnetometer + int16_t temperature_raw; + + // floating-point values of scaled data in real-world units + float gx, gy, gz; + float ax, ay, az; + float mx, my, mz; + float temperature_c, temperature_f; // temperature in celcius and fahrenheit + + + /** LSM9DS1 -- LSM9DS1 class constructor + * The constructor will set up a handful of private variables, and set the + * communication mode as well. + * Input: + * - interface = Either MODE_SPI or MODE_I2C, whichever you're using + * to talk to the IC. + * - xgAddr = If MODE_I2C, this is the I2C address of the accel/gyro. + * If MODE_SPI, this is the chip select pin of the accel/gyro (CS_A/G) + * - mAddr = If MODE_I2C, this is the I2C address of the mag. + * If MODE_SPI, this is the cs pin of the mag (CS_M) + */ + LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr = LSM9DS1_AG_I2C_ADDR(1), uint8_t mAddr = LSM9DS1_M_I2C_ADDR(1)); + + /** begin() -- Initialize the gyro, accelerometer, and magnetometer. + * This will set up the scale and output rate of each sensor. It'll also + * "turn on" every sensor and every axis of every sensor. + * Input: + * - gScl = The scale of the gyroscope. This should be a gyro_scale value. + * - aScl = The scale of the accelerometer. Should be a accel_scale value. + * - mScl = The scale of the magnetometer. Should be a mag_scale value. + * - gODR = Output data rate of the gyroscope. gyro_odr value. + * - aODR = Output data rate of the accelerometer. accel_odr value. + * - mODR = Output data rate of the magnetometer. mag_odr value. + * Output: The function will return an unsigned 16-bit value. The most-sig + * bytes of the output are the WHO_AM_I reading of the accel/gyro. The + * least significant two bytes are the WHO_AM_I reading of the mag. + * All parameters have a defaulted value, so you can call just "begin()". + * Default values are FSR's of: +/- 245DPS, 4g, 2Gs; ODRs of 119 Hz for + * gyro, 119 Hz for accelerometer, 80 Hz for magnetometer. + * Use the return value of this function to verify communication. + */ + uint16_t begin(gyro_scale gScl = G_SCALE_245DPS, + accel_scale aScl = A_SCALE_2G, mag_scale mScl = M_SCALE_4GS, + gyro_odr gODR = G_ODR_119_BW_14, accel_odr aODR = A_ODR_119, + mag_odr mODR = M_ODR_80); + + /** readGyro() -- Read the gyroscope output registers. + * This function will read all six gyroscope output registers. + * The readings are stored in the class' gx_raw, gy_raw, and gz_raw variables. Read + * those _after_ calling readGyro(). + */ + void readGyro(); + + /** readAccel() -- Read the accelerometer output registers. + * This function will read all six accelerometer output registers. + * The readings are stored in the class' ax_raw, ay_raw, and az_raw variables. Read + * those _after_ calling readAccel(). + */ + void readAccel(); + + /** readMag() -- Read the magnetometer output registers. + * This function will read all six magnetometer output registers. + * The readings are stored in the class' mx_raw, my_raw, and mz_raw variables. Read + * those _after_ calling readMag(). + */ + void readMag(); + + /** readTemp() -- Read the temperature output register. + * This function will read two temperature output registers. + * The combined readings are stored in the class' temperature variables. Read + * those _after_ calling readTemp(). + */ + void readTemp(); + + /** setGyroScale() -- Set the full-scale range of the gyroscope. + * This function can be called to set the scale of the gyroscope to + * 245, 500, or 2000 degrees per second. + * Input: + * - gScl = The desired gyroscope scale. Must be one of three possible + * values from the gyro_scale enum. + */ + void setGyroScale(gyro_scale gScl); + + /** setAccelScale() -- Set the full-scale range of the accelerometer. + * This function can be called to set the scale of the accelerometer to + * 2, 4, 8, or 16 g's. + * Input: + * - aScl = The desired accelerometer scale. Must be one of five possible + * values from the accel_scale enum. + */ + void setAccelScale(accel_scale aScl); + + /** setMagScale() -- Set the full-scale range of the magnetometer. + * This function can be called to set the scale of the magnetometer to + * 4, 8, 12, or 16 Gs. + * Input: + * - mScl = The desired magnetometer scale. Must be one of four possible + * values from the mag_scale enum. + */ + void setMagScale(mag_scale mScl); + + /** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope + * Input: + * - gRate = The desired output rate and cutoff frequency of the gyro. + * Must be a value from the gyro_odr enum (check above). + */ + void setGyroODR(gyro_odr gRate); + + /** setAccelODR() -- Set the output data rate of the accelerometer + * Input: + * - aRate = The desired output rate of the accel. + * Must be a value from the accel_odr enum (check above). + */ + void setAccelODR(accel_odr aRate); + + /** setMagODR() -- Set the output data rate of the magnetometer + * Input: + * - mRate = The desired output rate of the mag. + * Must be a value from the mag_odr enum (check above). + */ + void setMagODR(mag_odr mRate); + + +private: + /** xgAddress and mAddress store the I2C address + * for each sensor. + */ + uint8_t xgAddress, mAddress; + + // I2C bus + I2C i2c; + + /** gScale, aScale, and mScale store the current scale range for each + * sensor. Should be updated whenever that value changes. + */ + gyro_scale gScale; + accel_scale aScale; + mag_scale mScale; + + /** gRes, aRes, and mRes store the current resolution for each sensor. + * Units of these values would be DPS (or g's or Gs's) per ADC tick. + * This value is calculated as (sensor scale) / (2^15). + */ + float gRes, aRes, mRes; + + /** initGyro() -- Sets up the gyroscope to begin reading. + * This function steps through all three gyroscope control registers. + */ + void initGyro(); + + /** initAccel() -- Sets up the accelerometer to begin reading. + * This function steps through all accelerometer related control registers. + */ + void initAccel(); + + /** initMag() -- Sets up the magnetometer to begin reading. + * This function steps through all magnetometer-related control registers. + */ + void initMag(); + + /** calcgRes() -- Calculate the resolution of the gyroscope. + * This function will set the value of the gRes variable. gScale must + * be set prior to calling this function. + */ + void calcgRes(); + + /** calcmRes() -- Calculate the resolution of the magnetometer. + * This function will set the value of the mRes variable. mScale must + * be set prior to calling this function. + */ + void calcmRes(); + + /** calcaRes() -- Calculate the resolution of the accelerometer. + * This function will set the value of the aRes variable. aScale must + * be set prior to calling this function. + */ + void calcaRes(); +}; + +#endif // _LSM9DS1_H //
--- a/LSM9DS1.lib Tue Apr 24 15:13:58 2018 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -https://os.mbed.com/users/middleyuan/code/LSM9DS1/#37b16dcc758d
--- a/main.cpp Tue Apr 24 15:13:58 2018 +0000 +++ b/main.cpp Wed Aug 01 01:01:13 2018 +0000 @@ -12,6 +12,7 @@ Serial pc(USBTX, USBRX); Ticker timer1; Ticker timer2; +DigitalOut LED(A4); // check if the code is running float T = 0.001; /********************************************************************/ @@ -77,17 +78,24 @@ int main() { + LED = 1; + wait_ms(500); + pc.baud(230400); setup(); //Setup sensors AS5145_begin(); //begin encoder + + wait_ms(500); + LED = 0; + init_TIMER(); while (1) { //pc.printf("%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%d,%d\n",pitch_angle[0],pitch_dot[0],pitch_angle[1],pitch_dot[1],pitch_angle[2],pitch_dot[2],emg_value[0],emg_value[1],emg_value[2],emg_value[3],position[1]*360/4096, position[0]*360/4096); wait(0.05); //pc.printf("%f,%f,%f,%f\n",emg_value[0],emg_value[1],emg_value[2],emg_value[3]); - pc.printf("%f,%f,%f,%f,%f,%d,%d\n", pitch_angle[0], pitch_angle[1], roll_angle[1], pitch_angle[2], roll_angle[2], position[1]*360/4096, position[0]*360/4096); - //pc.printf("IMU: %2f,%2f\r\n", pitch_angle[0], roll_angle[0]); +// pc.printf("%f,%f,%f,%f,%f,%d,%d\n", pitch_angle[0], pitch_angle[1], roll_angle[1], pitch_angle[2], roll_angle[2], position[1]*360/4096, position[0]*360/4096); + pc.printf("IMU: %2f,%2f\r\n", pitch_angle[0], roll_angle[0]); //pc.printf("IMU2: %2f,%2f\r\n", pitch_angle[1], roll_angle[1]); //pc.printf("IMU3: %2f,%2f\r\n", pitch_angle[2], roll_angle[2]); //pc.printf("position: %d,%d\r\n", position[0], position[1]);