Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
MPU6050.h
00001 #ifndef MPU6050_H 00002 #define MPU6050_H 00003 00004 #include "mbed.h" 00005 #include "math.h" 00006 00007 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device 00008 // Invensense Inc., www.invensense.com 00009 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in 00010 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor 00011 // 00012 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD 00013 #define YGOFFS_TC 0x01 00014 #define ZGOFFS_TC 0x02 00015 #define X_FINE_GAIN 0x03 // [7:0] fine gain 00016 #define Y_FINE_GAIN 0x04 00017 #define Z_FINE_GAIN 0x05 00018 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer 00019 #define XA_OFFSET_L_TC 0x07 00020 #define YA_OFFSET_H 0x08 00021 #define YA_OFFSET_L_TC 0x09 00022 #define ZA_OFFSET_H 0x0A 00023 #define ZA_OFFSET_L_TC 0x0B 00024 #define SELF_TEST_X 0x0D 00025 #define SELF_TEST_Y 0x0E 00026 #define SELF_TEST_Z 0x0F 00027 #define SELF_TEST_A 0x10 00028 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050? 00029 #define XG_OFFS_USRL 0x14 00030 #define YG_OFFS_USRH 0x15 00031 #define YG_OFFS_USRL 0x16 00032 #define ZG_OFFS_USRH 0x17 00033 #define ZG_OFFS_USRL 0x18 00034 #define SMPLRT_DIV 0x19 00035 #define CONFIG 0x1A 00036 #define GYRO_CONFIG 0x1B 00037 #define ACCEL_CONFIG 0x1C 00038 #define FF_THR 0x1D // Free-fall 00039 #define FF_DUR 0x1E // Free-fall 00040 #define MOT_THR 0x1F // Motion detection threshold bits [7:0] 00041 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms 00042 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] 00043 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms 00044 #define FIFO_EN 0x23 00045 #define I2C_MST_CTRL 0x24 00046 #define I2C_SLV0_ADDR 0x25 00047 #define I2C_SLV0_REG 0x26 00048 #define I2C_SLV0_CTRL 0x27 00049 #define I2C_SLV1_ADDR 0x28 00050 #define I2C_SLV1_REG 0x29 00051 #define I2C_SLV1_CTRL 0x2A 00052 #define I2C_SLV2_ADDR 0x2B 00053 #define I2C_SLV2_REG 0x2C 00054 #define I2C_SLV2_CTRL 0x2D 00055 #define I2C_SLV3_ADDR 0x2E 00056 #define I2C_SLV3_REG 0x2F 00057 #define I2C_SLV3_CTRL 0x30 00058 #define I2C_SLV4_ADDR 0x31 00059 #define I2C_SLV4_REG 0x32 00060 #define I2C_SLV4_DO 0x33 00061 #define I2C_SLV4_CTRL 0x34 00062 #define I2C_SLV4_DI 0x35 00063 #define I2C_MST_STATUS 0x36 00064 #define INT_PIN_CFG 0x37 00065 #define INT_ENABLE 0x38 00066 #define DMP_INT_STATUS 0x39 // Check DMP interrupt 00067 #define INT_STATUS 0x3A 00068 #define ACCEL_XOUT_H 0x3B 00069 #define ACCEL_XOUT_L 0x3C 00070 #define ACCEL_YOUT_H 0x3D 00071 #define ACCEL_YOUT_L 0x3E 00072 #define ACCEL_ZOUT_H 0x3F 00073 #define ACCEL_ZOUT_L 0x40 00074 #define TEMP_OUT_H 0x41 00075 #define TEMP_OUT_L 0x42 00076 #define GYRO_XOUT_H 0x43 00077 #define GYRO_XOUT_L 0x44 00078 #define GYRO_YOUT_H 0x45 00079 #define GYRO_YOUT_L 0x46 00080 #define GYRO_ZOUT_H 0x47 00081 #define GYRO_ZOUT_L 0x48 00082 #define EXT_SENS_DATA_00 0x49 00083 #define EXT_SENS_DATA_01 0x4A 00084 #define EXT_SENS_DATA_02 0x4B 00085 #define EXT_SENS_DATA_03 0x4C 00086 #define EXT_SENS_DATA_04 0x4D 00087 #define EXT_SENS_DATA_05 0x4E 00088 #define EXT_SENS_DATA_06 0x4F 00089 #define EXT_SENS_DATA_07 0x50 00090 #define EXT_SENS_DATA_08 0x51 00091 #define EXT_SENS_DATA_09 0x52 00092 #define EXT_SENS_DATA_10 0x53 00093 #define EXT_SENS_DATA_11 0x54 00094 #define EXT_SENS_DATA_12 0x55 00095 #define EXT_SENS_DATA_13 0x56 00096 #define EXT_SENS_DATA_14 0x57 00097 #define EXT_SENS_DATA_15 0x58 00098 #define EXT_SENS_DATA_16 0x59 00099 #define EXT_SENS_DATA_17 0x5A 00100 #define EXT_SENS_DATA_18 0x5B 00101 #define EXT_SENS_DATA_19 0x5C 00102 #define EXT_SENS_DATA_20 0x5D 00103 #define EXT_SENS_DATA_21 0x5E 00104 #define EXT_SENS_DATA_22 0x5F 00105 #define EXT_SENS_DATA_23 0x60 00106 #define MOT_DETECT_STATUS 0x61 00107 #define I2C_SLV0_DO 0x63 00108 #define I2C_SLV1_DO 0x64 00109 #define I2C_SLV2_DO 0x65 00110 #define I2C_SLV3_DO 0x66 00111 #define I2C_MST_DELAY_CTRL 0x67 00112 #define SIGNAL_PATH_RESET 0x68 00113 #define MOT_DETECT_CTRL 0x69 00114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP 00115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode 00116 #define PWR_MGMT_2 0x6C 00117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP 00118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank 00119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write 00120 #define DMP_REG_1 0x70 00121 #define DMP_REG_2 0x71 00122 #define FIFO_COUNTH 0x72 00123 #define FIFO_COUNTL 0x73 00124 #define FIFO_R_W 0x74 00125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68 00126 00127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor 00128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 00129 #define ADO 0 00130 #if ADO 00131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1 00132 #else 00133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0 00134 #endif 00135 00136 // Set initial input parameters 00137 enum Ascale { 00138 AFS_2G = 0, 00139 AFS_4G, 00140 AFS_8G, 00141 AFS_16G 00142 }; 00143 00144 enum Gscale { 00145 GFS_250DPS = 0, 00146 GFS_500DPS, 00147 GFS_1000DPS, 00148 GFS_2000DPS 00149 }; 00150 00151 // Specify sensor full scale 00152 int Gscale = GFS_250DPS; 00153 int Ascale = AFS_2G; 00154 00155 //Set up I2C, (SDA,SCL) 00156 I2C i2c(I2C_SDA, I2C_SCL); 00157 00158 DigitalOut myled(LED1); 00159 00160 float aRes, gRes; // scale resolutions per LSB for the sensors 00161 00162 // Pin definitions 00163 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins 00164 00165 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output 00166 float ax, ay, az; // Stores the real accel value in g's 00167 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output 00168 float gx, gy, gz; // Stores the real gyro value in degrees per seconds 00169 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer 00170 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius 00171 float temperature; 00172 float SelfTest[6]; 00173 00174 int delt_t = 0; // used to control display output rate 00175 int count = 0; // used to control display output rate 00176 00177 // parameters for 6 DoF sensor fusion calculations 00178 float PI = 3.14159265358979323846f; 00179 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 00180 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta 00181 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) 00182 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value 00183 float pitch, yaw, roll; 00184 float deltat = 0.0f; // integration interval for both filter schemes 00185 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval 00186 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion 00187 00188 class MPU6050 { 00189 00190 protected: 00191 00192 public: 00193 //=================================================================================================================== 00194 //====== Set of useful function to access acceleratio, gyroscope, and temperature data 00195 //=================================================================================================================== 00196 00197 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) 00198 { 00199 char data_write[2]; 00200 data_write[0] = subAddress; 00201 data_write[1] = data; 00202 i2c.write(address, data_write, 2, 0); 00203 } 00204 00205 char readByte(uint8_t address, uint8_t subAddress) 00206 { 00207 char data[1]; // `data` will store the register data 00208 char data_write[1]; 00209 data_write[0] = subAddress; 00210 i2c.write(address, data_write, 1, 1); // no stop 00211 i2c.read(address, data, 1, 0); 00212 return data[0]; 00213 } 00214 00215 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) 00216 { 00217 char data[14]; 00218 char data_write[1]; 00219 data_write[0] = subAddress; 00220 i2c.write(address, data_write, 1, 1); // no stop 00221 i2c.read(address, data, count, 0); 00222 for(int ii = 0; ii < count; ii++) { 00223 dest[ii] = data[ii]; 00224 } 00225 } 00226 00227 00228 void getGres() { 00229 switch (Gscale) 00230 { 00231 // Possible gyro scales (and their register bit settings) are: 00232 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). 00233 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: 00234 case GFS_250DPS: 00235 gRes = 250.0/32768.0; 00236 break; 00237 case GFS_500DPS: 00238 gRes = 500.0/32768.0; 00239 break; 00240 case GFS_1000DPS: 00241 gRes = 1000.0/32768.0; 00242 break; 00243 case GFS_2000DPS: 00244 gRes = 2000.0/32768.0; 00245 break; 00246 } 00247 } 00248 00249 void getAres() { 00250 switch (Ascale) 00251 { 00252 // Possible accelerometer scales (and their register bit settings) are: 00253 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). 00254 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: 00255 case AFS_2G: 00256 aRes = 2.0/32768.0; 00257 break; 00258 case AFS_4G: 00259 aRes = 4.0/32768.0; 00260 break; 00261 case AFS_8G: 00262 aRes = 8.0/32768.0; 00263 break; 00264 case AFS_16G: 00265 aRes = 16.0/32768.0; 00266 break; 00267 } 00268 } 00269 00270 00271 void readAccelData(int16_t * destination) 00272 { 00273 uint8_t rawData[6]; // x/y/z accel register data stored here 00274 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array 00275 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value 00276 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; 00277 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 00278 } 00279 00280 void readGyroData(int16_t * destination) 00281 { 00282 uint8_t rawData[6]; // x/y/z gyro register data stored here 00283 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array 00284 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value 00285 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; 00286 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 00287 } 00288 00289 int16_t readTempData() 00290 { 00291 uint8_t rawData[2]; // x/y/z gyro register data stored here 00292 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array 00293 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value 00294 } 00295 00296 00297 00298 // Configure the motion detection control for low power accelerometer mode 00299 void LowPowerAccelOnly() 00300 { 00301 00302 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly 00303 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration 00304 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 00305 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out 00306 // consideration for these threshold evaluations; otherwise, the flags would be set all the time! 00307 00308 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); 00309 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6] 00310 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running 00311 00312 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); 00313 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5] 00314 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running 00315 00316 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); 00317 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] 00318 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold 00319 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter 00320 00321 c = readByte(MPU6050_ADDRESS, CONFIG); 00322 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0] 00323 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate 00324 00325 c = readByte(MPU6050_ADDRESS, INT_ENABLE); 00326 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts 00327 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only 00328 00329 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold 00330 // for at least the counter duration 00331 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg 00332 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate 00333 00334 wait(0.1); // Add delay for accumulation of samples 00335 00336 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); 00337 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0] 00338 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance 00339 00340 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2); 00341 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7] 00342 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2]) 00343 00344 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1); 00345 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5 00346 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts 00347 00348 } 00349 00350 00351 void resetMPU6050() { 00352 // reset device 00353 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device 00354 wait(0.1); 00355 } 00356 00357 00358 void initMPU6050() 00359 { 00360 // Initialize MPU6050 device 00361 // wake up device 00362 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 00363 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt 00364 00365 // get stable time source 00366 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 00367 00368 // Configure Gyro and Accelerometer 00369 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 00370 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both 00371 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate 00372 writeByte(MPU6050_ADDRESS, CONFIG, 0x03); 00373 00374 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) 00375 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above 00376 00377 // Set gyroscope full scale range 00378 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 00379 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG); 00380 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 00381 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] 00382 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro 00383 00384 // Set accelerometer configuration 00385 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG); 00386 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 00387 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] 00388 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 00389 00390 // Configure Interrupts and Bypass Enable 00391 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 00392 // can join the I2C bus and all can be controlled by the Arduino as master 00393 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22); 00394 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt 00395 } 00396 00397 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average 00398 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. 00399 void calibrateMPU6050(float * dest1, float * dest2) 00400 { 00401 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data 00402 uint16_t ii, packet_count, fifo_count; 00403 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; 00404 00405 // reset device, reset all registers, clear gyro and accelerometer bias registers 00406 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device 00407 wait(0.1); 00408 00409 // get stable time source 00410 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 00411 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); 00412 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 00413 wait(0.2); 00414 00415 // Configure device for bias calculation 00416 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts 00417 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO 00418 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source 00419 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master 00420 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes 00421 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP 00422 wait(0.015); 00423 00424 // Configure MPU6050 gyro and accelerometer for bias calculation 00425 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz 00426 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz 00427 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity 00428 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity 00429 00430 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec 00431 uint16_t accelsensitivity = 16384; // = 16384 LSB/g 00432 00433 // Configure FIFO to capture accelerometer and gyro data for bias calculation 00434 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO 00435 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050) 00436 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes 00437 00438 // At end of sample accumulation, turn off FIFO sensor read 00439 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO 00440 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count 00441 fifo_count = ((uint16_t)data[0] << 8) | data[1]; 00442 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging 00443 00444 for (ii = 0; ii < packet_count; ii++) { 00445 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; 00446 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging 00447 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO 00448 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; 00449 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; 00450 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; 00451 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; 00452 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; 00453 00454 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases 00455 accel_bias[1] += (int32_t) accel_temp[1]; 00456 accel_bias[2] += (int32_t) accel_temp[2]; 00457 gyro_bias[0] += (int32_t) gyro_temp[0]; 00458 gyro_bias[1] += (int32_t) gyro_temp[1]; 00459 gyro_bias[2] += (int32_t) gyro_temp[2]; 00460 00461 } 00462 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases 00463 accel_bias[1] /= (int32_t) packet_count; 00464 accel_bias[2] /= (int32_t) packet_count; 00465 gyro_bias[0] /= (int32_t) packet_count; 00466 gyro_bias[1] /= (int32_t) packet_count; 00467 gyro_bias[2] /= (int32_t) packet_count; 00468 00469 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation 00470 else {accel_bias[2] += (int32_t) accelsensitivity;} 00471 00472 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup 00473 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format 00474 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases 00475 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; 00476 data[3] = (-gyro_bias[1]/4) & 0xFF; 00477 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; 00478 data[5] = (-gyro_bias[2]/4) & 0xFF; 00479 00480 // Push gyro biases to hardware registers 00481 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 00482 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]); 00483 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]); 00484 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]); 00485 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]); 00486 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]); 00487 00488 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction 00489 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; 00490 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; 00491 00492 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain 00493 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold 00494 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature 00495 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that 00496 // the accelerometer biases calculated above must be divided by 8. 00497 00498 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases 00499 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values 00500 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; 00501 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]); 00502 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; 00503 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]); 00504 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; 00505 00506 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers 00507 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis 00508 00509 for(ii = 0; ii < 3; ii++) { 00510 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit 00511 } 00512 00513 // Construct total accelerometer bias, including calculated average accelerometer bias from above 00514 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) 00515 accel_bias_reg[1] -= (accel_bias[1]/8); 00516 accel_bias_reg[2] -= (accel_bias[2]/8); 00517 00518 data[0] = (accel_bias_reg[0] >> 8) & 0xFF; 00519 data[1] = (accel_bias_reg[0]) & 0xFF; 00520 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers 00521 data[2] = (accel_bias_reg[1] >> 8) & 0xFF; 00522 data[3] = (accel_bias_reg[1]) & 0xFF; 00523 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers 00524 data[4] = (accel_bias_reg[2] >> 8) & 0xFF; 00525 data[5] = (accel_bias_reg[2]) & 0xFF; 00526 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers 00527 00528 // Push accelerometer biases to hardware registers 00529 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]); 00530 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]); 00531 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]); 00532 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]); 00533 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]); 00534 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]); 00535 00536 // Output scaled accelerometer biases for manual subtraction in the main program 00537 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 00538 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; 00539 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; 00540 } 00541 00542 00543 // Accelerometer and gyroscope self test; check calibration wrt factory settings 00544 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass 00545 { 00546 uint8_t rawData[4] = {0, 0, 0, 0}; 00547 uint8_t selfTest[6]; 00548 float factoryTrim[6]; 00549 00550 // Configure the accelerometer for self-test 00551 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g 00552 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s 00553 wait(0.25); // Delay a while to let the device execute the self-test 00554 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results 00555 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results 00556 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results 00557 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results 00558 // Extract the acceleration test results first 00559 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer 00560 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer 00561 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer 00562 // Extract the gyration test results first 00563 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer 00564 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer 00565 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer 00566 // Process results to allow final comparison with factory set values 00567 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation 00568 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation 00569 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation 00570 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation 00571 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation 00572 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation 00573 00574 // Output self-test results and factory trim calculation if desired 00575 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); 00576 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); 00577 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); 00578 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); 00579 00580 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response 00581 // To get to percent, must multiply by 100 and subtract result from 100 00582 for (int i = 0; i < 6; i++) { 00583 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences 00584 } 00585 00586 } 00587 00588 00589 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" 00590 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) 00591 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative 00592 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. 00593 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms 00594 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! 00595 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) 00596 { 00597 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability 00598 float norm; // vector norm 00599 float f1, f2, f3; // objective funcyion elements 00600 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements 00601 float qDot1, qDot2, qDot3, qDot4; 00602 float hatDot1, hatDot2, hatDot3, hatDot4; 00603 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error 00604 00605 // Auxiliary variables to avoid repeated arithmetic 00606 float _halfq1 = 0.5f * q1; 00607 float _halfq2 = 0.5f * q2; 00608 float _halfq3 = 0.5f * q3; 00609 float _halfq4 = 0.5f * q4; 00610 float _2q1 = 2.0f * q1; 00611 float _2q2 = 2.0f * q2; 00612 float _2q3 = 2.0f * q3; 00613 float _2q4 = 2.0f * q4; 00614 // float _2q1q3 = 2.0f * q1 * q3; 00615 // float _2q3q4 = 2.0f * q3 * q4; 00616 00617 // Normalise accelerometer measurement 00618 norm = sqrt(ax * ax + ay * ay + az * az); 00619 if (norm == 0.0f) return; // handle NaN 00620 norm = 1.0f/norm; 00621 ax *= norm; 00622 ay *= norm; 00623 az *= norm; 00624 00625 // Compute the objective function and Jacobian 00626 f1 = _2q2 * q4 - _2q1 * q3 - ax; 00627 f2 = _2q1 * q2 + _2q3 * q4 - ay; 00628 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az; 00629 J_11or24 = _2q3; 00630 J_12or23 = _2q4; 00631 J_13or22 = _2q1; 00632 J_14or21 = _2q2; 00633 J_32 = 2.0f * J_14or21; 00634 J_33 = 2.0f * J_11or24; 00635 00636 // Compute the gradient (matrix multiplication) 00637 hatDot1 = J_14or21 * f2 - J_11or24 * f1; 00638 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3; 00639 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1; 00640 hatDot4 = J_14or21 * f1 + J_11or24 * f2; 00641 00642 // Normalize the gradient 00643 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4); 00644 hatDot1 /= norm; 00645 hatDot2 /= norm; 00646 hatDot3 /= norm; 00647 hatDot4 /= norm; 00648 00649 // Compute estimated gyroscope biases 00650 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3; 00651 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2; 00652 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1; 00653 00654 // Compute and remove gyroscope biases 00655 gbiasx += gerrx * deltat * zeta; 00656 gbiasy += gerry * deltat * zeta; 00657 gbiasz += gerrz * deltat * zeta; 00658 // gx -= gbiasx; 00659 // gy -= gbiasy; 00660 // gz -= gbiasz; 00661 00662 // Compute the quaternion derivative 00663 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz; 00664 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy; 00665 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx; 00666 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx; 00667 00668 // Compute then integrate estimated quaternion derivative 00669 q1 += (qDot1 -(beta * hatDot1)) * deltat; 00670 q2 += (qDot2 -(beta * hatDot2)) * deltat; 00671 q3 += (qDot3 -(beta * hatDot3)) * deltat; 00672 q4 += (qDot4 -(beta * hatDot4)) * deltat; 00673 00674 // Normalize the quaternion 00675 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion 00676 norm = 1.0f/norm; 00677 q[0] = q1 * norm; 00678 q[1] = q2 * norm; 00679 q[2] = q3 * norm; 00680 q[3] = q4 * norm; 00681 00682 } 00683 00684 00685 }; 00686 #endif
Generated on Mon Aug 29 2022 23:27:04 by
