Example program to test AES-GCM functionality. Used for a workshop

Dependencies:   mbed

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers ecdsa.c Source File

ecdsa.c

00001 /*
00002  *  Elliptic curve DSA
00003  *
00004  *  Copyright (C) 2006-2014, Brainspark B.V.
00005  *
00006  *  This file is part of PolarSSL (http://www.polarssl.org)
00007  *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
00008  *
00009  *  All rights reserved.
00010  *
00011  *  This program is free software; you can redistribute it and/or modify
00012  *  it under the terms of the GNU General Public License as published by
00013  *  the Free Software Foundation; either version 2 of the License, or
00014  *  (at your option) any later version.
00015  *
00016  *  This program is distributed in the hope that it will be useful,
00017  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
00018  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00019  *  GNU General Public License for more details.
00020  *
00021  *  You should have received a copy of the GNU General Public License along
00022  *  with this program; if not, write to the Free Software Foundation, Inc.,
00023  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
00024  */
00025 
00026 /*
00027  * References:
00028  *
00029  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
00030  */
00031 
00032 #if !defined(POLARSSL_CONFIG_FILE)
00033 #include "polarssl/config.h"
00034 #else
00035 #include POLARSSL_CONFIG_FILE
00036 #endif
00037 
00038 #if defined(POLARSSL_ECDSA_C)
00039 
00040 #include "polarssl/ecdsa.h"
00041 #include "polarssl/asn1write.h"
00042 
00043 #if defined(POLARSSL_ECDSA_DETERMINISTIC)
00044 #include "polarssl/hmac_drbg.h"
00045 #endif
00046 
00047 #if defined(POLARSSL_ECDSA_DETERMINISTIC)
00048 /*
00049  * This a hopefully temporary compatibility function.
00050  *
00051  * Since we can't ensure the caller will pass a valid md_alg before the next
00052  * interface change, try to pick up a decent md by size.
00053  *
00054  * Argument is the minimum size in bytes of the MD output.
00055  */
00056 static const md_info_t *md_info_by_size( size_t min_size )
00057 {
00058     const md_info_t *md_cur, *md_picked = NULL;
00059     const int *md_alg;
00060 
00061     for( md_alg = md_list(); *md_alg != 0; md_alg++ )
00062     {
00063         if( ( md_cur = md_info_from_type( *md_alg ) ) == NULL ||
00064             (size_t) md_cur->size < min_size ||
00065             ( md_picked != NULL && md_cur->size > md_picked->size ) )
00066             continue;
00067 
00068         md_picked = md_cur;
00069     }
00070 
00071     return( md_picked );
00072 }
00073 #endif /* POLARSSL_ECDSA_DETERMINISTIC */
00074 
00075 /*
00076  * Derive a suitable integer for group grp from a buffer of length len
00077  * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
00078  */
00079 static int derive_mpi( const ecp_group *grp, mpi *x,
00080                        const unsigned char *buf, size_t blen )
00081 {
00082     int ret;
00083     size_t n_size = (grp->nbits  + 7) / 8;
00084     size_t use_size = blen > n_size ? n_size : blen;
00085 
00086     MPI_CHK( mpi_read_binary( x, buf, use_size ) );
00087     if( use_size * 8 > grp->nbits  )
00088         MPI_CHK( mpi_shift_r( x, use_size * 8 - grp->nbits  ) );
00089 
00090     /* While at it, reduce modulo N */
00091     if( mpi_cmp_mpi( x, &grp->N  ) >= 0 )
00092         MPI_CHK( mpi_sub_mpi( x, x, &grp->N  ) );
00093 
00094 cleanup:
00095     return( ret );
00096 }
00097 
00098 /*
00099  * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
00100  * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
00101  */
00102 int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s,
00103                 const mpi *d, const unsigned char *buf, size_t blen,
00104                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
00105 {
00106     int ret, key_tries, sign_tries, blind_tries;
00107     ecp_point R;
00108     mpi k, e, t;
00109 
00110     /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
00111     if( grp->N .p  == NULL )
00112         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
00113 
00114     ecp_point_init( &R );
00115     mpi_init( &k ); mpi_init( &e ); mpi_init( &t );
00116 
00117     sign_tries = 0;
00118     do
00119     {
00120         /*
00121          * Steps 1-3: generate a suitable ephemeral keypair
00122          * and set r = xR mod n
00123          */
00124         key_tries = 0;
00125         do
00126         {
00127             MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) );
00128             MPI_CHK( mpi_mod_mpi( r, &R.X , &grp->N  ) );
00129 
00130             if( key_tries++ > 10 )
00131             {
00132                 ret = POLARSSL_ERR_ECP_RANDOM_FAILED;
00133                 goto cleanup;
00134             }
00135         }
00136         while( mpi_cmp_int( r, 0 ) == 0 );
00137 
00138         /*
00139          * Step 5: derive MPI from hashed message
00140          */
00141         MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
00142 
00143         /*
00144          * Generate a random value to blind inv_mod in next step,
00145          * avoiding a potential timing leak.
00146          */
00147         blind_tries = 0;
00148         do
00149         {
00150             size_t n_size = (grp->nbits  + 7) / 8;
00151             MPI_CHK( mpi_fill_random( &t, n_size, f_rng, p_rng ) );
00152             MPI_CHK( mpi_shift_r( &t, 8 * n_size - grp->nbits  ) );
00153 
00154             /* See ecp_gen_keypair() */
00155             if( ++blind_tries > 30 )
00156                 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
00157         }
00158         while( mpi_cmp_int( &t, 1 ) < 0 ||
00159                mpi_cmp_mpi( &t, &grp->N  ) >= 0 );
00160 
00161         /*
00162          * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
00163          */
00164         MPI_CHK( mpi_mul_mpi( s, r, d ) );
00165         MPI_CHK( mpi_add_mpi( &e, &e, s ) );
00166         MPI_CHK( mpi_mul_mpi( &e, &e, &t ) );
00167         MPI_CHK( mpi_mul_mpi( &k, &k, &t ) );
00168         MPI_CHK( mpi_inv_mod( s, &k, &grp->N  ) );
00169         MPI_CHK( mpi_mul_mpi( s, s, &e ) );
00170         MPI_CHK( mpi_mod_mpi( s, s, &grp->N  ) );
00171 
00172         if( sign_tries++ > 10 )
00173         {
00174             ret = POLARSSL_ERR_ECP_RANDOM_FAILED;
00175             goto cleanup;
00176         }
00177     }
00178     while( mpi_cmp_int( s, 0 ) == 0 );
00179 
00180 cleanup:
00181     ecp_point_free( &R );
00182     mpi_free( &k ); mpi_free( &e ); mpi_free( &t );
00183 
00184     return( ret );
00185 }
00186 
00187 #if defined(POLARSSL_ECDSA_DETERMINISTIC)
00188 /*
00189  * Deterministic signature wrapper
00190  */
00191 int ecdsa_sign_det( ecp_group *grp, mpi *r, mpi *s,
00192                     const mpi *d, const unsigned char *buf, size_t blen,
00193                     md_type_t md_alg )
00194 {
00195     int ret;
00196     hmac_drbg_context rng_ctx;
00197     unsigned char data[2 * POLARSSL_ECP_MAX_BYTES];
00198     size_t grp_len = ( grp->nbits  + 7 ) / 8;
00199     const md_info_t *md_info;
00200     mpi h;
00201 
00202     /* Temporary fallback */
00203     if( md_alg == POLARSSL_MD_NONE )
00204         md_info = md_info_by_size( blen );
00205     else
00206         md_info = md_info_from_type( md_alg );
00207 
00208     if( md_info == NULL )
00209         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
00210 
00211     mpi_init( &h );
00212     memset( &rng_ctx, 0, sizeof( hmac_drbg_context ) );
00213 
00214     /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
00215     MPI_CHK( mpi_write_binary( d, data, grp_len ) );
00216     MPI_CHK( derive_mpi( grp, &h, buf, blen ) );
00217     MPI_CHK( mpi_write_binary( &h, data + grp_len, grp_len ) );
00218     hmac_drbg_init_buf( &rng_ctx, md_info, data, 2 * grp_len );
00219 
00220     ret = ecdsa_sign( grp, r, s, d, buf, blen,
00221                       hmac_drbg_random, &rng_ctx );
00222 
00223 cleanup:
00224     hmac_drbg_free( &rng_ctx );
00225     mpi_free( &h );
00226 
00227     return( ret );
00228 }
00229 #endif /* POLARSSL_ECDSA_DETERMINISTIC */
00230 
00231 /*
00232  * Verify ECDSA signature of hashed message (SEC1 4.1.4)
00233  * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
00234  */
00235 int ecdsa_verify( ecp_group *grp,
00236                   const unsigned char *buf, size_t blen,
00237                   const ecp_point *Q, const mpi *r, const mpi *s)
00238 {
00239     int ret;
00240     mpi e, s_inv, u1, u2;
00241     ecp_point R, P;
00242 
00243     ecp_point_init( &R ); ecp_point_init( &P );
00244     mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 );
00245 
00246     /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
00247     if( grp->N .p  == NULL )
00248         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
00249 
00250     /*
00251      * Step 1: make sure r and s are in range 1..n-1
00252      */
00253     if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N  ) >= 0 ||
00254         mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N  ) >= 0 )
00255     {
00256         ret = POLARSSL_ERR_ECP_VERIFY_FAILED;
00257         goto cleanup;
00258     }
00259 
00260     /*
00261      * Additional precaution: make sure Q is valid
00262      */
00263     MPI_CHK( ecp_check_pubkey( grp, Q ) );
00264 
00265     /*
00266      * Step 3: derive MPI from hashed message
00267      */
00268     MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
00269 
00270     /*
00271      * Step 4: u1 = e / s mod n, u2 = r / s mod n
00272      */
00273     MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N  ) );
00274 
00275     MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) );
00276     MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N  ) );
00277 
00278     MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) );
00279     MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N  ) );
00280 
00281     /*
00282      * Step 5: R = u1 G + u2 Q
00283      *
00284      * Since we're not using any secret data, no need to pass a RNG to
00285      * ecp_mul() for countermesures.
00286      */
00287     MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G , NULL, NULL ) );
00288     MPI_CHK( ecp_mul( grp, &P, &u2, Q, NULL, NULL ) );
00289     MPI_CHK( ecp_add( grp, &R, &R, &P ) );
00290 
00291     if( ecp_is_zero( &R ) )
00292     {
00293         ret = POLARSSL_ERR_ECP_VERIFY_FAILED;
00294         goto cleanup;
00295     }
00296 
00297     /*
00298      * Step 6: convert xR to an integer (no-op)
00299      * Step 7: reduce xR mod n (gives v)
00300      */
00301     MPI_CHK( mpi_mod_mpi( &R.X , &R.X , &grp->N  ) );
00302 
00303     /*
00304      * Step 8: check if v (that is, R.X) is equal to r
00305      */
00306     if( mpi_cmp_mpi( &R.X , r ) != 0 )
00307     {
00308         ret = POLARSSL_ERR_ECP_VERIFY_FAILED;
00309         goto cleanup;
00310     }
00311 
00312 cleanup:
00313     ecp_point_free( &R ); ecp_point_free( &P );
00314     mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 );
00315 
00316     return( ret );
00317 }
00318 
00319 /*
00320  * RFC 4492 page 20:
00321  *
00322  *     Ecdsa-Sig-Value ::= SEQUENCE {
00323  *         r       INTEGER,
00324  *         s       INTEGER
00325  *     }
00326  *
00327  * Size is at most
00328  *    1 (tag) + 1 (len) + 1 (initial 0) + ECP_MAX_BYTES for each of r and s,
00329  *    twice that + 1 (tag) + 2 (len) for the sequence
00330  * (assuming ECP_MAX_BYTES is less than 126 for r and s,
00331  * and less than 124 (total len <= 255) for the sequence)
00332  */
00333 #if POLARSSL_ECP_MAX_BYTES > 124
00334 #error "POLARSSL_ECP_MAX_BYTES bigger than expected, please fix MAX_SIG_LEN"
00335 #endif
00336 #define MAX_SIG_LEN ( 3 + 2 * ( 2 + POLARSSL_ECP_MAX_BYTES ) )
00337 
00338 /*
00339  * Convert a signature (given by context) to ASN.1
00340  */
00341 static int ecdsa_signature_to_asn1( ecdsa_context *ctx,
00342                                     unsigned char *sig, size_t *slen )
00343 {
00344     int ret;
00345     unsigned char buf[MAX_SIG_LEN];
00346     unsigned char *p = buf + sizeof( buf );
00347     size_t len = 0;
00348 
00349     ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->s  ) );
00350     ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->r  ) );
00351 
00352     ASN1_CHK_ADD( len, asn1_write_len( &p, buf, len ) );
00353     ASN1_CHK_ADD( len, asn1_write_tag( &p, buf,
00354                                        ASN1_CONSTRUCTED | ASN1_SEQUENCE ) );
00355 
00356     memcpy( sig, p, len );
00357     *slen = len;
00358 
00359     return( 0 );
00360 }
00361 
00362 /*
00363  * Compute and write signature
00364  */
00365 int ecdsa_write_signature( ecdsa_context *ctx,
00366                            const unsigned char *hash, size_t hlen,
00367                            unsigned char *sig, size_t *slen,
00368                            int (*f_rng)(void *, unsigned char *, size_t),
00369                            void *p_rng )
00370 {
00371     int ret;
00372 
00373     if( ( ret = ecdsa_sign( &ctx->grp , &ctx->r , &ctx->s , &ctx->d ,
00374                             hash, hlen, f_rng, p_rng ) ) != 0 )
00375     {
00376         return( ret );
00377     }
00378 
00379     return( ecdsa_signature_to_asn1( ctx, sig, slen ) );
00380 }
00381 
00382 #if defined(POLARSSL_ECDSA_DETERMINISTIC)
00383 /*
00384  * Compute and write signature deterministically
00385  */
00386 int ecdsa_write_signature_det( ecdsa_context *ctx,
00387                                const unsigned char *hash, size_t hlen,
00388                                unsigned char *sig, size_t *slen,
00389                                md_type_t md_alg )
00390 {
00391     int ret;
00392 
00393     if( ( ret = ecdsa_sign_det( &ctx->grp , &ctx->r , &ctx->s , &ctx->d ,
00394                                 hash, hlen, md_alg ) ) != 0 )
00395     {
00396         return( ret );
00397     }
00398 
00399     return( ecdsa_signature_to_asn1( ctx, sig, slen ) );
00400 }
00401 #endif /* POLARSSL_ECDSA_DETERMINISTIC */
00402 
00403 /*
00404  * Read and check signature
00405  */
00406 int ecdsa_read_signature( ecdsa_context *ctx,
00407                           const unsigned char *hash, size_t hlen,
00408                           const unsigned char *sig, size_t slen )
00409 {
00410     int ret;
00411     unsigned char *p = (unsigned char *) sig;
00412     const unsigned char *end = sig + slen;
00413     size_t len;
00414 
00415     if( ( ret = asn1_get_tag( &p, end, &len,
00416                     ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
00417     {
00418         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret );
00419     }
00420 
00421     if( p + len != end )
00422         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA +
00423                 POLARSSL_ERR_ASN1_LENGTH_MISMATCH );
00424 
00425     if( ( ret = asn1_get_mpi( &p, end, &ctx->r  ) ) != 0 ||
00426         ( ret = asn1_get_mpi( &p, end, &ctx->s  ) ) != 0 )
00427         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret );
00428 
00429     if( ( ret = ecdsa_verify( &ctx->grp , hash, hlen,
00430                               &ctx->Q , &ctx->r , &ctx->s  ) ) != 0 )
00431         return( ret );
00432 
00433     if( p != end )
00434         return( POLARSSL_ERR_ECP_SIG_LEN_MISMATCH );
00435 
00436     return( 0 );
00437 }
00438 
00439 /*
00440  * Generate key pair
00441  */
00442 int ecdsa_genkey( ecdsa_context *ctx, ecp_group_id gid,
00443                   int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
00444 {
00445     return( ecp_use_known_dp( &ctx->grp , gid ) ||
00446             ecp_gen_keypair( &ctx->grp , &ctx->d , &ctx->Q , f_rng, p_rng ) );
00447 }
00448 
00449 /*
00450  * Set context from an ecp_keypair
00451  */
00452 int ecdsa_from_keypair( ecdsa_context *ctx, const ecp_keypair *key )
00453 {
00454     int ret;
00455 
00456     if( ( ret = ecp_group_copy( &ctx->grp , &key->grp  ) ) != 0 ||
00457         ( ret = mpi_copy( &ctx->d , &key->d  ) ) != 0 ||
00458         ( ret = ecp_copy( &ctx->Q , &key->Q  ) ) != 0 )
00459     {
00460         ecdsa_free( ctx );
00461     }
00462 
00463     return( ret );
00464 }
00465 
00466 /*
00467  * Initialize context
00468  */
00469 void ecdsa_init( ecdsa_context *ctx )
00470 {
00471     ecp_group_init( &ctx->grp  );
00472     mpi_init( &ctx->d  );
00473     ecp_point_init( &ctx->Q  );
00474     mpi_init( &ctx->r  );
00475     mpi_init( &ctx->s  );
00476 }
00477 
00478 /*
00479  * Free context
00480  */
00481 void ecdsa_free( ecdsa_context *ctx )
00482 {
00483     ecp_group_free( &ctx->grp  );
00484     mpi_free( &ctx->d  );
00485     ecp_point_free( &ctx->Q  );
00486     mpi_free( &ctx->r  );
00487     mpi_free( &ctx->s  );
00488 }
00489 
00490 #if defined(POLARSSL_SELF_TEST)
00491 
00492 /*
00493  * Checkup routine
00494  */
00495 int ecdsa_self_test( int verbose )
00496 {
00497     ((void) verbose );
00498     return( 0 );
00499 }
00500 
00501 #endif /* POLARSSL_SELF_TEST */
00502 
00503 #endif /* POLARSSL_ECDSA_C */
00504 
00505