a quadcopter code

Dependencies:   Pulse RangeFinder mbed

Committer:
Gendy
Date:
Tue Nov 24 19:57:06 2015 +0000
Revision:
0:4a55d0a21ea9
Quad_project PID on angle;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Gendy 0:4a55d0a21ea9 1 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
Gendy 0:4a55d0a21ea9 2 //written by szymon gaertig (email: szymon@gaertig.com.pl)
Gendy 0:4a55d0a21ea9 3 //
Gendy 0:4a55d0a21ea9 4 //Changelog:
Gendy 0:4a55d0a21ea9 5 //2013-01-08 - first beta release
Gendy 0:4a55d0a21ea9 6
Gendy 0:4a55d0a21ea9 7 // I2Cdev library collection - MPU6050 I2C device class
Gendy 0:4a55d0a21ea9 8 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
Gendy 0:4a55d0a21ea9 9 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
Gendy 0:4a55d0a21ea9 10 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
Gendy 0:4a55d0a21ea9 11 //
Gendy 0:4a55d0a21ea9 12 // Changelog:
Gendy 0:4a55d0a21ea9 13 // ... - ongoing debug release
Gendy 0:4a55d0a21ea9 14
Gendy 0:4a55d0a21ea9 15 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
Gendy 0:4a55d0a21ea9 16 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
Gendy 0:4a55d0a21ea9 17 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
Gendy 0:4a55d0a21ea9 18
Gendy 0:4a55d0a21ea9 19 /* ============================================
Gendy 0:4a55d0a21ea9 20 I2Cdev device library code is placed under the MIT license
Gendy 0:4a55d0a21ea9 21 Copyright (c) 2012 Jeff Rowberg
Gendy 0:4a55d0a21ea9 22
Gendy 0:4a55d0a21ea9 23 Permission is hereby granted, free of charge, to any person obtaining a copy
Gendy 0:4a55d0a21ea9 24 of this software and associated documentation files (the "Software"), to deal
Gendy 0:4a55d0a21ea9 25 in the Software without restriction, including without limitation the rights
Gendy 0:4a55d0a21ea9 26 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
Gendy 0:4a55d0a21ea9 27 copies of the Software, and to permit persons to whom the Software is
Gendy 0:4a55d0a21ea9 28 furnished to do so, subject to the following conditions:
Gendy 0:4a55d0a21ea9 29
Gendy 0:4a55d0a21ea9 30 The above copyright notice and this permission notice shall be included in
Gendy 0:4a55d0a21ea9 31 all copies or substantial portions of the Software.
Gendy 0:4a55d0a21ea9 32
Gendy 0:4a55d0a21ea9 33 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
Gendy 0:4a55d0a21ea9 34 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Gendy 0:4a55d0a21ea9 35 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
Gendy 0:4a55d0a21ea9 36 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
Gendy 0:4a55d0a21ea9 37 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
Gendy 0:4a55d0a21ea9 38 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
Gendy 0:4a55d0a21ea9 39 THE SOFTWARE.
Gendy 0:4a55d0a21ea9 40 ===============================================
Gendy 0:4a55d0a21ea9 41 */
Gendy 0:4a55d0a21ea9 42
Gendy 0:4a55d0a21ea9 43 #include "MPU6050.h"
Gendy 0:4a55d0a21ea9 44
Gendy 0:4a55d0a21ea9 45 #define useDebugSerial
Gendy 0:4a55d0a21ea9 46
Gendy 0:4a55d0a21ea9 47 //instead of using pgmspace.h
Gendy 0:4a55d0a21ea9 48 typedef const unsigned char prog_uchar;
Gendy 0:4a55d0a21ea9 49 #define pgm_read_byte_near(x) (*(prog_uchar*)(x))//<- I modified here
Gendy 0:4a55d0a21ea9 50 #define pgm_read_byte(x) (*(prog_uchar*)(x))//<- I modified here
Gendy 0:4a55d0a21ea9 51
Gendy 0:4a55d0a21ea9 52 /** Default constructor, uses default I2C address.
Gendy 0:4a55d0a21ea9 53 * @see MPU6050_DEFAULT_ADDRESS
Gendy 0:4a55d0a21ea9 54 */
Gendy 0:4a55d0a21ea9 55 MPU6050::MPU6050() : debugSerial(USBTX, USBRX)
Gendy 0:4a55d0a21ea9 56 {
Gendy 0:4a55d0a21ea9 57 devAddr = MPU6050_DEFAULT_ADDRESS;
Gendy 0:4a55d0a21ea9 58 }
Gendy 0:4a55d0a21ea9 59
Gendy 0:4a55d0a21ea9 60 /** Specific address constructor.
Gendy 0:4a55d0a21ea9 61 * @param address I2C address
Gendy 0:4a55d0a21ea9 62 * @see MPU6050_DEFAULT_ADDRESS
Gendy 0:4a55d0a21ea9 63 * @see MPU6050_ADDRESS_AD0_LOW
Gendy 0:4a55d0a21ea9 64 * @see MPU6050_ADDRESS_AD0_HIGH
Gendy 0:4a55d0a21ea9 65 */
Gendy 0:4a55d0a21ea9 66 MPU6050::MPU6050(uint8_t address) : debugSerial(USBTX, USBRX)
Gendy 0:4a55d0a21ea9 67 {
Gendy 0:4a55d0a21ea9 68 devAddr = address;
Gendy 0:4a55d0a21ea9 69 }
Gendy 0:4a55d0a21ea9 70
Gendy 0:4a55d0a21ea9 71 /** Power on and prepare for general usage.
Gendy 0:4a55d0a21ea9 72 * This will activate the device and take it out of sleep mode (which must be done
Gendy 0:4a55d0a21ea9 73 * after start-up). This function also sets both the accelerometer and the gyroscope
Gendy 0:4a55d0a21ea9 74 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
Gendy 0:4a55d0a21ea9 75 * the clock source to use the X Gyro for reference, which is slightly better than
Gendy 0:4a55d0a21ea9 76 * the default internal clock source.
Gendy 0:4a55d0a21ea9 77 */
Gendy 0:4a55d0a21ea9 78 void MPU6050::initialize()
Gendy 0:4a55d0a21ea9 79 {
Gendy 0:4a55d0a21ea9 80
Gendy 0:4a55d0a21ea9 81 #ifdef useDebugSerial
Gendy 0:4a55d0a21ea9 82 debugSerial.printf("MPU6050::initialize start\n");
Gendy 0:4a55d0a21ea9 83 #endif
Gendy 0:4a55d0a21ea9 84
Gendy 0:4a55d0a21ea9 85 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
Gendy 0:4a55d0a21ea9 86 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
Gendy 0:4a55d0a21ea9 87 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
Gendy 0:4a55d0a21ea9 88 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
Gendy 0:4a55d0a21ea9 89
Gendy 0:4a55d0a21ea9 90 #ifdef useDebugSerial
Gendy 0:4a55d0a21ea9 91 debugSerial.printf("MPU6050::initialize end\n");
Gendy 0:4a55d0a21ea9 92 #endif
Gendy 0:4a55d0a21ea9 93 }
Gendy 0:4a55d0a21ea9 94
Gendy 0:4a55d0a21ea9 95 /** Verify the I2C connection.
Gendy 0:4a55d0a21ea9 96 * Make sure the device is connected and responds as expected.
Gendy 0:4a55d0a21ea9 97 * @return True if connection is valid, false otherwise
Gendy 0:4a55d0a21ea9 98 */
Gendy 0:4a55d0a21ea9 99 bool MPU6050::testConnection()
Gendy 0:4a55d0a21ea9 100 {
Gendy 0:4a55d0a21ea9 101 #ifdef useDebugSerial
Gendy 0:4a55d0a21ea9 102 debugSerial.printf("MPU6050::testConnection start\n");
Gendy 0:4a55d0a21ea9 103 #endif
Gendy 0:4a55d0a21ea9 104 uint8_t deviceId = getDeviceID();
Gendy 0:4a55d0a21ea9 105 #ifdef useDebugSerial
Gendy 0:4a55d0a21ea9 106 debugSerial.printf("DeviceId = %d\n",deviceId);
Gendy 0:4a55d0a21ea9 107 #endif
Gendy 0:4a55d0a21ea9 108 return deviceId == 0x34;
Gendy 0:4a55d0a21ea9 109 }
Gendy 0:4a55d0a21ea9 110
Gendy 0:4a55d0a21ea9 111 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
Gendy 0:4a55d0a21ea9 112
Gendy 0:4a55d0a21ea9 113 /** Get the auxiliary I2C supply voltage level.
Gendy 0:4a55d0a21ea9 114 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
Gendy 0:4a55d0a21ea9 115 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
Gendy 0:4a55d0a21ea9 116 * the MPU-6000, which does not have a VLOGIC pin.
Gendy 0:4a55d0a21ea9 117 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
Gendy 0:4a55d0a21ea9 118 */
Gendy 0:4a55d0a21ea9 119 uint8_t MPU6050::getAuxVDDIOLevel()
Gendy 0:4a55d0a21ea9 120 {
Gendy 0:4a55d0a21ea9 121 i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
Gendy 0:4a55d0a21ea9 122 return buffer[0];
Gendy 0:4a55d0a21ea9 123 }
Gendy 0:4a55d0a21ea9 124 /** Set the auxiliary I2C supply voltage level.
Gendy 0:4a55d0a21ea9 125 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
Gendy 0:4a55d0a21ea9 126 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
Gendy 0:4a55d0a21ea9 127 * the MPU-6000, which does not have a VLOGIC pin.
Gendy 0:4a55d0a21ea9 128 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
Gendy 0:4a55d0a21ea9 129 */
Gendy 0:4a55d0a21ea9 130 void MPU6050::setAuxVDDIOLevel(uint8_t level)
Gendy 0:4a55d0a21ea9 131 {
Gendy 0:4a55d0a21ea9 132 i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
Gendy 0:4a55d0a21ea9 133 }
Gendy 0:4a55d0a21ea9 134
Gendy 0:4a55d0a21ea9 135 // SMPLRT_DIV register
Gendy 0:4a55d0a21ea9 136
Gendy 0:4a55d0a21ea9 137 /** Get gyroscope output rate divider.
Gendy 0:4a55d0a21ea9 138 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
Gendy 0:4a55d0a21ea9 139 * Motion detection, and Free Fall detection are all based on the Sample Rate.
Gendy 0:4a55d0a21ea9 140 * The Sample Rate is generated by dividing the gyroscope output rate by
Gendy 0:4a55d0a21ea9 141 * SMPLRT_DIV:
Gendy 0:4a55d0a21ea9 142 *
Gendy 0:4a55d0a21ea9 143 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
Gendy 0:4a55d0a21ea9 144 *
Gendy 0:4a55d0a21ea9 145 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
Gendy 0:4a55d0a21ea9 146 * 7), and 1kHz when the DLPF is enabled (see Register 26).
Gendy 0:4a55d0a21ea9 147 *
Gendy 0:4a55d0a21ea9 148 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
Gendy 0:4a55d0a21ea9 149 * Rate greater than 1kHz, the same accelerometer sample may be output to the
Gendy 0:4a55d0a21ea9 150 * FIFO, DMP, and sensor registers more than once.
Gendy 0:4a55d0a21ea9 151 *
Gendy 0:4a55d0a21ea9 152 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
Gendy 0:4a55d0a21ea9 153 * of the MPU-6000/MPU-6050 Product Specification document.
Gendy 0:4a55d0a21ea9 154 *
Gendy 0:4a55d0a21ea9 155 * @return Current sample rate
Gendy 0:4a55d0a21ea9 156 * @see MPU6050_RA_SMPLRT_DIV
Gendy 0:4a55d0a21ea9 157 */
Gendy 0:4a55d0a21ea9 158 uint8_t MPU6050::getRate()
Gendy 0:4a55d0a21ea9 159 {
Gendy 0:4a55d0a21ea9 160 i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
Gendy 0:4a55d0a21ea9 161 return buffer[0];
Gendy 0:4a55d0a21ea9 162 }
Gendy 0:4a55d0a21ea9 163 /** Set gyroscope sample rate divider.
Gendy 0:4a55d0a21ea9 164 * @param rate New sample rate divider
Gendy 0:4a55d0a21ea9 165 * @see getRate()
Gendy 0:4a55d0a21ea9 166 * @see MPU6050_RA_SMPLRT_DIV
Gendy 0:4a55d0a21ea9 167 */
Gendy 0:4a55d0a21ea9 168 void MPU6050::setRate(uint8_t rate)
Gendy 0:4a55d0a21ea9 169 {
Gendy 0:4a55d0a21ea9 170 i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
Gendy 0:4a55d0a21ea9 171 }
Gendy 0:4a55d0a21ea9 172
Gendy 0:4a55d0a21ea9 173 // CONFIG register
Gendy 0:4a55d0a21ea9 174
Gendy 0:4a55d0a21ea9 175 /** Get external FSYNC configuration.
Gendy 0:4a55d0a21ea9 176 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
Gendy 0:4a55d0a21ea9 177 * external signal connected to the FSYNC pin can be sampled by configuring
Gendy 0:4a55d0a21ea9 178 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
Gendy 0:4a55d0a21ea9 179 * strobes may be captured. The latched FSYNC signal will be sampled at the
Gendy 0:4a55d0a21ea9 180 * Sampling Rate, as defined in register 25. After sampling, the latch will
Gendy 0:4a55d0a21ea9 181 * reset to the current FSYNC signal state.
Gendy 0:4a55d0a21ea9 182 *
Gendy 0:4a55d0a21ea9 183 * The sampled value will be reported in place of the least significant bit in
Gendy 0:4a55d0a21ea9 184 * a sensor data register determined by the value of EXT_SYNC_SET according to
Gendy 0:4a55d0a21ea9 185 * the following table.
Gendy 0:4a55d0a21ea9 186 *
Gendy 0:4a55d0a21ea9 187 * <pre>
Gendy 0:4a55d0a21ea9 188 * EXT_SYNC_SET | FSYNC Bit Location
Gendy 0:4a55d0a21ea9 189 * -------------+-------------------
Gendy 0:4a55d0a21ea9 190 * 0 | Input disabled
Gendy 0:4a55d0a21ea9 191 * 1 | TEMP_OUT_L[0]
Gendy 0:4a55d0a21ea9 192 * 2 | GYRO_XOUT_L[0]
Gendy 0:4a55d0a21ea9 193 * 3 | GYRO_YOUT_L[0]
Gendy 0:4a55d0a21ea9 194 * 4 | GYRO_ZOUT_L[0]
Gendy 0:4a55d0a21ea9 195 * 5 | ACCEL_XOUT_L[0]
Gendy 0:4a55d0a21ea9 196 * 6 | ACCEL_YOUT_L[0]
Gendy 0:4a55d0a21ea9 197 * 7 | ACCEL_ZOUT_L[0]
Gendy 0:4a55d0a21ea9 198 * </pre>
Gendy 0:4a55d0a21ea9 199 *
Gendy 0:4a55d0a21ea9 200 * @return FSYNC configuration value
Gendy 0:4a55d0a21ea9 201 */
Gendy 0:4a55d0a21ea9 202 uint8_t MPU6050::getExternalFrameSync()
Gendy 0:4a55d0a21ea9 203 {
Gendy 0:4a55d0a21ea9 204 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 205 return buffer[0];
Gendy 0:4a55d0a21ea9 206 }
Gendy 0:4a55d0a21ea9 207 /** Set external FSYNC configuration.
Gendy 0:4a55d0a21ea9 208 * @see getExternalFrameSync()
Gendy 0:4a55d0a21ea9 209 * @see MPU6050_RA_CONFIG
Gendy 0:4a55d0a21ea9 210 * @param sync New FSYNC configuration value
Gendy 0:4a55d0a21ea9 211 */
Gendy 0:4a55d0a21ea9 212 void MPU6050::setExternalFrameSync(uint8_t sync)
Gendy 0:4a55d0a21ea9 213 {
Gendy 0:4a55d0a21ea9 214 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
Gendy 0:4a55d0a21ea9 215 }
Gendy 0:4a55d0a21ea9 216 /** Get digital low-pass filter configuration.
Gendy 0:4a55d0a21ea9 217 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
Gendy 0:4a55d0a21ea9 218 * also determines the internal sampling rate used by the device as shown in
Gendy 0:4a55d0a21ea9 219 * the table below.
Gendy 0:4a55d0a21ea9 220 *
Gendy 0:4a55d0a21ea9 221 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
Gendy 0:4a55d0a21ea9 222 * Rate greater than 1kHz, the same accelerometer sample may be output to the
Gendy 0:4a55d0a21ea9 223 * FIFO, DMP, and sensor registers more than once.
Gendy 0:4a55d0a21ea9 224 *
Gendy 0:4a55d0a21ea9 225 * <pre>
Gendy 0:4a55d0a21ea9 226 * | ACCELEROMETER | GYROSCOPE
Gendy 0:4a55d0a21ea9 227 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
Gendy 0:4a55d0a21ea9 228 * ---------+-----------+--------+-----------+--------+-------------
Gendy 0:4a55d0a21ea9 229 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
Gendy 0:4a55d0a21ea9 230 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
Gendy 0:4a55d0a21ea9 231 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
Gendy 0:4a55d0a21ea9 232 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
Gendy 0:4a55d0a21ea9 233 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
Gendy 0:4a55d0a21ea9 234 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
Gendy 0:4a55d0a21ea9 235 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
Gendy 0:4a55d0a21ea9 236 * 7 | -- Reserved -- | -- Reserved -- | Reserved
Gendy 0:4a55d0a21ea9 237 * </pre>
Gendy 0:4a55d0a21ea9 238 *
Gendy 0:4a55d0a21ea9 239 * @return DLFP configuration
Gendy 0:4a55d0a21ea9 240 * @see MPU6050_RA_CONFIG
Gendy 0:4a55d0a21ea9 241 * @see MPU6050_CFG_DLPF_CFG_BIT
Gendy 0:4a55d0a21ea9 242 * @see MPU6050_CFG_DLPF_CFG_LENGTH
Gendy 0:4a55d0a21ea9 243 */
Gendy 0:4a55d0a21ea9 244 uint8_t MPU6050::getDLPFMode()
Gendy 0:4a55d0a21ea9 245 {
Gendy 0:4a55d0a21ea9 246 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 247 return buffer[0];
Gendy 0:4a55d0a21ea9 248 }
Gendy 0:4a55d0a21ea9 249 /** Set digital low-pass filter configuration.
Gendy 0:4a55d0a21ea9 250 * @param mode New DLFP configuration setting
Gendy 0:4a55d0a21ea9 251 * @see getDLPFBandwidth()
Gendy 0:4a55d0a21ea9 252 * @see MPU6050_DLPF_BW_256
Gendy 0:4a55d0a21ea9 253 * @see MPU6050_RA_CONFIG
Gendy 0:4a55d0a21ea9 254 * @see MPU6050_CFG_DLPF_CFG_BIT
Gendy 0:4a55d0a21ea9 255 * @see MPU6050_CFG_DLPF_CFG_LENGTH
Gendy 0:4a55d0a21ea9 256 */
Gendy 0:4a55d0a21ea9 257 void MPU6050::setDLPFMode(uint8_t mode)
Gendy 0:4a55d0a21ea9 258 {
Gendy 0:4a55d0a21ea9 259 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
Gendy 0:4a55d0a21ea9 260 }
Gendy 0:4a55d0a21ea9 261
Gendy 0:4a55d0a21ea9 262 // GYRO_CONFIG register
Gendy 0:4a55d0a21ea9 263
Gendy 0:4a55d0a21ea9 264 /** Get full-scale gyroscope range.
Gendy 0:4a55d0a21ea9 265 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
Gendy 0:4a55d0a21ea9 266 * as described in the table below.
Gendy 0:4a55d0a21ea9 267 *
Gendy 0:4a55d0a21ea9 268 * <pre>
Gendy 0:4a55d0a21ea9 269 * 0 = +/- 250 degrees/sec
Gendy 0:4a55d0a21ea9 270 * 1 = +/- 500 degrees/sec
Gendy 0:4a55d0a21ea9 271 * 2 = +/- 1000 degrees/sec
Gendy 0:4a55d0a21ea9 272 * 3 = +/- 2000 degrees/sec
Gendy 0:4a55d0a21ea9 273 * </pre>
Gendy 0:4a55d0a21ea9 274 *
Gendy 0:4a55d0a21ea9 275 * @return Current full-scale gyroscope range setting
Gendy 0:4a55d0a21ea9 276 * @see MPU6050_GYRO_FS_250
Gendy 0:4a55d0a21ea9 277 * @see MPU6050_RA_GYRO_CONFIG
Gendy 0:4a55d0a21ea9 278 * @see MPU6050_GCONFIG_FS_SEL_BIT
Gendy 0:4a55d0a21ea9 279 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
Gendy 0:4a55d0a21ea9 280 */
Gendy 0:4a55d0a21ea9 281 uint8_t MPU6050::getFullScaleGyroRange()
Gendy 0:4a55d0a21ea9 282 {
Gendy 0:4a55d0a21ea9 283 i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 284 return buffer[0];
Gendy 0:4a55d0a21ea9 285 }
Gendy 0:4a55d0a21ea9 286 /** Set full-scale gyroscope range.
Gendy 0:4a55d0a21ea9 287 * @param range New full-scale gyroscope range value
Gendy 0:4a55d0a21ea9 288 * @see getFullScaleRange()
Gendy 0:4a55d0a21ea9 289 * @see MPU6050_GYRO_FS_250
Gendy 0:4a55d0a21ea9 290 * @see MPU6050_RA_GYRO_CONFIG
Gendy 0:4a55d0a21ea9 291 * @see MPU6050_GCONFIG_FS_SEL_BIT
Gendy 0:4a55d0a21ea9 292 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
Gendy 0:4a55d0a21ea9 293 */
Gendy 0:4a55d0a21ea9 294 void MPU6050::setFullScaleGyroRange(uint8_t range)
Gendy 0:4a55d0a21ea9 295 {
Gendy 0:4a55d0a21ea9 296 i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
Gendy 0:4a55d0a21ea9 297 }
Gendy 0:4a55d0a21ea9 298
Gendy 0:4a55d0a21ea9 299 // ACCEL_CONFIG register
Gendy 0:4a55d0a21ea9 300
Gendy 0:4a55d0a21ea9 301 /** Get self-test enabled setting for accelerometer X axis.
Gendy 0:4a55d0a21ea9 302 * @return Self-test enabled value
Gendy 0:4a55d0a21ea9 303 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 304 */
Gendy 0:4a55d0a21ea9 305 bool MPU6050::getAccelXSelfTest()
Gendy 0:4a55d0a21ea9 306 {
Gendy 0:4a55d0a21ea9 307 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
Gendy 0:4a55d0a21ea9 308 return buffer[0];
Gendy 0:4a55d0a21ea9 309 }
Gendy 0:4a55d0a21ea9 310 /** Get self-test enabled setting for accelerometer X axis.
Gendy 0:4a55d0a21ea9 311 * @param enabled Self-test enabled value
Gendy 0:4a55d0a21ea9 312 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 313 */
Gendy 0:4a55d0a21ea9 314 void MPU6050::setAccelXSelfTest(bool enabled)
Gendy 0:4a55d0a21ea9 315 {
Gendy 0:4a55d0a21ea9 316 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
Gendy 0:4a55d0a21ea9 317 }
Gendy 0:4a55d0a21ea9 318 /** Get self-test enabled value for accelerometer Y axis.
Gendy 0:4a55d0a21ea9 319 * @return Self-test enabled value
Gendy 0:4a55d0a21ea9 320 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 321 */
Gendy 0:4a55d0a21ea9 322 bool MPU6050::getAccelYSelfTest()
Gendy 0:4a55d0a21ea9 323 {
Gendy 0:4a55d0a21ea9 324 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
Gendy 0:4a55d0a21ea9 325 return buffer[0];
Gendy 0:4a55d0a21ea9 326 }
Gendy 0:4a55d0a21ea9 327 /** Get self-test enabled value for accelerometer Y axis.
Gendy 0:4a55d0a21ea9 328 * @param enabled Self-test enabled value
Gendy 0:4a55d0a21ea9 329 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 330 */
Gendy 0:4a55d0a21ea9 331 void MPU6050::setAccelYSelfTest(bool enabled)
Gendy 0:4a55d0a21ea9 332 {
Gendy 0:4a55d0a21ea9 333 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
Gendy 0:4a55d0a21ea9 334 }
Gendy 0:4a55d0a21ea9 335 /** Get self-test enabled value for accelerometer Z axis.
Gendy 0:4a55d0a21ea9 336 * @return Self-test enabled value
Gendy 0:4a55d0a21ea9 337 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 338 */
Gendy 0:4a55d0a21ea9 339 bool MPU6050::getAccelZSelfTest()
Gendy 0:4a55d0a21ea9 340 {
Gendy 0:4a55d0a21ea9 341 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
Gendy 0:4a55d0a21ea9 342 return buffer[0];
Gendy 0:4a55d0a21ea9 343 }
Gendy 0:4a55d0a21ea9 344 /** Set self-test enabled value for accelerometer Z axis.
Gendy 0:4a55d0a21ea9 345 * @param enabled Self-test enabled value
Gendy 0:4a55d0a21ea9 346 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 347 */
Gendy 0:4a55d0a21ea9 348 void MPU6050::setAccelZSelfTest(bool enabled)
Gendy 0:4a55d0a21ea9 349 {
Gendy 0:4a55d0a21ea9 350 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
Gendy 0:4a55d0a21ea9 351 }
Gendy 0:4a55d0a21ea9 352 /** Get full-scale accelerometer range.
Gendy 0:4a55d0a21ea9 353 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
Gendy 0:4a55d0a21ea9 354 * sensors, as described in the table below.
Gendy 0:4a55d0a21ea9 355 *
Gendy 0:4a55d0a21ea9 356 * <pre>
Gendy 0:4a55d0a21ea9 357 * 0 = +/- 2g
Gendy 0:4a55d0a21ea9 358 * 1 = +/- 4g
Gendy 0:4a55d0a21ea9 359 * 2 = +/- 8g
Gendy 0:4a55d0a21ea9 360 * 3 = +/- 16g
Gendy 0:4a55d0a21ea9 361 * </pre>
Gendy 0:4a55d0a21ea9 362 *
Gendy 0:4a55d0a21ea9 363 * @return Current full-scale accelerometer range setting
Gendy 0:4a55d0a21ea9 364 * @see MPU6050_ACCEL_FS_2
Gendy 0:4a55d0a21ea9 365 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 366 * @see MPU6050_ACONFIG_AFS_SEL_BIT
Gendy 0:4a55d0a21ea9 367 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
Gendy 0:4a55d0a21ea9 368 */
Gendy 0:4a55d0a21ea9 369 uint8_t MPU6050::getFullScaleAccelRange()
Gendy 0:4a55d0a21ea9 370 {
Gendy 0:4a55d0a21ea9 371 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 372 return buffer[0];
Gendy 0:4a55d0a21ea9 373 }
Gendy 0:4a55d0a21ea9 374 /** Set full-scale accelerometer range.
Gendy 0:4a55d0a21ea9 375 * @param range New full-scale accelerometer range setting
Gendy 0:4a55d0a21ea9 376 * @see getFullScaleAccelRange()
Gendy 0:4a55d0a21ea9 377 */
Gendy 0:4a55d0a21ea9 378 void MPU6050::setFullScaleAccelRange(uint8_t range)
Gendy 0:4a55d0a21ea9 379 {
Gendy 0:4a55d0a21ea9 380 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
Gendy 0:4a55d0a21ea9 381 }
Gendy 0:4a55d0a21ea9 382 /** Get the high-pass filter configuration.
Gendy 0:4a55d0a21ea9 383 * The DHPF is a filter module in the path leading to motion detectors (Free
Gendy 0:4a55d0a21ea9 384 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
Gendy 0:4a55d0a21ea9 385 * available to the data registers (see Figure in Section 8 of the MPU-6000/
Gendy 0:4a55d0a21ea9 386 * MPU-6050 Product Specification document).
Gendy 0:4a55d0a21ea9 387 *
Gendy 0:4a55d0a21ea9 388 * The high pass filter has three modes:
Gendy 0:4a55d0a21ea9 389 *
Gendy 0:4a55d0a21ea9 390 * <pre>
Gendy 0:4a55d0a21ea9 391 * Reset: The filter output settles to zero within one sample. This
Gendy 0:4a55d0a21ea9 392 * effectively disables the high pass filter. This mode may be toggled
Gendy 0:4a55d0a21ea9 393 * to quickly settle the filter.
Gendy 0:4a55d0a21ea9 394 *
Gendy 0:4a55d0a21ea9 395 * On: The high pass filter will pass signals above the cut off frequency.
Gendy 0:4a55d0a21ea9 396 *
Gendy 0:4a55d0a21ea9 397 * Hold: When triggered, the filter holds the present sample. The filter
Gendy 0:4a55d0a21ea9 398 * output will be the difference between the input sample and the held
Gendy 0:4a55d0a21ea9 399 * sample.
Gendy 0:4a55d0a21ea9 400 * </pre>
Gendy 0:4a55d0a21ea9 401 *
Gendy 0:4a55d0a21ea9 402 * <pre>
Gendy 0:4a55d0a21ea9 403 * ACCEL_HPF | Filter Mode | Cut-off Frequency
Gendy 0:4a55d0a21ea9 404 * ----------+-------------+------------------
Gendy 0:4a55d0a21ea9 405 * 0 | Reset | None
Gendy 0:4a55d0a21ea9 406 * 1 | On | 5Hz
Gendy 0:4a55d0a21ea9 407 * 2 | On | 2.5Hz
Gendy 0:4a55d0a21ea9 408 * 3 | On | 1.25Hz
Gendy 0:4a55d0a21ea9 409 * 4 | On | 0.63Hz
Gendy 0:4a55d0a21ea9 410 * 7 | Hold | None
Gendy 0:4a55d0a21ea9 411 * </pre>
Gendy 0:4a55d0a21ea9 412 *
Gendy 0:4a55d0a21ea9 413 * @return Current high-pass filter configuration
Gendy 0:4a55d0a21ea9 414 * @see MPU6050_DHPF_RESET
Gendy 0:4a55d0a21ea9 415 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 416 */
Gendy 0:4a55d0a21ea9 417 uint8_t MPU6050::getDHPFMode()
Gendy 0:4a55d0a21ea9 418 {
Gendy 0:4a55d0a21ea9 419 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 420 return buffer[0];
Gendy 0:4a55d0a21ea9 421 }
Gendy 0:4a55d0a21ea9 422 /** Set the high-pass filter configuration.
Gendy 0:4a55d0a21ea9 423 * @param bandwidth New high-pass filter configuration
Gendy 0:4a55d0a21ea9 424 * @see setDHPFMode()
Gendy 0:4a55d0a21ea9 425 * @see MPU6050_DHPF_RESET
Gendy 0:4a55d0a21ea9 426 * @see MPU6050_RA_ACCEL_CONFIG
Gendy 0:4a55d0a21ea9 427 */
Gendy 0:4a55d0a21ea9 428 void MPU6050::setDHPFMode(uint8_t bandwidth)
Gendy 0:4a55d0a21ea9 429 {
Gendy 0:4a55d0a21ea9 430 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
Gendy 0:4a55d0a21ea9 431 }
Gendy 0:4a55d0a21ea9 432
Gendy 0:4a55d0a21ea9 433 // FF_THR register
Gendy 0:4a55d0a21ea9 434
Gendy 0:4a55d0a21ea9 435 /** Get free-fall event acceleration threshold.
Gendy 0:4a55d0a21ea9 436 * This register configures the detection threshold for Free Fall event
Gendy 0:4a55d0a21ea9 437 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
Gendy 0:4a55d0a21ea9 438 * absolute value of the accelerometer measurements for the three axes are each
Gendy 0:4a55d0a21ea9 439 * less than the detection threshold. This condition increments the Free Fall
Gendy 0:4a55d0a21ea9 440 * duration counter (Register 30). The Free Fall interrupt is triggered when the
Gendy 0:4a55d0a21ea9 441 * Free Fall duration counter reaches the time specified in FF_DUR.
Gendy 0:4a55d0a21ea9 442 *
Gendy 0:4a55d0a21ea9 443 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
Gendy 0:4a55d0a21ea9 444 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
Gendy 0:4a55d0a21ea9 445 * 58 of this document.
Gendy 0:4a55d0a21ea9 446 *
Gendy 0:4a55d0a21ea9 447 * @return Current free-fall acceleration threshold value (LSB = 2mg)
Gendy 0:4a55d0a21ea9 448 * @see MPU6050_RA_FF_THR
Gendy 0:4a55d0a21ea9 449 */
Gendy 0:4a55d0a21ea9 450 uint8_t MPU6050::getFreefallDetectionThreshold()
Gendy 0:4a55d0a21ea9 451 {
Gendy 0:4a55d0a21ea9 452 i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
Gendy 0:4a55d0a21ea9 453 return buffer[0];
Gendy 0:4a55d0a21ea9 454 }
Gendy 0:4a55d0a21ea9 455 /** Get free-fall event acceleration threshold.
Gendy 0:4a55d0a21ea9 456 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
Gendy 0:4a55d0a21ea9 457 * @see getFreefallDetectionThreshold()
Gendy 0:4a55d0a21ea9 458 * @see MPU6050_RA_FF_THR
Gendy 0:4a55d0a21ea9 459 */
Gendy 0:4a55d0a21ea9 460 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
Gendy 0:4a55d0a21ea9 461 {
Gendy 0:4a55d0a21ea9 462 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
Gendy 0:4a55d0a21ea9 463 }
Gendy 0:4a55d0a21ea9 464
Gendy 0:4a55d0a21ea9 465 // FF_DUR register
Gendy 0:4a55d0a21ea9 466
Gendy 0:4a55d0a21ea9 467 /** Get free-fall event duration threshold.
Gendy 0:4a55d0a21ea9 468 * This register configures the duration counter threshold for Free Fall event
Gendy 0:4a55d0a21ea9 469 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
Gendy 0:4a55d0a21ea9 470 * of 1 LSB = 1 ms.
Gendy 0:4a55d0a21ea9 471 *
Gendy 0:4a55d0a21ea9 472 * The Free Fall duration counter increments while the absolute value of the
Gendy 0:4a55d0a21ea9 473 * accelerometer measurements are each less than the detection threshold
Gendy 0:4a55d0a21ea9 474 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
Gendy 0:4a55d0a21ea9 475 * duration counter reaches the time specified in this register.
Gendy 0:4a55d0a21ea9 476 *
Gendy 0:4a55d0a21ea9 477 * For more details on the Free Fall detection interrupt, see Section 8.2 of
Gendy 0:4a55d0a21ea9 478 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
Gendy 0:4a55d0a21ea9 479 * and 58 of this document.
Gendy 0:4a55d0a21ea9 480 *
Gendy 0:4a55d0a21ea9 481 * @return Current free-fall duration threshold value (LSB = 1ms)
Gendy 0:4a55d0a21ea9 482 * @see MPU6050_RA_FF_DUR
Gendy 0:4a55d0a21ea9 483 */
Gendy 0:4a55d0a21ea9 484 uint8_t MPU6050::getFreefallDetectionDuration()
Gendy 0:4a55d0a21ea9 485 {
Gendy 0:4a55d0a21ea9 486 i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
Gendy 0:4a55d0a21ea9 487 return buffer[0];
Gendy 0:4a55d0a21ea9 488 }
Gendy 0:4a55d0a21ea9 489 /** Get free-fall event duration threshold.
Gendy 0:4a55d0a21ea9 490 * @param duration New free-fall duration threshold value (LSB = 1ms)
Gendy 0:4a55d0a21ea9 491 * @see getFreefallDetectionDuration()
Gendy 0:4a55d0a21ea9 492 * @see MPU6050_RA_FF_DUR
Gendy 0:4a55d0a21ea9 493 */
Gendy 0:4a55d0a21ea9 494 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
Gendy 0:4a55d0a21ea9 495 {
Gendy 0:4a55d0a21ea9 496 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
Gendy 0:4a55d0a21ea9 497 }
Gendy 0:4a55d0a21ea9 498
Gendy 0:4a55d0a21ea9 499 // MOT_THR register
Gendy 0:4a55d0a21ea9 500
Gendy 0:4a55d0a21ea9 501 /** Get motion detection event acceleration threshold.
Gendy 0:4a55d0a21ea9 502 * This register configures the detection threshold for Motion interrupt
Gendy 0:4a55d0a21ea9 503 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
Gendy 0:4a55d0a21ea9 504 * absolute value of any of the accelerometer measurements exceeds this Motion
Gendy 0:4a55d0a21ea9 505 * detection threshold. This condition increments the Motion detection duration
Gendy 0:4a55d0a21ea9 506 * counter (Register 32). The Motion detection interrupt is triggered when the
Gendy 0:4a55d0a21ea9 507 * Motion Detection counter reaches the time count specified in MOT_DUR
Gendy 0:4a55d0a21ea9 508 * (Register 32).
Gendy 0:4a55d0a21ea9 509 *
Gendy 0:4a55d0a21ea9 510 * The Motion interrupt will indicate the axis and polarity of detected motion
Gendy 0:4a55d0a21ea9 511 * in MOT_DETECT_STATUS (Register 97).
Gendy 0:4a55d0a21ea9 512 *
Gendy 0:4a55d0a21ea9 513 * For more details on the Motion detection interrupt, see Section 8.3 of the
Gendy 0:4a55d0a21ea9 514 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
Gendy 0:4a55d0a21ea9 515 * 58 of this document.
Gendy 0:4a55d0a21ea9 516 *
Gendy 0:4a55d0a21ea9 517 * @return Current motion detection acceleration threshold value (LSB = 2mg)
Gendy 0:4a55d0a21ea9 518 * @see MPU6050_RA_MOT_THR
Gendy 0:4a55d0a21ea9 519 */
Gendy 0:4a55d0a21ea9 520 uint8_t MPU6050::getMotionDetectionThreshold()
Gendy 0:4a55d0a21ea9 521 {
Gendy 0:4a55d0a21ea9 522 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
Gendy 0:4a55d0a21ea9 523 return buffer[0];
Gendy 0:4a55d0a21ea9 524 }
Gendy 0:4a55d0a21ea9 525 /** Set free-fall event acceleration threshold.
Gendy 0:4a55d0a21ea9 526 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
Gendy 0:4a55d0a21ea9 527 * @see getMotionDetectionThreshold()
Gendy 0:4a55d0a21ea9 528 * @see MPU6050_RA_MOT_THR
Gendy 0:4a55d0a21ea9 529 */
Gendy 0:4a55d0a21ea9 530 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
Gendy 0:4a55d0a21ea9 531 {
Gendy 0:4a55d0a21ea9 532 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
Gendy 0:4a55d0a21ea9 533 }
Gendy 0:4a55d0a21ea9 534
Gendy 0:4a55d0a21ea9 535 // MOT_DUR register
Gendy 0:4a55d0a21ea9 536
Gendy 0:4a55d0a21ea9 537 /** Get motion detection event duration threshold.
Gendy 0:4a55d0a21ea9 538 * This register configures the duration counter threshold for Motion interrupt
Gendy 0:4a55d0a21ea9 539 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
Gendy 0:4a55d0a21ea9 540 * of 1LSB = 1ms. The Motion detection duration counter increments when the
Gendy 0:4a55d0a21ea9 541 * absolute value of any of the accelerometer measurements exceeds the Motion
Gendy 0:4a55d0a21ea9 542 * detection threshold (Register 31). The Motion detection interrupt is
Gendy 0:4a55d0a21ea9 543 * triggered when the Motion detection counter reaches the time count specified
Gendy 0:4a55d0a21ea9 544 * in this register.
Gendy 0:4a55d0a21ea9 545 *
Gendy 0:4a55d0a21ea9 546 * For more details on the Motion detection interrupt, see Section 8.3 of the
Gendy 0:4a55d0a21ea9 547 * MPU-6000/MPU-6050 Product Specification document.
Gendy 0:4a55d0a21ea9 548 *
Gendy 0:4a55d0a21ea9 549 * @return Current motion detection duration threshold value (LSB = 1ms)
Gendy 0:4a55d0a21ea9 550 * @see MPU6050_RA_MOT_DUR
Gendy 0:4a55d0a21ea9 551 */
Gendy 0:4a55d0a21ea9 552 uint8_t MPU6050::getMotionDetectionDuration()
Gendy 0:4a55d0a21ea9 553 {
Gendy 0:4a55d0a21ea9 554 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
Gendy 0:4a55d0a21ea9 555 return buffer[0];
Gendy 0:4a55d0a21ea9 556 }
Gendy 0:4a55d0a21ea9 557 /** Set motion detection event duration threshold.
Gendy 0:4a55d0a21ea9 558 * @param duration New motion detection duration threshold value (LSB = 1ms)
Gendy 0:4a55d0a21ea9 559 * @see getMotionDetectionDuration()
Gendy 0:4a55d0a21ea9 560 * @see MPU6050_RA_MOT_DUR
Gendy 0:4a55d0a21ea9 561 */
Gendy 0:4a55d0a21ea9 562 void MPU6050::setMotionDetectionDuration(uint8_t duration)
Gendy 0:4a55d0a21ea9 563 {
Gendy 0:4a55d0a21ea9 564 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
Gendy 0:4a55d0a21ea9 565 }
Gendy 0:4a55d0a21ea9 566
Gendy 0:4a55d0a21ea9 567 // ZRMOT_THR register
Gendy 0:4a55d0a21ea9 568
Gendy 0:4a55d0a21ea9 569 /** Get zero motion detection event acceleration threshold.
Gendy 0:4a55d0a21ea9 570 * This register configures the detection threshold for Zero Motion interrupt
Gendy 0:4a55d0a21ea9 571 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
Gendy 0:4a55d0a21ea9 572 * the absolute value of the accelerometer measurements for the 3 axes are each
Gendy 0:4a55d0a21ea9 573 * less than the detection threshold. This condition increments the Zero Motion
Gendy 0:4a55d0a21ea9 574 * duration counter (Register 34). The Zero Motion interrupt is triggered when
Gendy 0:4a55d0a21ea9 575 * the Zero Motion duration counter reaches the time count specified in
Gendy 0:4a55d0a21ea9 576 * ZRMOT_DUR (Register 34).
Gendy 0:4a55d0a21ea9 577 *
Gendy 0:4a55d0a21ea9 578 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
Gendy 0:4a55d0a21ea9 579 * interrupt both when Zero Motion is first detected and when Zero Motion is no
Gendy 0:4a55d0a21ea9 580 * longer detected.
Gendy 0:4a55d0a21ea9 581 *
Gendy 0:4a55d0a21ea9 582 * When a zero motion event is detected, a Zero Motion Status will be indicated
Gendy 0:4a55d0a21ea9 583 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
Gendy 0:4a55d0a21ea9 584 * condition is detected, the status bit is set to 1. When a zero-motion-to-
Gendy 0:4a55d0a21ea9 585 * motion condition is detected, the status bit is set to 0.
Gendy 0:4a55d0a21ea9 586 *
Gendy 0:4a55d0a21ea9 587 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
Gendy 0:4a55d0a21ea9 588 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
Gendy 0:4a55d0a21ea9 589 * and 58 of this document.
Gendy 0:4a55d0a21ea9 590 *
Gendy 0:4a55d0a21ea9 591 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
Gendy 0:4a55d0a21ea9 592 * @see MPU6050_RA_ZRMOT_THR
Gendy 0:4a55d0a21ea9 593 */
Gendy 0:4a55d0a21ea9 594 uint8_t MPU6050::getZeroMotionDetectionThreshold()
Gendy 0:4a55d0a21ea9 595 {
Gendy 0:4a55d0a21ea9 596 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
Gendy 0:4a55d0a21ea9 597 return buffer[0];
Gendy 0:4a55d0a21ea9 598 }
Gendy 0:4a55d0a21ea9 599 /** Set zero motion detection event acceleration threshold.
Gendy 0:4a55d0a21ea9 600 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
Gendy 0:4a55d0a21ea9 601 * @see getZeroMotionDetectionThreshold()
Gendy 0:4a55d0a21ea9 602 * @see MPU6050_RA_ZRMOT_THR
Gendy 0:4a55d0a21ea9 603 */
Gendy 0:4a55d0a21ea9 604 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
Gendy 0:4a55d0a21ea9 605 {
Gendy 0:4a55d0a21ea9 606 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
Gendy 0:4a55d0a21ea9 607 }
Gendy 0:4a55d0a21ea9 608
Gendy 0:4a55d0a21ea9 609 // ZRMOT_DUR register
Gendy 0:4a55d0a21ea9 610
Gendy 0:4a55d0a21ea9 611 /** Get zero motion detection event duration threshold.
Gendy 0:4a55d0a21ea9 612 * This register configures the duration counter threshold for Zero Motion
Gendy 0:4a55d0a21ea9 613 * interrupt generation. The duration counter ticks at 16 Hz, therefore
Gendy 0:4a55d0a21ea9 614 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
Gendy 0:4a55d0a21ea9 615 * increments while the absolute value of the accelerometer measurements are
Gendy 0:4a55d0a21ea9 616 * each less than the detection threshold (Register 33). The Zero Motion
Gendy 0:4a55d0a21ea9 617 * interrupt is triggered when the Zero Motion duration counter reaches the time
Gendy 0:4a55d0a21ea9 618 * count specified in this register.
Gendy 0:4a55d0a21ea9 619 *
Gendy 0:4a55d0a21ea9 620 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
Gendy 0:4a55d0a21ea9 621 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
Gendy 0:4a55d0a21ea9 622 * and 58 of this document.
Gendy 0:4a55d0a21ea9 623 *
Gendy 0:4a55d0a21ea9 624 * @return Current zero motion detection duration threshold value (LSB = 64ms)
Gendy 0:4a55d0a21ea9 625 * @see MPU6050_RA_ZRMOT_DUR
Gendy 0:4a55d0a21ea9 626 */
Gendy 0:4a55d0a21ea9 627 uint8_t MPU6050::getZeroMotionDetectionDuration()
Gendy 0:4a55d0a21ea9 628 {
Gendy 0:4a55d0a21ea9 629 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
Gendy 0:4a55d0a21ea9 630 return buffer[0];
Gendy 0:4a55d0a21ea9 631 }
Gendy 0:4a55d0a21ea9 632 /** Set zero motion detection event duration threshold.
Gendy 0:4a55d0a21ea9 633 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
Gendy 0:4a55d0a21ea9 634 * @see getZeroMotionDetectionDuration()
Gendy 0:4a55d0a21ea9 635 * @see MPU6050_RA_ZRMOT_DUR
Gendy 0:4a55d0a21ea9 636 */
Gendy 0:4a55d0a21ea9 637 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
Gendy 0:4a55d0a21ea9 638 {
Gendy 0:4a55d0a21ea9 639 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
Gendy 0:4a55d0a21ea9 640 }
Gendy 0:4a55d0a21ea9 641
Gendy 0:4a55d0a21ea9 642 // FIFO_EN register
Gendy 0:4a55d0a21ea9 643
Gendy 0:4a55d0a21ea9 644 /** Get temperature FIFO enabled value.
Gendy 0:4a55d0a21ea9 645 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
Gendy 0:4a55d0a21ea9 646 * 66) to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 647 * @return Current temperature FIFO enabled value
Gendy 0:4a55d0a21ea9 648 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 649 */
Gendy 0:4a55d0a21ea9 650 bool MPU6050::getTempFIFOEnabled()
Gendy 0:4a55d0a21ea9 651 {
Gendy 0:4a55d0a21ea9 652 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 653 return buffer[0];
Gendy 0:4a55d0a21ea9 654 }
Gendy 0:4a55d0a21ea9 655 /** Set temperature FIFO enabled value.
Gendy 0:4a55d0a21ea9 656 * @param enabled New temperature FIFO enabled value
Gendy 0:4a55d0a21ea9 657 * @see getTempFIFOEnabled()
Gendy 0:4a55d0a21ea9 658 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 659 */
Gendy 0:4a55d0a21ea9 660 void MPU6050::setTempFIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 661 {
Gendy 0:4a55d0a21ea9 662 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 663 }
Gendy 0:4a55d0a21ea9 664 /** Get gyroscope X-axis FIFO enabled value.
Gendy 0:4a55d0a21ea9 665 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
Gendy 0:4a55d0a21ea9 666 * 68) to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 667 * @return Current gyroscope X-axis FIFO enabled value
Gendy 0:4a55d0a21ea9 668 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 669 */
Gendy 0:4a55d0a21ea9 670 bool MPU6050::getXGyroFIFOEnabled()
Gendy 0:4a55d0a21ea9 671 {
Gendy 0:4a55d0a21ea9 672 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 673 return buffer[0];
Gendy 0:4a55d0a21ea9 674 }
Gendy 0:4a55d0a21ea9 675 /** Set gyroscope X-axis FIFO enabled value.
Gendy 0:4a55d0a21ea9 676 * @param enabled New gyroscope X-axis FIFO enabled value
Gendy 0:4a55d0a21ea9 677 * @see getXGyroFIFOEnabled()
Gendy 0:4a55d0a21ea9 678 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 679 */
Gendy 0:4a55d0a21ea9 680 void MPU6050::setXGyroFIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 681 {
Gendy 0:4a55d0a21ea9 682 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 683 }
Gendy 0:4a55d0a21ea9 684 /** Get gyroscope Y-axis FIFO enabled value.
Gendy 0:4a55d0a21ea9 685 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
Gendy 0:4a55d0a21ea9 686 * 70) to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 687 * @return Current gyroscope Y-axis FIFO enabled value
Gendy 0:4a55d0a21ea9 688 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 689 */
Gendy 0:4a55d0a21ea9 690 bool MPU6050::getYGyroFIFOEnabled()
Gendy 0:4a55d0a21ea9 691 {
Gendy 0:4a55d0a21ea9 692 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 693 return buffer[0];
Gendy 0:4a55d0a21ea9 694 }
Gendy 0:4a55d0a21ea9 695 /** Set gyroscope Y-axis FIFO enabled value.
Gendy 0:4a55d0a21ea9 696 * @param enabled New gyroscope Y-axis FIFO enabled value
Gendy 0:4a55d0a21ea9 697 * @see getYGyroFIFOEnabled()
Gendy 0:4a55d0a21ea9 698 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 699 */
Gendy 0:4a55d0a21ea9 700 void MPU6050::setYGyroFIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 701 {
Gendy 0:4a55d0a21ea9 702 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 703 }
Gendy 0:4a55d0a21ea9 704 /** Get gyroscope Z-axis FIFO enabled value.
Gendy 0:4a55d0a21ea9 705 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
Gendy 0:4a55d0a21ea9 706 * 72) to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 707 * @return Current gyroscope Z-axis FIFO enabled value
Gendy 0:4a55d0a21ea9 708 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 709 */
Gendy 0:4a55d0a21ea9 710 bool MPU6050::getZGyroFIFOEnabled()
Gendy 0:4a55d0a21ea9 711 {
Gendy 0:4a55d0a21ea9 712 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 713 return buffer[0];
Gendy 0:4a55d0a21ea9 714 }
Gendy 0:4a55d0a21ea9 715 /** Set gyroscope Z-axis FIFO enabled value.
Gendy 0:4a55d0a21ea9 716 * @param enabled New gyroscope Z-axis FIFO enabled value
Gendy 0:4a55d0a21ea9 717 * @see getZGyroFIFOEnabled()
Gendy 0:4a55d0a21ea9 718 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 719 */
Gendy 0:4a55d0a21ea9 720 void MPU6050::setZGyroFIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 721 {
Gendy 0:4a55d0a21ea9 722 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 723 }
Gendy 0:4a55d0a21ea9 724 /** Get accelerometer FIFO enabled value.
Gendy 0:4a55d0a21ea9 725 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
Gendy 0:4a55d0a21ea9 726 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
Gendy 0:4a55d0a21ea9 727 * written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 728 * @return Current accelerometer FIFO enabled value
Gendy 0:4a55d0a21ea9 729 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 730 */
Gendy 0:4a55d0a21ea9 731 bool MPU6050::getAccelFIFOEnabled()
Gendy 0:4a55d0a21ea9 732 {
Gendy 0:4a55d0a21ea9 733 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 734 return buffer[0];
Gendy 0:4a55d0a21ea9 735 }
Gendy 0:4a55d0a21ea9 736 /** Set accelerometer FIFO enabled value.
Gendy 0:4a55d0a21ea9 737 * @param enabled New accelerometer FIFO enabled value
Gendy 0:4a55d0a21ea9 738 * @see getAccelFIFOEnabled()
Gendy 0:4a55d0a21ea9 739 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 740 */
Gendy 0:4a55d0a21ea9 741 void MPU6050::setAccelFIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 742 {
Gendy 0:4a55d0a21ea9 743 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 744 }
Gendy 0:4a55d0a21ea9 745 /** Get Slave 2 FIFO enabled value.
Gendy 0:4a55d0a21ea9 746 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gendy 0:4a55d0a21ea9 747 * associated with Slave 2 to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 748 * @return Current Slave 2 FIFO enabled value
Gendy 0:4a55d0a21ea9 749 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 750 */
Gendy 0:4a55d0a21ea9 751 bool MPU6050::getSlave2FIFOEnabled()
Gendy 0:4a55d0a21ea9 752 {
Gendy 0:4a55d0a21ea9 753 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 754 return buffer[0];
Gendy 0:4a55d0a21ea9 755 }
Gendy 0:4a55d0a21ea9 756 /** Set Slave 2 FIFO enabled value.
Gendy 0:4a55d0a21ea9 757 * @param enabled New Slave 2 FIFO enabled value
Gendy 0:4a55d0a21ea9 758 * @see getSlave2FIFOEnabled()
Gendy 0:4a55d0a21ea9 759 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 760 */
Gendy 0:4a55d0a21ea9 761 void MPU6050::setSlave2FIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 762 {
Gendy 0:4a55d0a21ea9 763 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 764 }
Gendy 0:4a55d0a21ea9 765 /** Get Slave 1 FIFO enabled value.
Gendy 0:4a55d0a21ea9 766 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gendy 0:4a55d0a21ea9 767 * associated with Slave 1 to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 768 * @return Current Slave 1 FIFO enabled value
Gendy 0:4a55d0a21ea9 769 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 770 */
Gendy 0:4a55d0a21ea9 771 bool MPU6050::getSlave1FIFOEnabled()
Gendy 0:4a55d0a21ea9 772 {
Gendy 0:4a55d0a21ea9 773 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 774 return buffer[0];
Gendy 0:4a55d0a21ea9 775 }
Gendy 0:4a55d0a21ea9 776 /** Set Slave 1 FIFO enabled value.
Gendy 0:4a55d0a21ea9 777 * @param enabled New Slave 1 FIFO enabled value
Gendy 0:4a55d0a21ea9 778 * @see getSlave1FIFOEnabled()
Gendy 0:4a55d0a21ea9 779 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 780 */
Gendy 0:4a55d0a21ea9 781 void MPU6050::setSlave1FIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 782 {
Gendy 0:4a55d0a21ea9 783 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 784 }
Gendy 0:4a55d0a21ea9 785 /** Get Slave 0 FIFO enabled value.
Gendy 0:4a55d0a21ea9 786 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gendy 0:4a55d0a21ea9 787 * associated with Slave 0 to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 788 * @return Current Slave 0 FIFO enabled value
Gendy 0:4a55d0a21ea9 789 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 790 */
Gendy 0:4a55d0a21ea9 791 bool MPU6050::getSlave0FIFOEnabled()
Gendy 0:4a55d0a21ea9 792 {
Gendy 0:4a55d0a21ea9 793 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 794 return buffer[0];
Gendy 0:4a55d0a21ea9 795 }
Gendy 0:4a55d0a21ea9 796 /** Set Slave 0 FIFO enabled value.
Gendy 0:4a55d0a21ea9 797 * @param enabled New Slave 0 FIFO enabled value
Gendy 0:4a55d0a21ea9 798 * @see getSlave0FIFOEnabled()
Gendy 0:4a55d0a21ea9 799 * @see MPU6050_RA_FIFO_EN
Gendy 0:4a55d0a21ea9 800 */
Gendy 0:4a55d0a21ea9 801 void MPU6050::setSlave0FIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 802 {
Gendy 0:4a55d0a21ea9 803 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 804 }
Gendy 0:4a55d0a21ea9 805
Gendy 0:4a55d0a21ea9 806 // I2C_MST_CTRL register
Gendy 0:4a55d0a21ea9 807
Gendy 0:4a55d0a21ea9 808 /** Get multi-master enabled value.
Gendy 0:4a55d0a21ea9 809 * Multi-master capability allows multiple I2C masters to operate on the same
Gendy 0:4a55d0a21ea9 810 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
Gendy 0:4a55d0a21ea9 811 * to 1. This will increase current drawn by approximately 30uA.
Gendy 0:4a55d0a21ea9 812 *
Gendy 0:4a55d0a21ea9 813 * In circuits where multi-master capability is required, the state of the I2C
Gendy 0:4a55d0a21ea9 814 * bus must always be monitored by each separate I2C Master. Before an I2C
Gendy 0:4a55d0a21ea9 815 * Master can assume arbitration of the bus, it must first confirm that no other
Gendy 0:4a55d0a21ea9 816 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
Gendy 0:4a55d0a21ea9 817 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
Gendy 0:4a55d0a21ea9 818 * detect when the bus is available.
Gendy 0:4a55d0a21ea9 819 *
Gendy 0:4a55d0a21ea9 820 * @return Current multi-master enabled value
Gendy 0:4a55d0a21ea9 821 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 822 */
Gendy 0:4a55d0a21ea9 823 bool MPU6050::getMultiMasterEnabled()
Gendy 0:4a55d0a21ea9 824 {
Gendy 0:4a55d0a21ea9 825 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 826 return buffer[0];
Gendy 0:4a55d0a21ea9 827 }
Gendy 0:4a55d0a21ea9 828 /** Set multi-master enabled value.
Gendy 0:4a55d0a21ea9 829 * @param enabled New multi-master enabled value
Gendy 0:4a55d0a21ea9 830 * @see getMultiMasterEnabled()
Gendy 0:4a55d0a21ea9 831 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 832 */
Gendy 0:4a55d0a21ea9 833 void MPU6050::setMultiMasterEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 834 {
Gendy 0:4a55d0a21ea9 835 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 836 }
Gendy 0:4a55d0a21ea9 837 /** Get wait-for-external-sensor-data enabled value.
Gendy 0:4a55d0a21ea9 838 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
Gendy 0:4a55d0a21ea9 839 * delayed until External Sensor data from the Slave Devices are loaded into the
Gendy 0:4a55d0a21ea9 840 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
Gendy 0:4a55d0a21ea9 841 * data (i.e. from gyro and accel) and external sensor data have been loaded to
Gendy 0:4a55d0a21ea9 842 * their respective data registers (i.e. the data is synced) when the Data Ready
Gendy 0:4a55d0a21ea9 843 * interrupt is triggered.
Gendy 0:4a55d0a21ea9 844 *
Gendy 0:4a55d0a21ea9 845 * @return Current wait-for-external-sensor-data enabled value
Gendy 0:4a55d0a21ea9 846 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 847 */
Gendy 0:4a55d0a21ea9 848 bool MPU6050::getWaitForExternalSensorEnabled()
Gendy 0:4a55d0a21ea9 849 {
Gendy 0:4a55d0a21ea9 850 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
Gendy 0:4a55d0a21ea9 851 return buffer[0];
Gendy 0:4a55d0a21ea9 852 }
Gendy 0:4a55d0a21ea9 853 /** Set wait-for-external-sensor-data enabled value.
Gendy 0:4a55d0a21ea9 854 * @param enabled New wait-for-external-sensor-data enabled value
Gendy 0:4a55d0a21ea9 855 * @see getWaitForExternalSensorEnabled()
Gendy 0:4a55d0a21ea9 856 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 857 */
Gendy 0:4a55d0a21ea9 858 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 859 {
Gendy 0:4a55d0a21ea9 860 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
Gendy 0:4a55d0a21ea9 861 }
Gendy 0:4a55d0a21ea9 862 /** Get Slave 3 FIFO enabled value.
Gendy 0:4a55d0a21ea9 863 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
Gendy 0:4a55d0a21ea9 864 * associated with Slave 3 to be written into the FIFO buffer.
Gendy 0:4a55d0a21ea9 865 * @return Current Slave 3 FIFO enabled value
Gendy 0:4a55d0a21ea9 866 * @see MPU6050_RA_MST_CTRL
Gendy 0:4a55d0a21ea9 867 */
Gendy 0:4a55d0a21ea9 868 bool MPU6050::getSlave3FIFOEnabled()
Gendy 0:4a55d0a21ea9 869 {
Gendy 0:4a55d0a21ea9 870 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 871 return buffer[0];
Gendy 0:4a55d0a21ea9 872 }
Gendy 0:4a55d0a21ea9 873 /** Set Slave 3 FIFO enabled value.
Gendy 0:4a55d0a21ea9 874 * @param enabled New Slave 3 FIFO enabled value
Gendy 0:4a55d0a21ea9 875 * @see getSlave3FIFOEnabled()
Gendy 0:4a55d0a21ea9 876 * @see MPU6050_RA_MST_CTRL
Gendy 0:4a55d0a21ea9 877 */
Gendy 0:4a55d0a21ea9 878 void MPU6050::setSlave3FIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 879 {
Gendy 0:4a55d0a21ea9 880 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 881 }
Gendy 0:4a55d0a21ea9 882 /** Get slave read/write transition enabled value.
Gendy 0:4a55d0a21ea9 883 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
Gendy 0:4a55d0a21ea9 884 * read to the next slave read. If the bit equals 0, there will be a restart
Gendy 0:4a55d0a21ea9 885 * between reads. If the bit equals 1, there will be a stop followed by a start
Gendy 0:4a55d0a21ea9 886 * of the following read. When a write transaction follows a read transaction,
Gendy 0:4a55d0a21ea9 887 * the stop followed by a start of the successive write will be always used.
Gendy 0:4a55d0a21ea9 888 *
Gendy 0:4a55d0a21ea9 889 * @return Current slave read/write transition enabled value
Gendy 0:4a55d0a21ea9 890 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 891 */
Gendy 0:4a55d0a21ea9 892 bool MPU6050::getSlaveReadWriteTransitionEnabled()
Gendy 0:4a55d0a21ea9 893 {
Gendy 0:4a55d0a21ea9 894 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
Gendy 0:4a55d0a21ea9 895 return buffer[0];
Gendy 0:4a55d0a21ea9 896 }
Gendy 0:4a55d0a21ea9 897 /** Set slave read/write transition enabled value.
Gendy 0:4a55d0a21ea9 898 * @param enabled New slave read/write transition enabled value
Gendy 0:4a55d0a21ea9 899 * @see getSlaveReadWriteTransitionEnabled()
Gendy 0:4a55d0a21ea9 900 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 901 */
Gendy 0:4a55d0a21ea9 902 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 903 {
Gendy 0:4a55d0a21ea9 904 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
Gendy 0:4a55d0a21ea9 905 }
Gendy 0:4a55d0a21ea9 906 /** Get I2C master clock speed.
Gendy 0:4a55d0a21ea9 907 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
Gendy 0:4a55d0a21ea9 908 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
Gendy 0:4a55d0a21ea9 909 * the following table:
Gendy 0:4a55d0a21ea9 910 *
Gendy 0:4a55d0a21ea9 911 * <pre>
Gendy 0:4a55d0a21ea9 912 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
Gendy 0:4a55d0a21ea9 913 * ------------+------------------------+-------------------
Gendy 0:4a55d0a21ea9 914 * 0 | 348kHz | 23
Gendy 0:4a55d0a21ea9 915 * 1 | 333kHz | 24
Gendy 0:4a55d0a21ea9 916 * 2 | 320kHz | 25
Gendy 0:4a55d0a21ea9 917 * 3 | 308kHz | 26
Gendy 0:4a55d0a21ea9 918 * 4 | 296kHz | 27
Gendy 0:4a55d0a21ea9 919 * 5 | 286kHz | 28
Gendy 0:4a55d0a21ea9 920 * 6 | 276kHz | 29
Gendy 0:4a55d0a21ea9 921 * 7 | 267kHz | 30
Gendy 0:4a55d0a21ea9 922 * 8 | 258kHz | 31
Gendy 0:4a55d0a21ea9 923 * 9 | 500kHz | 16
Gendy 0:4a55d0a21ea9 924 * 10 | 471kHz | 17
Gendy 0:4a55d0a21ea9 925 * 11 | 444kHz | 18
Gendy 0:4a55d0a21ea9 926 * 12 | 421kHz | 19
Gendy 0:4a55d0a21ea9 927 * 13 | 400kHz | 20
Gendy 0:4a55d0a21ea9 928 * 14 | 381kHz | 21
Gendy 0:4a55d0a21ea9 929 * 15 | 364kHz | 22
Gendy 0:4a55d0a21ea9 930 * </pre>
Gendy 0:4a55d0a21ea9 931 *
Gendy 0:4a55d0a21ea9 932 * @return Current I2C master clock speed
Gendy 0:4a55d0a21ea9 933 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 934 */
Gendy 0:4a55d0a21ea9 935 uint8_t MPU6050::getMasterClockSpeed()
Gendy 0:4a55d0a21ea9 936 {
Gendy 0:4a55d0a21ea9 937 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 938 return buffer[0];
Gendy 0:4a55d0a21ea9 939 }
Gendy 0:4a55d0a21ea9 940 /** Set I2C master clock speed.
Gendy 0:4a55d0a21ea9 941 * @reparam speed Current I2C master clock speed
Gendy 0:4a55d0a21ea9 942 * @see MPU6050_RA_I2C_MST_CTRL
Gendy 0:4a55d0a21ea9 943 */
Gendy 0:4a55d0a21ea9 944 void MPU6050::setMasterClockSpeed(uint8_t speed)
Gendy 0:4a55d0a21ea9 945 {
Gendy 0:4a55d0a21ea9 946 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
Gendy 0:4a55d0a21ea9 947 }
Gendy 0:4a55d0a21ea9 948
Gendy 0:4a55d0a21ea9 949 // I2C_SLV* registers (Slave 0-3)
Gendy 0:4a55d0a21ea9 950
Gendy 0:4a55d0a21ea9 951 /** Get the I2C address of the specified slave (0-3).
Gendy 0:4a55d0a21ea9 952 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
Gendy 0:4a55d0a21ea9 953 * operation, and if it is cleared, then it's a write operation. The remaining
Gendy 0:4a55d0a21ea9 954 * bits (6-0) are the 7-bit device address of the slave device.
Gendy 0:4a55d0a21ea9 955 *
Gendy 0:4a55d0a21ea9 956 * In read mode, the result of the read is placed in the lowest available
Gendy 0:4a55d0a21ea9 957 * EXT_SENS_DATA register. For further information regarding the allocation of
Gendy 0:4a55d0a21ea9 958 * read results, please refer to the EXT_SENS_DATA register description
Gendy 0:4a55d0a21ea9 959 * (Registers 73 - 96).
Gendy 0:4a55d0a21ea9 960 *
Gendy 0:4a55d0a21ea9 961 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
Gendy 0:4a55d0a21ea9 962 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
Gendy 0:4a55d0a21ea9 963 *
Gendy 0:4a55d0a21ea9 964 * I2C data transactions are performed at the Sample Rate, as defined in
Gendy 0:4a55d0a21ea9 965 * Register 25. The user is responsible for ensuring that I2C data transactions
Gendy 0:4a55d0a21ea9 966 * to and from each enabled Slave can be completed within a single period of the
Gendy 0:4a55d0a21ea9 967 * Sample Rate.
Gendy 0:4a55d0a21ea9 968 *
Gendy 0:4a55d0a21ea9 969 * The I2C slave access rate can be reduced relative to the Sample Rate. This
Gendy 0:4a55d0a21ea9 970 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
Gendy 0:4a55d0a21ea9 971 * slave's access rate is reduced relative to the Sample Rate is determined by
Gendy 0:4a55d0a21ea9 972 * I2C_MST_DELAY_CTRL (Register 103).
Gendy 0:4a55d0a21ea9 973 *
Gendy 0:4a55d0a21ea9 974 * The processing order for the slaves is fixed. The sequence followed for
Gendy 0:4a55d0a21ea9 975 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
Gendy 0:4a55d0a21ea9 976 * particular Slave is disabled it will be skipped.
Gendy 0:4a55d0a21ea9 977 *
Gendy 0:4a55d0a21ea9 978 * Each slave can either be accessed at the sample rate or at a reduced sample
Gendy 0:4a55d0a21ea9 979 * rate. In a case where some slaves are accessed at the Sample Rate and some
Gendy 0:4a55d0a21ea9 980 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
Gendy 0:4a55d0a21ea9 981 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
Gendy 0:4a55d0a21ea9 982 * be skipped if their access rate dictates that they should not be accessed
Gendy 0:4a55d0a21ea9 983 * during that particular cycle. For further information regarding the reduced
Gendy 0:4a55d0a21ea9 984 * access rate, please refer to Register 52. Whether a slave is accessed at the
Gendy 0:4a55d0a21ea9 985 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
Gendy 0:4a55d0a21ea9 986 * Register 103.
Gendy 0:4a55d0a21ea9 987 *
Gendy 0:4a55d0a21ea9 988 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 989 * @return Current address for specified slave
Gendy 0:4a55d0a21ea9 990 * @see MPU6050_RA_I2C_SLV0_ADDR
Gendy 0:4a55d0a21ea9 991 */
Gendy 0:4a55d0a21ea9 992 uint8_t MPU6050::getSlaveAddress(uint8_t num)
Gendy 0:4a55d0a21ea9 993 {
Gendy 0:4a55d0a21ea9 994 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 995 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
Gendy 0:4a55d0a21ea9 996 return buffer[0];
Gendy 0:4a55d0a21ea9 997 }
Gendy 0:4a55d0a21ea9 998 /** Set the I2C address of the specified slave (0-3).
Gendy 0:4a55d0a21ea9 999 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1000 * @param address New address for specified slave
Gendy 0:4a55d0a21ea9 1001 * @see getSlaveAddress()
Gendy 0:4a55d0a21ea9 1002 * @see MPU6050_RA_I2C_SLV0_ADDR
Gendy 0:4a55d0a21ea9 1003 */
Gendy 0:4a55d0a21ea9 1004 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
Gendy 0:4a55d0a21ea9 1005 {
Gendy 0:4a55d0a21ea9 1006 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1007 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
Gendy 0:4a55d0a21ea9 1008 }
Gendy 0:4a55d0a21ea9 1009 /** Get the active internal register for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1010 * Read/write operations for this slave will be done to whatever internal
Gendy 0:4a55d0a21ea9 1011 * register address is stored in this MPU register.
Gendy 0:4a55d0a21ea9 1012 *
Gendy 0:4a55d0a21ea9 1013 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
Gendy 0:4a55d0a21ea9 1014 * characteristics, and so it has its own functions.
Gendy 0:4a55d0a21ea9 1015 *
Gendy 0:4a55d0a21ea9 1016 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1017 * @return Current active register for specified slave
Gendy 0:4a55d0a21ea9 1018 * @see MPU6050_RA_I2C_SLV0_REG
Gendy 0:4a55d0a21ea9 1019 */
Gendy 0:4a55d0a21ea9 1020 uint8_t MPU6050::getSlaveRegister(uint8_t num)
Gendy 0:4a55d0a21ea9 1021 {
Gendy 0:4a55d0a21ea9 1022 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 1023 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
Gendy 0:4a55d0a21ea9 1024 return buffer[0];
Gendy 0:4a55d0a21ea9 1025 }
Gendy 0:4a55d0a21ea9 1026 /** Set the active internal register for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1027 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1028 * @param reg New active register for specified slave
Gendy 0:4a55d0a21ea9 1029 * @see getSlaveRegister()
Gendy 0:4a55d0a21ea9 1030 * @see MPU6050_RA_I2C_SLV0_REG
Gendy 0:4a55d0a21ea9 1031 */
Gendy 0:4a55d0a21ea9 1032 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
Gendy 0:4a55d0a21ea9 1033 {
Gendy 0:4a55d0a21ea9 1034 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1035 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
Gendy 0:4a55d0a21ea9 1036 }
Gendy 0:4a55d0a21ea9 1037 /** Get the enabled value for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1038 * When set to 1, this bit enables Slave 0 for data transfer operations. When
Gendy 0:4a55d0a21ea9 1039 * cleared to 0, this bit disables Slave 0 from data transfer operations.
Gendy 0:4a55d0a21ea9 1040 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1041 * @return Current enabled value for specified slave
Gendy 0:4a55d0a21ea9 1042 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1043 */
Gendy 0:4a55d0a21ea9 1044 bool MPU6050::getSlaveEnabled(uint8_t num)
Gendy 0:4a55d0a21ea9 1045 {
Gendy 0:4a55d0a21ea9 1046 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 1047 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1048 return buffer[0];
Gendy 0:4a55d0a21ea9 1049 }
Gendy 0:4a55d0a21ea9 1050 /** Set the enabled value for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1051 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1052 * @param enabled New enabled value for specified slave
Gendy 0:4a55d0a21ea9 1053 * @see getSlaveEnabled()
Gendy 0:4a55d0a21ea9 1054 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1055 */
Gendy 0:4a55d0a21ea9 1056 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
Gendy 0:4a55d0a21ea9 1057 {
Gendy 0:4a55d0a21ea9 1058 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1059 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 1060 }
Gendy 0:4a55d0a21ea9 1061 /** Get word pair byte-swapping enabled for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1062 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
Gendy 0:4a55d0a21ea9 1063 * the high and low bytes of a word pair are swapped. Please refer to
Gendy 0:4a55d0a21ea9 1064 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
Gendy 0:4a55d0a21ea9 1065 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
Gendy 0:4a55d0a21ea9 1066 * registers in the order they were transferred.
Gendy 0:4a55d0a21ea9 1067 *
Gendy 0:4a55d0a21ea9 1068 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1069 * @return Current word pair byte-swapping enabled value for specified slave
Gendy 0:4a55d0a21ea9 1070 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1071 */
Gendy 0:4a55d0a21ea9 1072 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
Gendy 0:4a55d0a21ea9 1073 {
Gendy 0:4a55d0a21ea9 1074 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 1075 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
Gendy 0:4a55d0a21ea9 1076 return buffer[0];
Gendy 0:4a55d0a21ea9 1077 }
Gendy 0:4a55d0a21ea9 1078 /** Set word pair byte-swapping enabled for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1079 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1080 * @param enabled New word pair byte-swapping enabled value for specified slave
Gendy 0:4a55d0a21ea9 1081 * @see getSlaveWordByteSwap()
Gendy 0:4a55d0a21ea9 1082 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1083 */
Gendy 0:4a55d0a21ea9 1084 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
Gendy 0:4a55d0a21ea9 1085 {
Gendy 0:4a55d0a21ea9 1086 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1087 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
Gendy 0:4a55d0a21ea9 1088 }
Gendy 0:4a55d0a21ea9 1089 /** Get write mode for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1090 * When set to 1, the transaction will read or write data only. When cleared to
Gendy 0:4a55d0a21ea9 1091 * 0, the transaction will write a register address prior to reading or writing
Gendy 0:4a55d0a21ea9 1092 * data. This should equal 0 when specifying the register address within the
Gendy 0:4a55d0a21ea9 1093 * Slave device to/from which the ensuing data transaction will take place.
Gendy 0:4a55d0a21ea9 1094 *
Gendy 0:4a55d0a21ea9 1095 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1096 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
Gendy 0:4a55d0a21ea9 1097 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1098 */
Gendy 0:4a55d0a21ea9 1099 bool MPU6050::getSlaveWriteMode(uint8_t num)
Gendy 0:4a55d0a21ea9 1100 {
Gendy 0:4a55d0a21ea9 1101 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 1102 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
Gendy 0:4a55d0a21ea9 1103 return buffer[0];
Gendy 0:4a55d0a21ea9 1104 }
Gendy 0:4a55d0a21ea9 1105 /** Set write mode for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1106 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1107 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
Gendy 0:4a55d0a21ea9 1108 * @see getSlaveWriteMode()
Gendy 0:4a55d0a21ea9 1109 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1110 */
Gendy 0:4a55d0a21ea9 1111 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
Gendy 0:4a55d0a21ea9 1112 {
Gendy 0:4a55d0a21ea9 1113 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1114 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
Gendy 0:4a55d0a21ea9 1115 }
Gendy 0:4a55d0a21ea9 1116 /** Get word pair grouping order offset for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1117 * This sets specifies the grouping order of word pairs received from registers.
Gendy 0:4a55d0a21ea9 1118 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
Gendy 0:4a55d0a21ea9 1119 * then odd register addresses) are paired to form a word. When set to 1, bytes
Gendy 0:4a55d0a21ea9 1120 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
Gendy 0:4a55d0a21ea9 1121 * register addresses) are paired to form a word.
Gendy 0:4a55d0a21ea9 1122 *
Gendy 0:4a55d0a21ea9 1123 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1124 * @return Current word pair grouping order offset for specified slave
Gendy 0:4a55d0a21ea9 1125 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1126 */
Gendy 0:4a55d0a21ea9 1127 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
Gendy 0:4a55d0a21ea9 1128 {
Gendy 0:4a55d0a21ea9 1129 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 1130 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
Gendy 0:4a55d0a21ea9 1131 return buffer[0];
Gendy 0:4a55d0a21ea9 1132 }
Gendy 0:4a55d0a21ea9 1133 /** Set word pair grouping order offset for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1134 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1135 * @param enabled New word pair grouping order offset for specified slave
Gendy 0:4a55d0a21ea9 1136 * @see getSlaveWordGroupOffset()
Gendy 0:4a55d0a21ea9 1137 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1138 */
Gendy 0:4a55d0a21ea9 1139 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
Gendy 0:4a55d0a21ea9 1140 {
Gendy 0:4a55d0a21ea9 1141 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1142 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
Gendy 0:4a55d0a21ea9 1143 }
Gendy 0:4a55d0a21ea9 1144 /** Get number of bytes to read for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1145 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
Gendy 0:4a55d0a21ea9 1146 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
Gendy 0:4a55d0a21ea9 1147 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1148 * @return Number of bytes to read for specified slave
Gendy 0:4a55d0a21ea9 1149 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1150 */
Gendy 0:4a55d0a21ea9 1151 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
Gendy 0:4a55d0a21ea9 1152 {
Gendy 0:4a55d0a21ea9 1153 if (num > 3) return 0;
Gendy 0:4a55d0a21ea9 1154 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 1155 return buffer[0];
Gendy 0:4a55d0a21ea9 1156 }
Gendy 0:4a55d0a21ea9 1157 /** Set number of bytes to read for the specified slave (0-3).
Gendy 0:4a55d0a21ea9 1158 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 1159 * @param length Number of bytes to read for specified slave
Gendy 0:4a55d0a21ea9 1160 * @see getSlaveDataLength()
Gendy 0:4a55d0a21ea9 1161 * @see MPU6050_RA_I2C_SLV0_CTRL
Gendy 0:4a55d0a21ea9 1162 */
Gendy 0:4a55d0a21ea9 1163 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
Gendy 0:4a55d0a21ea9 1164 {
Gendy 0:4a55d0a21ea9 1165 if (num > 3) return;
Gendy 0:4a55d0a21ea9 1166 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
Gendy 0:4a55d0a21ea9 1167 }
Gendy 0:4a55d0a21ea9 1168
Gendy 0:4a55d0a21ea9 1169 // I2C_SLV* registers (Slave 4)
Gendy 0:4a55d0a21ea9 1170
Gendy 0:4a55d0a21ea9 1171 /** Get the I2C address of Slave 4.
Gendy 0:4a55d0a21ea9 1172 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
Gendy 0:4a55d0a21ea9 1173 * operation, and if it is cleared, then it's a write operation. The remaining
Gendy 0:4a55d0a21ea9 1174 * bits (6-0) are the 7-bit device address of the slave device.
Gendy 0:4a55d0a21ea9 1175 *
Gendy 0:4a55d0a21ea9 1176 * @return Current address for Slave 4
Gendy 0:4a55d0a21ea9 1177 * @see getSlaveAddress()
Gendy 0:4a55d0a21ea9 1178 * @see MPU6050_RA_I2C_SLV4_ADDR
Gendy 0:4a55d0a21ea9 1179 */
Gendy 0:4a55d0a21ea9 1180 uint8_t MPU6050::getSlave4Address()
Gendy 0:4a55d0a21ea9 1181 {
Gendy 0:4a55d0a21ea9 1182 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
Gendy 0:4a55d0a21ea9 1183 return buffer[0];
Gendy 0:4a55d0a21ea9 1184 }
Gendy 0:4a55d0a21ea9 1185 /** Set the I2C address of Slave 4.
Gendy 0:4a55d0a21ea9 1186 * @param address New address for Slave 4
Gendy 0:4a55d0a21ea9 1187 * @see getSlave4Address()
Gendy 0:4a55d0a21ea9 1188 * @see MPU6050_RA_I2C_SLV4_ADDR
Gendy 0:4a55d0a21ea9 1189 */
Gendy 0:4a55d0a21ea9 1190 void MPU6050::setSlave4Address(uint8_t address)
Gendy 0:4a55d0a21ea9 1191 {
Gendy 0:4a55d0a21ea9 1192 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
Gendy 0:4a55d0a21ea9 1193 }
Gendy 0:4a55d0a21ea9 1194 /** Get the active internal register for the Slave 4.
Gendy 0:4a55d0a21ea9 1195 * Read/write operations for this slave will be done to whatever internal
Gendy 0:4a55d0a21ea9 1196 * register address is stored in this MPU register.
Gendy 0:4a55d0a21ea9 1197 *
Gendy 0:4a55d0a21ea9 1198 * @return Current active register for Slave 4
Gendy 0:4a55d0a21ea9 1199 * @see MPU6050_RA_I2C_SLV4_REG
Gendy 0:4a55d0a21ea9 1200 */
Gendy 0:4a55d0a21ea9 1201 uint8_t MPU6050::getSlave4Register()
Gendy 0:4a55d0a21ea9 1202 {
Gendy 0:4a55d0a21ea9 1203 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
Gendy 0:4a55d0a21ea9 1204 return buffer[0];
Gendy 0:4a55d0a21ea9 1205 }
Gendy 0:4a55d0a21ea9 1206 /** Set the active internal register for Slave 4.
Gendy 0:4a55d0a21ea9 1207 * @param reg New active register for Slave 4
Gendy 0:4a55d0a21ea9 1208 * @see getSlave4Register()
Gendy 0:4a55d0a21ea9 1209 * @see MPU6050_RA_I2C_SLV4_REG
Gendy 0:4a55d0a21ea9 1210 */
Gendy 0:4a55d0a21ea9 1211 void MPU6050::setSlave4Register(uint8_t reg)
Gendy 0:4a55d0a21ea9 1212 {
Gendy 0:4a55d0a21ea9 1213 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
Gendy 0:4a55d0a21ea9 1214 }
Gendy 0:4a55d0a21ea9 1215 /** Set new byte to write to Slave 4.
Gendy 0:4a55d0a21ea9 1216 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
Gendy 0:4a55d0a21ea9 1217 * is set 1 (set to read), this register has no effect.
Gendy 0:4a55d0a21ea9 1218 * @param data New byte to write to Slave 4
Gendy 0:4a55d0a21ea9 1219 * @see MPU6050_RA_I2C_SLV4_DO
Gendy 0:4a55d0a21ea9 1220 */
Gendy 0:4a55d0a21ea9 1221 void MPU6050::setSlave4OutputByte(uint8_t data)
Gendy 0:4a55d0a21ea9 1222 {
Gendy 0:4a55d0a21ea9 1223 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
Gendy 0:4a55d0a21ea9 1224 }
Gendy 0:4a55d0a21ea9 1225 /** Get the enabled value for the Slave 4.
Gendy 0:4a55d0a21ea9 1226 * When set to 1, this bit enables Slave 4 for data transfer operations. When
Gendy 0:4a55d0a21ea9 1227 * cleared to 0, this bit disables Slave 4 from data transfer operations.
Gendy 0:4a55d0a21ea9 1228 * @return Current enabled value for Slave 4
Gendy 0:4a55d0a21ea9 1229 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1230 */
Gendy 0:4a55d0a21ea9 1231 bool MPU6050::getSlave4Enabled()
Gendy 0:4a55d0a21ea9 1232 {
Gendy 0:4a55d0a21ea9 1233 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1234 return buffer[0];
Gendy 0:4a55d0a21ea9 1235 }
Gendy 0:4a55d0a21ea9 1236 /** Set the enabled value for Slave 4.
Gendy 0:4a55d0a21ea9 1237 * @param enabled New enabled value for Slave 4
Gendy 0:4a55d0a21ea9 1238 * @see getSlave4Enabled()
Gendy 0:4a55d0a21ea9 1239 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1240 */
Gendy 0:4a55d0a21ea9 1241 void MPU6050::setSlave4Enabled(bool enabled)
Gendy 0:4a55d0a21ea9 1242 {
Gendy 0:4a55d0a21ea9 1243 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 1244 }
Gendy 0:4a55d0a21ea9 1245 /** Get the enabled value for Slave 4 transaction interrupts.
Gendy 0:4a55d0a21ea9 1246 * When set to 1, this bit enables the generation of an interrupt signal upon
Gendy 0:4a55d0a21ea9 1247 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
Gendy 0:4a55d0a21ea9 1248 * generation of an interrupt signal upon completion of a Slave 4 transaction.
Gendy 0:4a55d0a21ea9 1249 * The interrupt status can be observed in Register 54.
Gendy 0:4a55d0a21ea9 1250 *
Gendy 0:4a55d0a21ea9 1251 * @return Current enabled value for Slave 4 transaction interrupts.
Gendy 0:4a55d0a21ea9 1252 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1253 */
Gendy 0:4a55d0a21ea9 1254 bool MPU6050::getSlave4InterruptEnabled()
Gendy 0:4a55d0a21ea9 1255 {
Gendy 0:4a55d0a21ea9 1256 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1257 return buffer[0];
Gendy 0:4a55d0a21ea9 1258 }
Gendy 0:4a55d0a21ea9 1259 /** Set the enabled value for Slave 4 transaction interrupts.
Gendy 0:4a55d0a21ea9 1260 * @param enabled New enabled value for Slave 4 transaction interrupts.
Gendy 0:4a55d0a21ea9 1261 * @see getSlave4InterruptEnabled()
Gendy 0:4a55d0a21ea9 1262 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1263 */
Gendy 0:4a55d0a21ea9 1264 void MPU6050::setSlave4InterruptEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1265 {
Gendy 0:4a55d0a21ea9 1266 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 1267 }
Gendy 0:4a55d0a21ea9 1268 /** Get write mode for Slave 4.
Gendy 0:4a55d0a21ea9 1269 * When set to 1, the transaction will read or write data only. When cleared to
Gendy 0:4a55d0a21ea9 1270 * 0, the transaction will write a register address prior to reading or writing
Gendy 0:4a55d0a21ea9 1271 * data. This should equal 0 when specifying the register address within the
Gendy 0:4a55d0a21ea9 1272 * Slave device to/from which the ensuing data transaction will take place.
Gendy 0:4a55d0a21ea9 1273 *
Gendy 0:4a55d0a21ea9 1274 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
Gendy 0:4a55d0a21ea9 1275 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1276 */
Gendy 0:4a55d0a21ea9 1277 bool MPU6050::getSlave4WriteMode()
Gendy 0:4a55d0a21ea9 1278 {
Gendy 0:4a55d0a21ea9 1279 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
Gendy 0:4a55d0a21ea9 1280 return buffer[0];
Gendy 0:4a55d0a21ea9 1281 }
Gendy 0:4a55d0a21ea9 1282 /** Set write mode for the Slave 4.
Gendy 0:4a55d0a21ea9 1283 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
Gendy 0:4a55d0a21ea9 1284 * @see getSlave4WriteMode()
Gendy 0:4a55d0a21ea9 1285 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1286 */
Gendy 0:4a55d0a21ea9 1287 void MPU6050::setSlave4WriteMode(bool mode)
Gendy 0:4a55d0a21ea9 1288 {
Gendy 0:4a55d0a21ea9 1289 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
Gendy 0:4a55d0a21ea9 1290 }
Gendy 0:4a55d0a21ea9 1291 /** Get Slave 4 master delay value.
Gendy 0:4a55d0a21ea9 1292 * This configures the reduced access rate of I2C slaves relative to the Sample
Gendy 0:4a55d0a21ea9 1293 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
Gendy 0:4a55d0a21ea9 1294 * the slave is accessed every:
Gendy 0:4a55d0a21ea9 1295 *
Gendy 0:4a55d0a21ea9 1296 * 1 / (1 + I2C_MST_DLY) samples
Gendy 0:4a55d0a21ea9 1297 *
Gendy 0:4a55d0a21ea9 1298 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
Gendy 0:4a55d0a21ea9 1299 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
Gendy 0:4a55d0a21ea9 1300 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
Gendy 0:4a55d0a21ea9 1301 * further information regarding the Sample Rate, please refer to register 25.
Gendy 0:4a55d0a21ea9 1302 *
Gendy 0:4a55d0a21ea9 1303 * @return Current Slave 4 master delay value
Gendy 0:4a55d0a21ea9 1304 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1305 */
Gendy 0:4a55d0a21ea9 1306 uint8_t MPU6050::getSlave4MasterDelay()
Gendy 0:4a55d0a21ea9 1307 {
Gendy 0:4a55d0a21ea9 1308 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 1309 return buffer[0];
Gendy 0:4a55d0a21ea9 1310 }
Gendy 0:4a55d0a21ea9 1311 /** Set Slave 4 master delay value.
Gendy 0:4a55d0a21ea9 1312 * @param delay New Slave 4 master delay value
Gendy 0:4a55d0a21ea9 1313 * @see getSlave4MasterDelay()
Gendy 0:4a55d0a21ea9 1314 * @see MPU6050_RA_I2C_SLV4_CTRL
Gendy 0:4a55d0a21ea9 1315 */
Gendy 0:4a55d0a21ea9 1316 void MPU6050::setSlave4MasterDelay(uint8_t delay)
Gendy 0:4a55d0a21ea9 1317 {
Gendy 0:4a55d0a21ea9 1318 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
Gendy 0:4a55d0a21ea9 1319 }
Gendy 0:4a55d0a21ea9 1320 /** Get last available byte read from Slave 4.
Gendy 0:4a55d0a21ea9 1321 * This register stores the data read from Slave 4. This field is populated
Gendy 0:4a55d0a21ea9 1322 * after a read transaction.
Gendy 0:4a55d0a21ea9 1323 * @return Last available byte read from to Slave 4
Gendy 0:4a55d0a21ea9 1324 * @see MPU6050_RA_I2C_SLV4_DI
Gendy 0:4a55d0a21ea9 1325 */
Gendy 0:4a55d0a21ea9 1326 uint8_t MPU6050::getSlate4InputByte()
Gendy 0:4a55d0a21ea9 1327 {
Gendy 0:4a55d0a21ea9 1328 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
Gendy 0:4a55d0a21ea9 1329 return buffer[0];
Gendy 0:4a55d0a21ea9 1330 }
Gendy 0:4a55d0a21ea9 1331
Gendy 0:4a55d0a21ea9 1332 // I2C_MST_STATUS register
Gendy 0:4a55d0a21ea9 1333
Gendy 0:4a55d0a21ea9 1334 /** Get FSYNC interrupt status.
Gendy 0:4a55d0a21ea9 1335 * This bit reflects the status of the FSYNC interrupt from an external device
Gendy 0:4a55d0a21ea9 1336 * into the MPU-60X0. This is used as a way to pass an external interrupt
Gendy 0:4a55d0a21ea9 1337 * through the MPU-60X0 to the host application processor. When set to 1, this
Gendy 0:4a55d0a21ea9 1338 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1339 * (Register 55).
Gendy 0:4a55d0a21ea9 1340 * @return FSYNC interrupt status
Gendy 0:4a55d0a21ea9 1341 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1342 */
Gendy 0:4a55d0a21ea9 1343 bool MPU6050::getPassthroughStatus()
Gendy 0:4a55d0a21ea9 1344 {
Gendy 0:4a55d0a21ea9 1345 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
Gendy 0:4a55d0a21ea9 1346 return buffer[0];
Gendy 0:4a55d0a21ea9 1347 }
Gendy 0:4a55d0a21ea9 1348 /** Get Slave 4 transaction done status.
Gendy 0:4a55d0a21ea9 1349 * Automatically sets to 1 when a Slave 4 transaction has completed. This
Gendy 0:4a55d0a21ea9 1350 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
Gendy 0:4a55d0a21ea9 1351 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
Gendy 0:4a55d0a21ea9 1352 * I2C_SLV4_CTRL register (Register 52).
Gendy 0:4a55d0a21ea9 1353 * @return Slave 4 transaction done status
Gendy 0:4a55d0a21ea9 1354 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1355 */
Gendy 0:4a55d0a21ea9 1356 bool MPU6050::getSlave4IsDone()
Gendy 0:4a55d0a21ea9 1357 {
Gendy 0:4a55d0a21ea9 1358 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
Gendy 0:4a55d0a21ea9 1359 return buffer[0];
Gendy 0:4a55d0a21ea9 1360 }
Gendy 0:4a55d0a21ea9 1361 /** Get master arbitration lost status.
Gendy 0:4a55d0a21ea9 1362 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
Gendy 0:4a55d0a21ea9 1363 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
Gendy 0:4a55d0a21ea9 1364 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
Gendy 0:4a55d0a21ea9 1365 * @return Master arbitration lost status
Gendy 0:4a55d0a21ea9 1366 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1367 */
Gendy 0:4a55d0a21ea9 1368 bool MPU6050::getLostArbitration()
Gendy 0:4a55d0a21ea9 1369 {
Gendy 0:4a55d0a21ea9 1370 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
Gendy 0:4a55d0a21ea9 1371 return buffer[0];
Gendy 0:4a55d0a21ea9 1372 }
Gendy 0:4a55d0a21ea9 1373 /** Get Slave 4 NACK status.
Gendy 0:4a55d0a21ea9 1374 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gendy 0:4a55d0a21ea9 1375 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
Gendy 0:4a55d0a21ea9 1376 * bit in the INT_ENABLE register (Register 56) is asserted.
Gendy 0:4a55d0a21ea9 1377 * @return Slave 4 NACK interrupt status
Gendy 0:4a55d0a21ea9 1378 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1379 */
Gendy 0:4a55d0a21ea9 1380 bool MPU6050::getSlave4Nack()
Gendy 0:4a55d0a21ea9 1381 {
Gendy 0:4a55d0a21ea9 1382 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
Gendy 0:4a55d0a21ea9 1383 return buffer[0];
Gendy 0:4a55d0a21ea9 1384 }
Gendy 0:4a55d0a21ea9 1385 /** Get Slave 3 NACK status.
Gendy 0:4a55d0a21ea9 1386 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gendy 0:4a55d0a21ea9 1387 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
Gendy 0:4a55d0a21ea9 1388 * bit in the INT_ENABLE register (Register 56) is asserted.
Gendy 0:4a55d0a21ea9 1389 * @return Slave 3 NACK interrupt status
Gendy 0:4a55d0a21ea9 1390 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1391 */
Gendy 0:4a55d0a21ea9 1392 bool MPU6050::getSlave3Nack()
Gendy 0:4a55d0a21ea9 1393 {
Gendy 0:4a55d0a21ea9 1394 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
Gendy 0:4a55d0a21ea9 1395 return buffer[0];
Gendy 0:4a55d0a21ea9 1396 }
Gendy 0:4a55d0a21ea9 1397 /** Get Slave 2 NACK status.
Gendy 0:4a55d0a21ea9 1398 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gendy 0:4a55d0a21ea9 1399 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
Gendy 0:4a55d0a21ea9 1400 * bit in the INT_ENABLE register (Register 56) is asserted.
Gendy 0:4a55d0a21ea9 1401 * @return Slave 2 NACK interrupt status
Gendy 0:4a55d0a21ea9 1402 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1403 */
Gendy 0:4a55d0a21ea9 1404 bool MPU6050::getSlave2Nack()
Gendy 0:4a55d0a21ea9 1405 {
Gendy 0:4a55d0a21ea9 1406 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
Gendy 0:4a55d0a21ea9 1407 return buffer[0];
Gendy 0:4a55d0a21ea9 1408 }
Gendy 0:4a55d0a21ea9 1409 /** Get Slave 1 NACK status.
Gendy 0:4a55d0a21ea9 1410 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gendy 0:4a55d0a21ea9 1411 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
Gendy 0:4a55d0a21ea9 1412 * bit in the INT_ENABLE register (Register 56) is asserted.
Gendy 0:4a55d0a21ea9 1413 * @return Slave 1 NACK interrupt status
Gendy 0:4a55d0a21ea9 1414 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1415 */
Gendy 0:4a55d0a21ea9 1416 bool MPU6050::getSlave1Nack()
Gendy 0:4a55d0a21ea9 1417 {
Gendy 0:4a55d0a21ea9 1418 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
Gendy 0:4a55d0a21ea9 1419 return buffer[0];
Gendy 0:4a55d0a21ea9 1420 }
Gendy 0:4a55d0a21ea9 1421 /** Get Slave 0 NACK status.
Gendy 0:4a55d0a21ea9 1422 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
Gendy 0:4a55d0a21ea9 1423 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
Gendy 0:4a55d0a21ea9 1424 * bit in the INT_ENABLE register (Register 56) is asserted.
Gendy 0:4a55d0a21ea9 1425 * @return Slave 0 NACK interrupt status
Gendy 0:4a55d0a21ea9 1426 * @see MPU6050_RA_I2C_MST_STATUS
Gendy 0:4a55d0a21ea9 1427 */
Gendy 0:4a55d0a21ea9 1428 bool MPU6050::getSlave0Nack()
Gendy 0:4a55d0a21ea9 1429 {
Gendy 0:4a55d0a21ea9 1430 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
Gendy 0:4a55d0a21ea9 1431 return buffer[0];
Gendy 0:4a55d0a21ea9 1432 }
Gendy 0:4a55d0a21ea9 1433
Gendy 0:4a55d0a21ea9 1434 // INT_PIN_CFG register
Gendy 0:4a55d0a21ea9 1435
Gendy 0:4a55d0a21ea9 1436 /** Get interrupt logic level mode.
Gendy 0:4a55d0a21ea9 1437 * Will be set 0 for active-high, 1 for active-low.
Gendy 0:4a55d0a21ea9 1438 * @return Current interrupt mode (0=active-high, 1=active-low)
Gendy 0:4a55d0a21ea9 1439 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1440 * @see MPU6050_INTCFG_INT_LEVEL_BIT
Gendy 0:4a55d0a21ea9 1441 */
Gendy 0:4a55d0a21ea9 1442 bool MPU6050::getInterruptMode()
Gendy 0:4a55d0a21ea9 1443 {
Gendy 0:4a55d0a21ea9 1444 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
Gendy 0:4a55d0a21ea9 1445 return buffer[0];
Gendy 0:4a55d0a21ea9 1446 }
Gendy 0:4a55d0a21ea9 1447 /** Set interrupt logic level mode.
Gendy 0:4a55d0a21ea9 1448 * @param mode New interrupt mode (0=active-high, 1=active-low)
Gendy 0:4a55d0a21ea9 1449 * @see getInterruptMode()
Gendy 0:4a55d0a21ea9 1450 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1451 * @see MPU6050_INTCFG_INT_LEVEL_BIT
Gendy 0:4a55d0a21ea9 1452 */
Gendy 0:4a55d0a21ea9 1453 void MPU6050::setInterruptMode(bool mode)
Gendy 0:4a55d0a21ea9 1454 {
Gendy 0:4a55d0a21ea9 1455 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
Gendy 0:4a55d0a21ea9 1456 }
Gendy 0:4a55d0a21ea9 1457 /** Get interrupt drive mode.
Gendy 0:4a55d0a21ea9 1458 * Will be set 0 for push-pull, 1 for open-drain.
Gendy 0:4a55d0a21ea9 1459 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
Gendy 0:4a55d0a21ea9 1460 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1461 * @see MPU6050_INTCFG_INT_OPEN_BIT
Gendy 0:4a55d0a21ea9 1462 */
Gendy 0:4a55d0a21ea9 1463 bool MPU6050::getInterruptDrive()
Gendy 0:4a55d0a21ea9 1464 {
Gendy 0:4a55d0a21ea9 1465 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1466 return buffer[0];
Gendy 0:4a55d0a21ea9 1467 }
Gendy 0:4a55d0a21ea9 1468 /** Set interrupt drive mode.
Gendy 0:4a55d0a21ea9 1469 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
Gendy 0:4a55d0a21ea9 1470 * @see getInterruptDrive()
Gendy 0:4a55d0a21ea9 1471 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1472 * @see MPU6050_INTCFG_INT_OPEN_BIT
Gendy 0:4a55d0a21ea9 1473 */
Gendy 0:4a55d0a21ea9 1474 void MPU6050::setInterruptDrive(bool drive)
Gendy 0:4a55d0a21ea9 1475 {
Gendy 0:4a55d0a21ea9 1476 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
Gendy 0:4a55d0a21ea9 1477 }
Gendy 0:4a55d0a21ea9 1478 /** Get interrupt latch mode.
Gendy 0:4a55d0a21ea9 1479 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
Gendy 0:4a55d0a21ea9 1480 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
Gendy 0:4a55d0a21ea9 1481 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1482 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
Gendy 0:4a55d0a21ea9 1483 */
Gendy 0:4a55d0a21ea9 1484 bool MPU6050::getInterruptLatch()
Gendy 0:4a55d0a21ea9 1485 {
Gendy 0:4a55d0a21ea9 1486 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1487 return buffer[0];
Gendy 0:4a55d0a21ea9 1488 }
Gendy 0:4a55d0a21ea9 1489 /** Set interrupt latch mode.
Gendy 0:4a55d0a21ea9 1490 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
Gendy 0:4a55d0a21ea9 1491 * @see getInterruptLatch()
Gendy 0:4a55d0a21ea9 1492 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1493 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
Gendy 0:4a55d0a21ea9 1494 */
Gendy 0:4a55d0a21ea9 1495 void MPU6050::setInterruptLatch(bool latch)
Gendy 0:4a55d0a21ea9 1496 {
Gendy 0:4a55d0a21ea9 1497 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
Gendy 0:4a55d0a21ea9 1498 }
Gendy 0:4a55d0a21ea9 1499 /** Get interrupt latch clear mode.
Gendy 0:4a55d0a21ea9 1500 * Will be set 0 for status-read-only, 1 for any-register-read.
Gendy 0:4a55d0a21ea9 1501 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
Gendy 0:4a55d0a21ea9 1502 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1503 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
Gendy 0:4a55d0a21ea9 1504 */
Gendy 0:4a55d0a21ea9 1505 bool MPU6050::getInterruptLatchClear()
Gendy 0:4a55d0a21ea9 1506 {
Gendy 0:4a55d0a21ea9 1507 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
Gendy 0:4a55d0a21ea9 1508 return buffer[0];
Gendy 0:4a55d0a21ea9 1509 }
Gendy 0:4a55d0a21ea9 1510 /** Set interrupt latch clear mode.
Gendy 0:4a55d0a21ea9 1511 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
Gendy 0:4a55d0a21ea9 1512 * @see getInterruptLatchClear()
Gendy 0:4a55d0a21ea9 1513 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1514 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
Gendy 0:4a55d0a21ea9 1515 */
Gendy 0:4a55d0a21ea9 1516 void MPU6050::setInterruptLatchClear(bool clear)
Gendy 0:4a55d0a21ea9 1517 {
Gendy 0:4a55d0a21ea9 1518 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
Gendy 0:4a55d0a21ea9 1519 }
Gendy 0:4a55d0a21ea9 1520 /** Get FSYNC interrupt logic level mode.
Gendy 0:4a55d0a21ea9 1521 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
Gendy 0:4a55d0a21ea9 1522 * @see getFSyncInterruptMode()
Gendy 0:4a55d0a21ea9 1523 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1524 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
Gendy 0:4a55d0a21ea9 1525 */
Gendy 0:4a55d0a21ea9 1526 bool MPU6050::getFSyncInterruptLevel()
Gendy 0:4a55d0a21ea9 1527 {
Gendy 0:4a55d0a21ea9 1528 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
Gendy 0:4a55d0a21ea9 1529 return buffer[0];
Gendy 0:4a55d0a21ea9 1530 }
Gendy 0:4a55d0a21ea9 1531 /** Set FSYNC interrupt logic level mode.
Gendy 0:4a55d0a21ea9 1532 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
Gendy 0:4a55d0a21ea9 1533 * @see getFSyncInterruptMode()
Gendy 0:4a55d0a21ea9 1534 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1535 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
Gendy 0:4a55d0a21ea9 1536 */
Gendy 0:4a55d0a21ea9 1537 void MPU6050::setFSyncInterruptLevel(bool level)
Gendy 0:4a55d0a21ea9 1538 {
Gendy 0:4a55d0a21ea9 1539 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
Gendy 0:4a55d0a21ea9 1540 }
Gendy 0:4a55d0a21ea9 1541 /** Get FSYNC pin interrupt enabled setting.
Gendy 0:4a55d0a21ea9 1542 * Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1543 * @return Current interrupt enabled setting
Gendy 0:4a55d0a21ea9 1544 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1545 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
Gendy 0:4a55d0a21ea9 1546 */
Gendy 0:4a55d0a21ea9 1547 bool MPU6050::getFSyncInterruptEnabled()
Gendy 0:4a55d0a21ea9 1548 {
Gendy 0:4a55d0a21ea9 1549 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1550 return buffer[0];
Gendy 0:4a55d0a21ea9 1551 }
Gendy 0:4a55d0a21ea9 1552 /** Set FSYNC pin interrupt enabled setting.
Gendy 0:4a55d0a21ea9 1553 * @param enabled New FSYNC pin interrupt enabled setting
Gendy 0:4a55d0a21ea9 1554 * @see getFSyncInterruptEnabled()
Gendy 0:4a55d0a21ea9 1555 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1556 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
Gendy 0:4a55d0a21ea9 1557 */
Gendy 0:4a55d0a21ea9 1558 void MPU6050::setFSyncInterruptEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1559 {
Gendy 0:4a55d0a21ea9 1560 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 1561 }
Gendy 0:4a55d0a21ea9 1562 /** Get I2C bypass enabled status.
Gendy 0:4a55d0a21ea9 1563 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
Gendy 0:4a55d0a21ea9 1564 * 0, the host application processor will be able to directly access the
Gendy 0:4a55d0a21ea9 1565 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
Gendy 0:4a55d0a21ea9 1566 * application processor will not be able to directly access the auxiliary I2C
Gendy 0:4a55d0a21ea9 1567 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
Gendy 0:4a55d0a21ea9 1568 * bit[5]).
Gendy 0:4a55d0a21ea9 1569 * @return Current I2C bypass enabled status
Gendy 0:4a55d0a21ea9 1570 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1571 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
Gendy 0:4a55d0a21ea9 1572 */
Gendy 0:4a55d0a21ea9 1573 bool MPU6050::getI2CBypassEnabled()
Gendy 0:4a55d0a21ea9 1574 {
Gendy 0:4a55d0a21ea9 1575 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1576 return buffer[0];
Gendy 0:4a55d0a21ea9 1577 }
Gendy 0:4a55d0a21ea9 1578 /** Set I2C bypass enabled status.
Gendy 0:4a55d0a21ea9 1579 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
Gendy 0:4a55d0a21ea9 1580 * 0, the host application processor will be able to directly access the
Gendy 0:4a55d0a21ea9 1581 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
Gendy 0:4a55d0a21ea9 1582 * application processor will not be able to directly access the auxiliary I2C
Gendy 0:4a55d0a21ea9 1583 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
Gendy 0:4a55d0a21ea9 1584 * bit[5]).
Gendy 0:4a55d0a21ea9 1585 * @param enabled New I2C bypass enabled status
Gendy 0:4a55d0a21ea9 1586 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1587 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
Gendy 0:4a55d0a21ea9 1588 */
Gendy 0:4a55d0a21ea9 1589 void MPU6050::setI2CBypassEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1590 {
Gendy 0:4a55d0a21ea9 1591 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 1592 }
Gendy 0:4a55d0a21ea9 1593 /** Get reference clock output enabled status.
Gendy 0:4a55d0a21ea9 1594 * When this bit is equal to 1, a reference clock output is provided at the
Gendy 0:4a55d0a21ea9 1595 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
Gendy 0:4a55d0a21ea9 1596 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
Gendy 0:4a55d0a21ea9 1597 * Specification document.
Gendy 0:4a55d0a21ea9 1598 * @return Current reference clock output enabled status
Gendy 0:4a55d0a21ea9 1599 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1600 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
Gendy 0:4a55d0a21ea9 1601 */
Gendy 0:4a55d0a21ea9 1602 bool MPU6050::getClockOutputEnabled()
Gendy 0:4a55d0a21ea9 1603 {
Gendy 0:4a55d0a21ea9 1604 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 1605 return buffer[0];
Gendy 0:4a55d0a21ea9 1606 }
Gendy 0:4a55d0a21ea9 1607 /** Set reference clock output enabled status.
Gendy 0:4a55d0a21ea9 1608 * When this bit is equal to 1, a reference clock output is provided at the
Gendy 0:4a55d0a21ea9 1609 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
Gendy 0:4a55d0a21ea9 1610 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
Gendy 0:4a55d0a21ea9 1611 * Specification document.
Gendy 0:4a55d0a21ea9 1612 * @param enabled New reference clock output enabled status
Gendy 0:4a55d0a21ea9 1613 * @see MPU6050_RA_INT_PIN_CFG
Gendy 0:4a55d0a21ea9 1614 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
Gendy 0:4a55d0a21ea9 1615 */
Gendy 0:4a55d0a21ea9 1616 void MPU6050::setClockOutputEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1617 {
Gendy 0:4a55d0a21ea9 1618 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 1619 }
Gendy 0:4a55d0a21ea9 1620
Gendy 0:4a55d0a21ea9 1621 // INT_ENABLE register
Gendy 0:4a55d0a21ea9 1622
Gendy 0:4a55d0a21ea9 1623 /** Get full interrupt enabled status.
Gendy 0:4a55d0a21ea9 1624 * Full register byte for all interrupts, for quick reading. Each bit will be
Gendy 0:4a55d0a21ea9 1625 * set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1626 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1627 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1628 * @see MPU6050_INTERRUPT_FF_BIT
Gendy 0:4a55d0a21ea9 1629 **/
Gendy 0:4a55d0a21ea9 1630 uint8_t MPU6050::getIntEnabled()
Gendy 0:4a55d0a21ea9 1631 {
Gendy 0:4a55d0a21ea9 1632 i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
Gendy 0:4a55d0a21ea9 1633 return buffer[0];
Gendy 0:4a55d0a21ea9 1634 }
Gendy 0:4a55d0a21ea9 1635 /** Set full interrupt enabled status.
Gendy 0:4a55d0a21ea9 1636 * Full register byte for all interrupts, for quick reading. Each bit should be
Gendy 0:4a55d0a21ea9 1637 * set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1638 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1639 * @see getIntFreefallEnabled()
Gendy 0:4a55d0a21ea9 1640 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1641 * @see MPU6050_INTERRUPT_FF_BIT
Gendy 0:4a55d0a21ea9 1642 **/
Gendy 0:4a55d0a21ea9 1643 void MPU6050::setIntEnabled(uint8_t enabled)
Gendy 0:4a55d0a21ea9 1644 {
Gendy 0:4a55d0a21ea9 1645 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
Gendy 0:4a55d0a21ea9 1646 }
Gendy 0:4a55d0a21ea9 1647 /** Get Free Fall interrupt enabled status.
Gendy 0:4a55d0a21ea9 1648 * Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1649 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1650 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1651 * @see MPU6050_INTERRUPT_FF_BIT
Gendy 0:4a55d0a21ea9 1652 **/
Gendy 0:4a55d0a21ea9 1653 bool MPU6050::getIntFreefallEnabled()
Gendy 0:4a55d0a21ea9 1654 {
Gendy 0:4a55d0a21ea9 1655 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
Gendy 0:4a55d0a21ea9 1656 return buffer[0];
Gendy 0:4a55d0a21ea9 1657 }
Gendy 0:4a55d0a21ea9 1658 /** Set Free Fall interrupt enabled status.
Gendy 0:4a55d0a21ea9 1659 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1660 * @see getIntFreefallEnabled()
Gendy 0:4a55d0a21ea9 1661 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1662 * @see MPU6050_INTERRUPT_FF_BIT
Gendy 0:4a55d0a21ea9 1663 **/
Gendy 0:4a55d0a21ea9 1664 void MPU6050::setIntFreefallEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1665 {
Gendy 0:4a55d0a21ea9 1666 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
Gendy 0:4a55d0a21ea9 1667 }
Gendy 0:4a55d0a21ea9 1668 /** Get Motion Detection interrupt enabled status.
Gendy 0:4a55d0a21ea9 1669 * Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1670 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1671 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1672 * @see MPU6050_INTERRUPT_MOT_BIT
Gendy 0:4a55d0a21ea9 1673 **/
Gendy 0:4a55d0a21ea9 1674 bool MPU6050::getIntMotionEnabled()
Gendy 0:4a55d0a21ea9 1675 {
Gendy 0:4a55d0a21ea9 1676 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
Gendy 0:4a55d0a21ea9 1677 return buffer[0];
Gendy 0:4a55d0a21ea9 1678 }
Gendy 0:4a55d0a21ea9 1679 /** Set Motion Detection interrupt enabled status.
Gendy 0:4a55d0a21ea9 1680 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1681 * @see getIntMotionEnabled()
Gendy 0:4a55d0a21ea9 1682 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1683 * @see MPU6050_INTERRUPT_MOT_BIT
Gendy 0:4a55d0a21ea9 1684 **/
Gendy 0:4a55d0a21ea9 1685 void MPU6050::setIntMotionEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1686 {
Gendy 0:4a55d0a21ea9 1687 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
Gendy 0:4a55d0a21ea9 1688 }
Gendy 0:4a55d0a21ea9 1689 /** Get Zero Motion Detection interrupt enabled status.
Gendy 0:4a55d0a21ea9 1690 * Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1691 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1692 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1693 * @see MPU6050_INTERRUPT_ZMOT_BIT
Gendy 0:4a55d0a21ea9 1694 **/
Gendy 0:4a55d0a21ea9 1695 bool MPU6050::getIntZeroMotionEnabled()
Gendy 0:4a55d0a21ea9 1696 {
Gendy 0:4a55d0a21ea9 1697 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
Gendy 0:4a55d0a21ea9 1698 return buffer[0];
Gendy 0:4a55d0a21ea9 1699 }
Gendy 0:4a55d0a21ea9 1700 /** Set Zero Motion Detection interrupt enabled status.
Gendy 0:4a55d0a21ea9 1701 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1702 * @see getIntZeroMotionEnabled()
Gendy 0:4a55d0a21ea9 1703 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1704 * @see MPU6050_INTERRUPT_ZMOT_BIT
Gendy 0:4a55d0a21ea9 1705 **/
Gendy 0:4a55d0a21ea9 1706 void MPU6050::setIntZeroMotionEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1707 {
Gendy 0:4a55d0a21ea9 1708 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
Gendy 0:4a55d0a21ea9 1709 }
Gendy 0:4a55d0a21ea9 1710 /** Get FIFO Buffer Overflow interrupt enabled status.
Gendy 0:4a55d0a21ea9 1711 * Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1712 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1713 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1714 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Gendy 0:4a55d0a21ea9 1715 **/
Gendy 0:4a55d0a21ea9 1716 bool MPU6050::getIntFIFOBufferOverflowEnabled()
Gendy 0:4a55d0a21ea9 1717 {
Gendy 0:4a55d0a21ea9 1718 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
Gendy 0:4a55d0a21ea9 1719 return buffer[0];
Gendy 0:4a55d0a21ea9 1720 }
Gendy 0:4a55d0a21ea9 1721 /** Set FIFO Buffer Overflow interrupt enabled status.
Gendy 0:4a55d0a21ea9 1722 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1723 * @see getIntFIFOBufferOverflowEnabled()
Gendy 0:4a55d0a21ea9 1724 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1725 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Gendy 0:4a55d0a21ea9 1726 **/
Gendy 0:4a55d0a21ea9 1727 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1728 {
Gendy 0:4a55d0a21ea9 1729 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
Gendy 0:4a55d0a21ea9 1730 }
Gendy 0:4a55d0a21ea9 1731 /** Get I2C Master interrupt enabled status.
Gendy 0:4a55d0a21ea9 1732 * This enables any of the I2C Master interrupt sources to generate an
Gendy 0:4a55d0a21ea9 1733 * interrupt. Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1734 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1735 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1736 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Gendy 0:4a55d0a21ea9 1737 **/
Gendy 0:4a55d0a21ea9 1738 bool MPU6050::getIntI2CMasterEnabled()
Gendy 0:4a55d0a21ea9 1739 {
Gendy 0:4a55d0a21ea9 1740 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
Gendy 0:4a55d0a21ea9 1741 return buffer[0];
Gendy 0:4a55d0a21ea9 1742 }
Gendy 0:4a55d0a21ea9 1743 /** Set I2C Master interrupt enabled status.
Gendy 0:4a55d0a21ea9 1744 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1745 * @see getIntI2CMasterEnabled()
Gendy 0:4a55d0a21ea9 1746 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1747 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Gendy 0:4a55d0a21ea9 1748 **/
Gendy 0:4a55d0a21ea9 1749 void MPU6050::setIntI2CMasterEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1750 {
Gendy 0:4a55d0a21ea9 1751 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
Gendy 0:4a55d0a21ea9 1752 }
Gendy 0:4a55d0a21ea9 1753 /** Get Data Ready interrupt enabled setting.
Gendy 0:4a55d0a21ea9 1754 * This event occurs each time a write operation to all of the sensor registers
Gendy 0:4a55d0a21ea9 1755 * has been completed. Will be set 0 for disabled, 1 for enabled.
Gendy 0:4a55d0a21ea9 1756 * @return Current interrupt enabled status
Gendy 0:4a55d0a21ea9 1757 * @see MPU6050_RA_INT_ENABLE
Gendy 0:4a55d0a21ea9 1758 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Gendy 0:4a55d0a21ea9 1759 */
Gendy 0:4a55d0a21ea9 1760 bool MPU6050::getIntDataReadyEnabled()
Gendy 0:4a55d0a21ea9 1761 {
Gendy 0:4a55d0a21ea9 1762 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
Gendy 0:4a55d0a21ea9 1763 return buffer[0];
Gendy 0:4a55d0a21ea9 1764 }
Gendy 0:4a55d0a21ea9 1765 /** Set Data Ready interrupt enabled status.
Gendy 0:4a55d0a21ea9 1766 * @param enabled New interrupt enabled status
Gendy 0:4a55d0a21ea9 1767 * @see getIntDataReadyEnabled()
Gendy 0:4a55d0a21ea9 1768 * @see MPU6050_RA_INT_CFG
Gendy 0:4a55d0a21ea9 1769 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Gendy 0:4a55d0a21ea9 1770 */
Gendy 0:4a55d0a21ea9 1771 void MPU6050::setIntDataReadyEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 1772 {
Gendy 0:4a55d0a21ea9 1773 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
Gendy 0:4a55d0a21ea9 1774 }
Gendy 0:4a55d0a21ea9 1775
Gendy 0:4a55d0a21ea9 1776 // INT_STATUS register
Gendy 0:4a55d0a21ea9 1777
Gendy 0:4a55d0a21ea9 1778 /** Get full set of interrupt status bits.
Gendy 0:4a55d0a21ea9 1779 * These bits clear to 0 after the register has been read. Very useful
Gendy 0:4a55d0a21ea9 1780 * for getting multiple INT statuses, since each single bit read clears
Gendy 0:4a55d0a21ea9 1781 * all of them because it has to read the whole byte.
Gendy 0:4a55d0a21ea9 1782 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1783 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1784 */
Gendy 0:4a55d0a21ea9 1785 uint8_t MPU6050::getIntStatus()
Gendy 0:4a55d0a21ea9 1786 {
Gendy 0:4a55d0a21ea9 1787 i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
Gendy 0:4a55d0a21ea9 1788 return buffer[0];
Gendy 0:4a55d0a21ea9 1789 }
Gendy 0:4a55d0a21ea9 1790 /** Get Free Fall interrupt status.
Gendy 0:4a55d0a21ea9 1791 * This bit automatically sets to 1 when a Free Fall interrupt has been
Gendy 0:4a55d0a21ea9 1792 * generated. The bit clears to 0 after the register has been read.
Gendy 0:4a55d0a21ea9 1793 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1794 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1795 * @see MPU6050_INTERRUPT_FF_BIT
Gendy 0:4a55d0a21ea9 1796 */
Gendy 0:4a55d0a21ea9 1797 bool MPU6050::getIntFreefallStatus()
Gendy 0:4a55d0a21ea9 1798 {
Gendy 0:4a55d0a21ea9 1799 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
Gendy 0:4a55d0a21ea9 1800 return buffer[0];
Gendy 0:4a55d0a21ea9 1801 }
Gendy 0:4a55d0a21ea9 1802 /** Get Motion Detection interrupt status.
Gendy 0:4a55d0a21ea9 1803 * This bit automatically sets to 1 when a Motion Detection interrupt has been
Gendy 0:4a55d0a21ea9 1804 * generated. The bit clears to 0 after the register has been read.
Gendy 0:4a55d0a21ea9 1805 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1806 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1807 * @see MPU6050_INTERRUPT_MOT_BIT
Gendy 0:4a55d0a21ea9 1808 */
Gendy 0:4a55d0a21ea9 1809 bool MPU6050::getIntMotionStatus()
Gendy 0:4a55d0a21ea9 1810 {
Gendy 0:4a55d0a21ea9 1811 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
Gendy 0:4a55d0a21ea9 1812 return buffer[0];
Gendy 0:4a55d0a21ea9 1813 }
Gendy 0:4a55d0a21ea9 1814 /** Get Zero Motion Detection interrupt status.
Gendy 0:4a55d0a21ea9 1815 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
Gendy 0:4a55d0a21ea9 1816 * been generated. The bit clears to 0 after the register has been read.
Gendy 0:4a55d0a21ea9 1817 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1818 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1819 * @see MPU6050_INTERRUPT_ZMOT_BIT
Gendy 0:4a55d0a21ea9 1820 */
Gendy 0:4a55d0a21ea9 1821 bool MPU6050::getIntZeroMotionStatus()
Gendy 0:4a55d0a21ea9 1822 {
Gendy 0:4a55d0a21ea9 1823 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
Gendy 0:4a55d0a21ea9 1824 return buffer[0];
Gendy 0:4a55d0a21ea9 1825 }
Gendy 0:4a55d0a21ea9 1826 /** Get FIFO Buffer Overflow interrupt status.
Gendy 0:4a55d0a21ea9 1827 * This bit automatically sets to 1 when a Free Fall interrupt has been
Gendy 0:4a55d0a21ea9 1828 * generated. The bit clears to 0 after the register has been read.
Gendy 0:4a55d0a21ea9 1829 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1830 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1831 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
Gendy 0:4a55d0a21ea9 1832 */
Gendy 0:4a55d0a21ea9 1833 bool MPU6050::getIntFIFOBufferOverflowStatus()
Gendy 0:4a55d0a21ea9 1834 {
Gendy 0:4a55d0a21ea9 1835 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
Gendy 0:4a55d0a21ea9 1836 return buffer[0];
Gendy 0:4a55d0a21ea9 1837 }
Gendy 0:4a55d0a21ea9 1838 /** Get I2C Master interrupt status.
Gendy 0:4a55d0a21ea9 1839 * This bit automatically sets to 1 when an I2C Master interrupt has been
Gendy 0:4a55d0a21ea9 1840 * generated. For a list of I2C Master interrupts, please refer to Register 54.
Gendy 0:4a55d0a21ea9 1841 * The bit clears to 0 after the register has been read.
Gendy 0:4a55d0a21ea9 1842 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1843 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1844 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
Gendy 0:4a55d0a21ea9 1845 */
Gendy 0:4a55d0a21ea9 1846 bool MPU6050::getIntI2CMasterStatus()
Gendy 0:4a55d0a21ea9 1847 {
Gendy 0:4a55d0a21ea9 1848 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
Gendy 0:4a55d0a21ea9 1849 return buffer[0];
Gendy 0:4a55d0a21ea9 1850 }
Gendy 0:4a55d0a21ea9 1851 /** Get Data Ready interrupt status.
Gendy 0:4a55d0a21ea9 1852 * This bit automatically sets to 1 when a Data Ready interrupt has been
Gendy 0:4a55d0a21ea9 1853 * generated. The bit clears to 0 after the register has been read.
Gendy 0:4a55d0a21ea9 1854 * @return Current interrupt status
Gendy 0:4a55d0a21ea9 1855 * @see MPU6050_RA_INT_STATUS
Gendy 0:4a55d0a21ea9 1856 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
Gendy 0:4a55d0a21ea9 1857 */
Gendy 0:4a55d0a21ea9 1858 bool MPU6050::getIntDataReadyStatus()
Gendy 0:4a55d0a21ea9 1859 {
Gendy 0:4a55d0a21ea9 1860 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
Gendy 0:4a55d0a21ea9 1861 return buffer[0];
Gendy 0:4a55d0a21ea9 1862 }
Gendy 0:4a55d0a21ea9 1863
Gendy 0:4a55d0a21ea9 1864 // ACCEL_*OUT_* registers
Gendy 0:4a55d0a21ea9 1865
Gendy 0:4a55d0a21ea9 1866 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
Gendy 0:4a55d0a21ea9 1867 * FUNCTION NOT FULLY IMPLEMENTED YET.
Gendy 0:4a55d0a21ea9 1868 * @param ax 16-bit signed integer container for accelerometer X-axis value
Gendy 0:4a55d0a21ea9 1869 * @param ay 16-bit signed integer container for accelerometer Y-axis value
Gendy 0:4a55d0a21ea9 1870 * @param az 16-bit signed integer container for accelerometer Z-axis value
Gendy 0:4a55d0a21ea9 1871 * @param gx 16-bit signed integer container for gyroscope X-axis value
Gendy 0:4a55d0a21ea9 1872 * @param gy 16-bit signed integer container for gyroscope Y-axis value
Gendy 0:4a55d0a21ea9 1873 * @param gz 16-bit signed integer container for gyroscope Z-axis value
Gendy 0:4a55d0a21ea9 1874 * @param mx 16-bit signed integer container for magnetometer X-axis value
Gendy 0:4a55d0a21ea9 1875 * @param my 16-bit signed integer container for magnetometer Y-axis value
Gendy 0:4a55d0a21ea9 1876 * @param mz 16-bit signed integer container for magnetometer Z-axis value
Gendy 0:4a55d0a21ea9 1877 * @see getMotion6()
Gendy 0:4a55d0a21ea9 1878 * @see getAcceleration()
Gendy 0:4a55d0a21ea9 1879 * @see getRotation()
Gendy 0:4a55d0a21ea9 1880 * @see MPU6050_RA_ACCEL_XOUT_H
Gendy 0:4a55d0a21ea9 1881 */
Gendy 0:4a55d0a21ea9 1882 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
Gendy 0:4a55d0a21ea9 1883 {
Gendy 0:4a55d0a21ea9 1884 getMotion6(ax, ay, az, gx, gy, gz);
Gendy 0:4a55d0a21ea9 1885
Gendy 0:4a55d0a21ea9 1886 // magnetometer reading
Gendy 0:4a55d0a21ea9 1887 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_PIN_CFG, 0x02); //set i2c bypass enable pin to true to access magnetometer
Gendy 0:4a55d0a21ea9 1888 wait_ms(10); // necessary wait >=6ms
Gendy 0:4a55d0a21ea9 1889 i2Cdev.writeByte(MPU9150_RA_MAG_ADDRESS, 0x0A, 0x01); // enable the magnetometer
Gendy 0:4a55d0a21ea9 1890 wait_ms(10); // necessary wait >=6ms
Gendy 0:4a55d0a21ea9 1891 i2Cdev.readBytes(MPU9150_RA_MAG_ADDRESS, MPU9150_RA_MAG_XOUT_L, 6, buffer);
Gendy 0:4a55d0a21ea9 1892 *mx = (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 1893 *my = (((int16_t)buffer[2]) << 8) | buffer[3];
Gendy 0:4a55d0a21ea9 1894 *mz = (((int16_t)buffer[4]) << 8) | buffer[5];
Gendy 0:4a55d0a21ea9 1895 }
Gendy 0:4a55d0a21ea9 1896 /** Get raw 6-axis motion sensor readings (accel/gyro).
Gendy 0:4a55d0a21ea9 1897 * Retrieves all currently available motion sensor values.
Gendy 0:4a55d0a21ea9 1898 * @param ax 16-bit signed integer container for accelerometer X-axis value
Gendy 0:4a55d0a21ea9 1899 * @param ay 16-bit signed integer container for accelerometer Y-axis value
Gendy 0:4a55d0a21ea9 1900 * @param az 16-bit signed integer container for accelerometer Z-axis value
Gendy 0:4a55d0a21ea9 1901 * @param gx 16-bit signed integer container for gyroscope X-axis value
Gendy 0:4a55d0a21ea9 1902 * @param gy 16-bit signed integer container for gyroscope Y-axis value
Gendy 0:4a55d0a21ea9 1903 * @param gz 16-bit signed integer container for gyroscope Z-axis value
Gendy 0:4a55d0a21ea9 1904 * @see getAcceleration()
Gendy 0:4a55d0a21ea9 1905 * @see getRotation()
Gendy 0:4a55d0a21ea9 1906 * @see MPU6050_RA_ACCEL_XOUT_H
Gendy 0:4a55d0a21ea9 1907 */
Gendy 0:4a55d0a21ea9 1908 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
Gendy 0:4a55d0a21ea9 1909 {
Gendy 0:4a55d0a21ea9 1910 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
Gendy 0:4a55d0a21ea9 1911 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 1912 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
Gendy 0:4a55d0a21ea9 1913 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
Gendy 0:4a55d0a21ea9 1914 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
Gendy 0:4a55d0a21ea9 1915 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
Gendy 0:4a55d0a21ea9 1916 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
Gendy 0:4a55d0a21ea9 1917 }
Gendy 0:4a55d0a21ea9 1918 /** Get 3-axis accelerometer readings.
Gendy 0:4a55d0a21ea9 1919 * These registers store the most recent accelerometer measurements.
Gendy 0:4a55d0a21ea9 1920 * Accelerometer measurements are written to these registers at the Sample Rate
Gendy 0:4a55d0a21ea9 1921 * as defined in Register 25.
Gendy 0:4a55d0a21ea9 1922 *
Gendy 0:4a55d0a21ea9 1923 * The accelerometer measurement registers, along with the temperature
Gendy 0:4a55d0a21ea9 1924 * measurement registers, gyroscope measurement registers, and external sensor
Gendy 0:4a55d0a21ea9 1925 * data registers, are composed of two sets of registers: an internal register
Gendy 0:4a55d0a21ea9 1926 * set and a user-facing read register set.
Gendy 0:4a55d0a21ea9 1927 *
Gendy 0:4a55d0a21ea9 1928 * The data within the accelerometer sensors' internal register set is always
Gendy 0:4a55d0a21ea9 1929 * updated at the Sample Rate. Meanwhile, the user-facing read register set
Gendy 0:4a55d0a21ea9 1930 * duplicates the internal register set's data values whenever the serial
Gendy 0:4a55d0a21ea9 1931 * interface is idle. This guarantees that a burst read of sensor registers will
Gendy 0:4a55d0a21ea9 1932 * read measurements from the same sampling instant. Note that if burst reads
Gendy 0:4a55d0a21ea9 1933 * are not used, the user is responsible for ensuring a set of single byte reads
Gendy 0:4a55d0a21ea9 1934 * correspond to a single sampling instant by checking the Data Ready interrupt.
Gendy 0:4a55d0a21ea9 1935 *
Gendy 0:4a55d0a21ea9 1936 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
Gendy 0:4a55d0a21ea9 1937 * (Register 28). For each full scale setting, the accelerometers' sensitivity
Gendy 0:4a55d0a21ea9 1938 * per LSB in ACCEL_xOUT is shown in the table below:
Gendy 0:4a55d0a21ea9 1939 *
Gendy 0:4a55d0a21ea9 1940 * <pre>
Gendy 0:4a55d0a21ea9 1941 * AFS_SEL | Full Scale Range | LSB Sensitivity
Gendy 0:4a55d0a21ea9 1942 * --------+------------------+----------------
Gendy 0:4a55d0a21ea9 1943 * 0 | +/- 2g | 8192 LSB/mg
Gendy 0:4a55d0a21ea9 1944 * 1 | +/- 4g | 4096 LSB/mg
Gendy 0:4a55d0a21ea9 1945 * 2 | +/- 8g | 2048 LSB/mg
Gendy 0:4a55d0a21ea9 1946 * 3 | +/- 16g | 1024 LSB/mg
Gendy 0:4a55d0a21ea9 1947 * </pre>
Gendy 0:4a55d0a21ea9 1948 *
Gendy 0:4a55d0a21ea9 1949 * @param x 16-bit signed integer container for X-axis acceleration
Gendy 0:4a55d0a21ea9 1950 * @param y 16-bit signed integer container for Y-axis acceleration
Gendy 0:4a55d0a21ea9 1951 * @param z 16-bit signed integer container for Z-axis acceleration
Gendy 0:4a55d0a21ea9 1952 * @see MPU6050_RA_GYRO_XOUT_H
Gendy 0:4a55d0a21ea9 1953 */
Gendy 0:4a55d0a21ea9 1954 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
Gendy 0:4a55d0a21ea9 1955 {
Gendy 0:4a55d0a21ea9 1956 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
Gendy 0:4a55d0a21ea9 1957 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 1958 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
Gendy 0:4a55d0a21ea9 1959 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
Gendy 0:4a55d0a21ea9 1960 }
Gendy 0:4a55d0a21ea9 1961 /** Get X-axis accelerometer reading.
Gendy 0:4a55d0a21ea9 1962 * @return X-axis acceleration measurement in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 1963 * @see getMotion6()
Gendy 0:4a55d0a21ea9 1964 * @see MPU6050_RA_ACCEL_XOUT_H
Gendy 0:4a55d0a21ea9 1965 */
Gendy 0:4a55d0a21ea9 1966 int16_t MPU6050::getAccelerationX()
Gendy 0:4a55d0a21ea9 1967 {
Gendy 0:4a55d0a21ea9 1968 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 1969 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 1970 }
Gendy 0:4a55d0a21ea9 1971 /** Get Y-axis accelerometer reading.
Gendy 0:4a55d0a21ea9 1972 * @return Y-axis acceleration measurement in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 1973 * @see getMotion6()
Gendy 0:4a55d0a21ea9 1974 * @see MPU6050_RA_ACCEL_YOUT_H
Gendy 0:4a55d0a21ea9 1975 */
Gendy 0:4a55d0a21ea9 1976 int16_t MPU6050::getAccelerationY()
Gendy 0:4a55d0a21ea9 1977 {
Gendy 0:4a55d0a21ea9 1978 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 1979 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 1980 }
Gendy 0:4a55d0a21ea9 1981 /** Get Z-axis accelerometer reading.
Gendy 0:4a55d0a21ea9 1982 * @return Z-axis acceleration measurement in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 1983 * @see getMotion6()
Gendy 0:4a55d0a21ea9 1984 * @see MPU6050_RA_ACCEL_ZOUT_H
Gendy 0:4a55d0a21ea9 1985 */
Gendy 0:4a55d0a21ea9 1986 int16_t MPU6050::getAccelerationZ()
Gendy 0:4a55d0a21ea9 1987 {
Gendy 0:4a55d0a21ea9 1988 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 1989 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 1990 }
Gendy 0:4a55d0a21ea9 1991
Gendy 0:4a55d0a21ea9 1992 // TEMP_OUT_* registers
Gendy 0:4a55d0a21ea9 1993
Gendy 0:4a55d0a21ea9 1994 /** Get current internal temperature.
Gendy 0:4a55d0a21ea9 1995 * @return Temperature reading in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 1996 * @see MPU6050_RA_TEMP_OUT_H
Gendy 0:4a55d0a21ea9 1997 */
Gendy 0:4a55d0a21ea9 1998 int16_t MPU6050::getTemperature()
Gendy 0:4a55d0a21ea9 1999 {
Gendy 0:4a55d0a21ea9 2000 i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 2001 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2002 }
Gendy 0:4a55d0a21ea9 2003
Gendy 0:4a55d0a21ea9 2004 // GYRO_*OUT_* registers
Gendy 0:4a55d0a21ea9 2005
Gendy 0:4a55d0a21ea9 2006 /** Get 3-axis gyroscope readings.
Gendy 0:4a55d0a21ea9 2007 * These gyroscope measurement registers, along with the accelerometer
Gendy 0:4a55d0a21ea9 2008 * measurement registers, temperature measurement registers, and external sensor
Gendy 0:4a55d0a21ea9 2009 * data registers, are composed of two sets of registers: an internal register
Gendy 0:4a55d0a21ea9 2010 * set and a user-facing read register set.
Gendy 0:4a55d0a21ea9 2011 * The data within the gyroscope sensors' internal register set is always
Gendy 0:4a55d0a21ea9 2012 * updated at the Sample Rate. Meanwhile, the user-facing read register set
Gendy 0:4a55d0a21ea9 2013 * duplicates the internal register set's data values whenever the serial
Gendy 0:4a55d0a21ea9 2014 * interface is idle. This guarantees that a burst read of sensor registers will
Gendy 0:4a55d0a21ea9 2015 * read measurements from the same sampling instant. Note that if burst reads
Gendy 0:4a55d0a21ea9 2016 * are not used, the user is responsible for ensuring a set of single byte reads
Gendy 0:4a55d0a21ea9 2017 * correspond to a single sampling instant by checking the Data Ready interrupt.
Gendy 0:4a55d0a21ea9 2018 *
Gendy 0:4a55d0a21ea9 2019 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
Gendy 0:4a55d0a21ea9 2020 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
Gendy 0:4a55d0a21ea9 2021 * LSB in GYRO_xOUT is shown in the table below:
Gendy 0:4a55d0a21ea9 2022 *
Gendy 0:4a55d0a21ea9 2023 * <pre>
Gendy 0:4a55d0a21ea9 2024 * FS_SEL | Full Scale Range | LSB Sensitivity
Gendy 0:4a55d0a21ea9 2025 * -------+--------------------+----------------
Gendy 0:4a55d0a21ea9 2026 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
Gendy 0:4a55d0a21ea9 2027 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
Gendy 0:4a55d0a21ea9 2028 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
Gendy 0:4a55d0a21ea9 2029 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
Gendy 0:4a55d0a21ea9 2030 * </pre>
Gendy 0:4a55d0a21ea9 2031 *
Gendy 0:4a55d0a21ea9 2032 * @param x 16-bit signed integer container for X-axis rotation
Gendy 0:4a55d0a21ea9 2033 * @param y 16-bit signed integer container for Y-axis rotation
Gendy 0:4a55d0a21ea9 2034 * @param z 16-bit signed integer container for Z-axis rotation
Gendy 0:4a55d0a21ea9 2035 * @see getMotion6()
Gendy 0:4a55d0a21ea9 2036 * @see MPU6050_RA_GYRO_XOUT_H
Gendy 0:4a55d0a21ea9 2037 */
Gendy 0:4a55d0a21ea9 2038 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
Gendy 0:4a55d0a21ea9 2039 {
Gendy 0:4a55d0a21ea9 2040 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
Gendy 0:4a55d0a21ea9 2041 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2042 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
Gendy 0:4a55d0a21ea9 2043 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
Gendy 0:4a55d0a21ea9 2044 }
Gendy 0:4a55d0a21ea9 2045 /** Get X-axis gyroscope reading.
Gendy 0:4a55d0a21ea9 2046 * @return X-axis rotation measurement in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 2047 * @see getMotion6()
Gendy 0:4a55d0a21ea9 2048 * @see MPU6050_RA_GYRO_XOUT_H
Gendy 0:4a55d0a21ea9 2049 */
Gendy 0:4a55d0a21ea9 2050 int16_t MPU6050::getRotationX()
Gendy 0:4a55d0a21ea9 2051 {
Gendy 0:4a55d0a21ea9 2052 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 2053 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2054 }
Gendy 0:4a55d0a21ea9 2055 /** Get Y-axis gyroscope reading.
Gendy 0:4a55d0a21ea9 2056 * @return Y-axis rotation measurement in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 2057 * @see getMotion6()
Gendy 0:4a55d0a21ea9 2058 * @see MPU6050_RA_GYRO_YOUT_H
Gendy 0:4a55d0a21ea9 2059 */
Gendy 0:4a55d0a21ea9 2060 int16_t MPU6050::getRotationY()
Gendy 0:4a55d0a21ea9 2061 {
Gendy 0:4a55d0a21ea9 2062 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 2063 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2064 }
Gendy 0:4a55d0a21ea9 2065 /** Get Z-axis gyroscope reading.
Gendy 0:4a55d0a21ea9 2066 * @return Z-axis rotation measurement in 16-bit 2's complement format
Gendy 0:4a55d0a21ea9 2067 * @see getMotion6()
Gendy 0:4a55d0a21ea9 2068 * @see MPU6050_RA_GYRO_ZOUT_H
Gendy 0:4a55d0a21ea9 2069 */
Gendy 0:4a55d0a21ea9 2070 int16_t MPU6050::getRotationZ()
Gendy 0:4a55d0a21ea9 2071 {
Gendy 0:4a55d0a21ea9 2072 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
Gendy 0:4a55d0a21ea9 2073 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2074 }
Gendy 0:4a55d0a21ea9 2075
Gendy 0:4a55d0a21ea9 2076 // EXT_SENS_DATA_* registers
Gendy 0:4a55d0a21ea9 2077
Gendy 0:4a55d0a21ea9 2078 /** Read single byte from external sensor data register.
Gendy 0:4a55d0a21ea9 2079 * These registers store data read from external sensors by the Slave 0, 1, 2,
Gendy 0:4a55d0a21ea9 2080 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
Gendy 0:4a55d0a21ea9 2081 * I2C_SLV4_DI (Register 53).
Gendy 0:4a55d0a21ea9 2082 *
Gendy 0:4a55d0a21ea9 2083 * External sensor data is written to these registers at the Sample Rate as
Gendy 0:4a55d0a21ea9 2084 * defined in Register 25. This access rate can be reduced by using the Slave
Gendy 0:4a55d0a21ea9 2085 * Delay Enable registers (Register 103).
Gendy 0:4a55d0a21ea9 2086 *
Gendy 0:4a55d0a21ea9 2087 * External sensor data registers, along with the gyroscope measurement
Gendy 0:4a55d0a21ea9 2088 * registers, accelerometer measurement registers, and temperature measurement
Gendy 0:4a55d0a21ea9 2089 * registers, are composed of two sets of registers: an internal register set
Gendy 0:4a55d0a21ea9 2090 * and a user-facing read register set.
Gendy 0:4a55d0a21ea9 2091 *
Gendy 0:4a55d0a21ea9 2092 * The data within the external sensors' internal register set is always updated
Gendy 0:4a55d0a21ea9 2093 * at the Sample Rate (or the reduced access rate) whenever the serial interface
Gendy 0:4a55d0a21ea9 2094 * is idle. This guarantees that a burst read of sensor registers will read
Gendy 0:4a55d0a21ea9 2095 * measurements from the same sampling instant. Note that if burst reads are not
Gendy 0:4a55d0a21ea9 2096 * used, the user is responsible for ensuring a set of single byte reads
Gendy 0:4a55d0a21ea9 2097 * correspond to a single sampling instant by checking the Data Ready interrupt.
Gendy 0:4a55d0a21ea9 2098 *
Gendy 0:4a55d0a21ea9 2099 * Data is placed in these external sensor data registers according to
Gendy 0:4a55d0a21ea9 2100 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
Gendy 0:4a55d0a21ea9 2101 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
Gendy 0:4a55d0a21ea9 2102 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
Gendy 0:4a55d0a21ea9 2103 * defined in Register 25) or delayed rate (if specified in Register 52 and
Gendy 0:4a55d0a21ea9 2104 * 103). During each Sample cycle, slave reads are performed in order of Slave
Gendy 0:4a55d0a21ea9 2105 * number. If all slaves are enabled with more than zero bytes to be read, the
Gendy 0:4a55d0a21ea9 2106 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
Gendy 0:4a55d0a21ea9 2107 *
Gendy 0:4a55d0a21ea9 2108 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
Gendy 0:4a55d0a21ea9 2109 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
Gendy 0:4a55d0a21ea9 2110 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
Gendy 0:4a55d0a21ea9 2111 * change the higher numbered slaves' associated registers. Furthermore, if
Gendy 0:4a55d0a21ea9 2112 * fewer total bytes are being read from the external sensors as a result of
Gendy 0:4a55d0a21ea9 2113 * such a change, then the data remaining in the registers which no longer have
Gendy 0:4a55d0a21ea9 2114 * an associated slave device (i.e. high numbered registers) will remain in
Gendy 0:4a55d0a21ea9 2115 * these previously allocated registers unless reset.
Gendy 0:4a55d0a21ea9 2116 *
Gendy 0:4a55d0a21ea9 2117 * If the sum of the read lengths of all SLVx transactions exceed the number of
Gendy 0:4a55d0a21ea9 2118 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
Gendy 0:4a55d0a21ea9 2119 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
Gendy 0:4a55d0a21ea9 2120 * the slaves cannot be greater than 24 or some bytes will be lost.
Gendy 0:4a55d0a21ea9 2121 *
Gendy 0:4a55d0a21ea9 2122 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
Gendy 0:4a55d0a21ea9 2123 * information regarding the characteristics of Slave 4, please refer to
Gendy 0:4a55d0a21ea9 2124 * Registers 49 to 53.
Gendy 0:4a55d0a21ea9 2125 *
Gendy 0:4a55d0a21ea9 2126 * EXAMPLE:
Gendy 0:4a55d0a21ea9 2127 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
Gendy 0:4a55d0a21ea9 2128 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
Gendy 0:4a55d0a21ea9 2129 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
Gendy 0:4a55d0a21ea9 2130 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
Gendy 0:4a55d0a21ea9 2131 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
Gendy 0:4a55d0a21ea9 2132 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
Gendy 0:4a55d0a21ea9 2133 *
Gendy 0:4a55d0a21ea9 2134 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
Gendy 0:4a55d0a21ea9 2135 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
Gendy 0:4a55d0a21ea9 2136 * instead.
Gendy 0:4a55d0a21ea9 2137 *
Gendy 0:4a55d0a21ea9 2138 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
Gendy 0:4a55d0a21ea9 2139 * If a slave is disabled at any time, the space initially allocated to the
Gendy 0:4a55d0a21ea9 2140 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
Gendy 0:4a55d0a21ea9 2141 * This is to avoid dynamic adjustment of the register allocation.
Gendy 0:4a55d0a21ea9 2142 *
Gendy 0:4a55d0a21ea9 2143 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
Gendy 0:4a55d0a21ea9 2144 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
Gendy 0:4a55d0a21ea9 2145 *
Gendy 0:4a55d0a21ea9 2146 * This above is also true if one of the slaves gets NACKed and stops
Gendy 0:4a55d0a21ea9 2147 * functioning.
Gendy 0:4a55d0a21ea9 2148 *
Gendy 0:4a55d0a21ea9 2149 * @param position Starting position (0-23)
Gendy 0:4a55d0a21ea9 2150 * @return Byte read from register
Gendy 0:4a55d0a21ea9 2151 */
Gendy 0:4a55d0a21ea9 2152 uint8_t MPU6050::getExternalSensorByte(int position)
Gendy 0:4a55d0a21ea9 2153 {
Gendy 0:4a55d0a21ea9 2154 i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
Gendy 0:4a55d0a21ea9 2155 return buffer[0];
Gendy 0:4a55d0a21ea9 2156 }
Gendy 0:4a55d0a21ea9 2157 /** Read word (2 bytes) from external sensor data registers.
Gendy 0:4a55d0a21ea9 2158 * @param position Starting position (0-21)
Gendy 0:4a55d0a21ea9 2159 * @return Word read from register
Gendy 0:4a55d0a21ea9 2160 * @see getExternalSensorByte()
Gendy 0:4a55d0a21ea9 2161 */
Gendy 0:4a55d0a21ea9 2162 uint16_t MPU6050::getExternalSensorWord(int position)
Gendy 0:4a55d0a21ea9 2163 {
Gendy 0:4a55d0a21ea9 2164 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
Gendy 0:4a55d0a21ea9 2165 return (((uint16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2166 }
Gendy 0:4a55d0a21ea9 2167 /** Read double word (4 bytes) from external sensor data registers.
Gendy 0:4a55d0a21ea9 2168 * @param position Starting position (0-20)
Gendy 0:4a55d0a21ea9 2169 * @return Double word read from registers
Gendy 0:4a55d0a21ea9 2170 * @see getExternalSensorByte()
Gendy 0:4a55d0a21ea9 2171 */
Gendy 0:4a55d0a21ea9 2172 uint32_t MPU6050::getExternalSensorDWord(int position)
Gendy 0:4a55d0a21ea9 2173 {
Gendy 0:4a55d0a21ea9 2174 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
Gendy 0:4a55d0a21ea9 2175 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
Gendy 0:4a55d0a21ea9 2176 }
Gendy 0:4a55d0a21ea9 2177
Gendy 0:4a55d0a21ea9 2178 // MOT_DETECT_STATUS register
Gendy 0:4a55d0a21ea9 2179
Gendy 0:4a55d0a21ea9 2180 /** Get X-axis negative motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2181 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2182 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2183 * @see MPU6050_MOTION_MOT_XNEG_BIT
Gendy 0:4a55d0a21ea9 2184 */
Gendy 0:4a55d0a21ea9 2185 bool MPU6050::getXNegMotionDetected()
Gendy 0:4a55d0a21ea9 2186 {
Gendy 0:4a55d0a21ea9 2187 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
Gendy 0:4a55d0a21ea9 2188 return buffer[0];
Gendy 0:4a55d0a21ea9 2189 }
Gendy 0:4a55d0a21ea9 2190 /** Get X-axis positive motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2191 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2192 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2193 * @see MPU6050_MOTION_MOT_XPOS_BIT
Gendy 0:4a55d0a21ea9 2194 */
Gendy 0:4a55d0a21ea9 2195 bool MPU6050::getXPosMotionDetected()
Gendy 0:4a55d0a21ea9 2196 {
Gendy 0:4a55d0a21ea9 2197 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
Gendy 0:4a55d0a21ea9 2198 return buffer[0];
Gendy 0:4a55d0a21ea9 2199 }
Gendy 0:4a55d0a21ea9 2200 /** Get Y-axis negative motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2201 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2202 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2203 * @see MPU6050_MOTION_MOT_YNEG_BIT
Gendy 0:4a55d0a21ea9 2204 */
Gendy 0:4a55d0a21ea9 2205 bool MPU6050::getYNegMotionDetected()
Gendy 0:4a55d0a21ea9 2206 {
Gendy 0:4a55d0a21ea9 2207 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
Gendy 0:4a55d0a21ea9 2208 return buffer[0];
Gendy 0:4a55d0a21ea9 2209 }
Gendy 0:4a55d0a21ea9 2210 /** Get Y-axis positive motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2211 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2212 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2213 * @see MPU6050_MOTION_MOT_YPOS_BIT
Gendy 0:4a55d0a21ea9 2214 */
Gendy 0:4a55d0a21ea9 2215 bool MPU6050::getYPosMotionDetected()
Gendy 0:4a55d0a21ea9 2216 {
Gendy 0:4a55d0a21ea9 2217 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
Gendy 0:4a55d0a21ea9 2218 return buffer[0];
Gendy 0:4a55d0a21ea9 2219 }
Gendy 0:4a55d0a21ea9 2220 /** Get Z-axis negative motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2221 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2222 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2223 * @see MPU6050_MOTION_MOT_ZNEG_BIT
Gendy 0:4a55d0a21ea9 2224 */
Gendy 0:4a55d0a21ea9 2225 bool MPU6050::getZNegMotionDetected()
Gendy 0:4a55d0a21ea9 2226 {
Gendy 0:4a55d0a21ea9 2227 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
Gendy 0:4a55d0a21ea9 2228 return buffer[0];
Gendy 0:4a55d0a21ea9 2229 }
Gendy 0:4a55d0a21ea9 2230 /** Get Z-axis positive motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2231 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2232 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2233 * @see MPU6050_MOTION_MOT_ZPOS_BIT
Gendy 0:4a55d0a21ea9 2234 */
Gendy 0:4a55d0a21ea9 2235 bool MPU6050::getZPosMotionDetected()
Gendy 0:4a55d0a21ea9 2236 {
Gendy 0:4a55d0a21ea9 2237 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
Gendy 0:4a55d0a21ea9 2238 return buffer[0];
Gendy 0:4a55d0a21ea9 2239 }
Gendy 0:4a55d0a21ea9 2240 /** Get zero motion detection interrupt status.
Gendy 0:4a55d0a21ea9 2241 * @return Motion detection status
Gendy 0:4a55d0a21ea9 2242 * @see MPU6050_RA_MOT_DETECT_STATUS
Gendy 0:4a55d0a21ea9 2243 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
Gendy 0:4a55d0a21ea9 2244 */
Gendy 0:4a55d0a21ea9 2245 bool MPU6050::getZeroMotionDetected()
Gendy 0:4a55d0a21ea9 2246 {
Gendy 0:4a55d0a21ea9 2247 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
Gendy 0:4a55d0a21ea9 2248 return buffer[0];
Gendy 0:4a55d0a21ea9 2249 }
Gendy 0:4a55d0a21ea9 2250
Gendy 0:4a55d0a21ea9 2251 // I2C_SLV*_DO register
Gendy 0:4a55d0a21ea9 2252
Gendy 0:4a55d0a21ea9 2253 /** Write byte to Data Output container for specified slave.
Gendy 0:4a55d0a21ea9 2254 * This register holds the output data written into Slave when Slave is set to
Gendy 0:4a55d0a21ea9 2255 * write mode. For further information regarding Slave control, please
Gendy 0:4a55d0a21ea9 2256 * refer to Registers 37 to 39 and immediately following.
Gendy 0:4a55d0a21ea9 2257 * @param num Slave number (0-3)
Gendy 0:4a55d0a21ea9 2258 * @param data Byte to write
Gendy 0:4a55d0a21ea9 2259 * @see MPU6050_RA_I2C_SLV0_DO
Gendy 0:4a55d0a21ea9 2260 */
Gendy 0:4a55d0a21ea9 2261 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
Gendy 0:4a55d0a21ea9 2262 {
Gendy 0:4a55d0a21ea9 2263 if (num > 3) return;
Gendy 0:4a55d0a21ea9 2264 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
Gendy 0:4a55d0a21ea9 2265 }
Gendy 0:4a55d0a21ea9 2266
Gendy 0:4a55d0a21ea9 2267 // I2C_MST_DELAY_CTRL register
Gendy 0:4a55d0a21ea9 2268
Gendy 0:4a55d0a21ea9 2269 /** Get external data shadow delay enabled status.
Gendy 0:4a55d0a21ea9 2270 * This register is used to specify the timing of external sensor data
Gendy 0:4a55d0a21ea9 2271 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
Gendy 0:4a55d0a21ea9 2272 * sensor data is delayed until all data has been received.
Gendy 0:4a55d0a21ea9 2273 * @return Current external data shadow delay enabled status.
Gendy 0:4a55d0a21ea9 2274 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gendy 0:4a55d0a21ea9 2275 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
Gendy 0:4a55d0a21ea9 2276 */
Gendy 0:4a55d0a21ea9 2277 bool MPU6050::getExternalShadowDelayEnabled()
Gendy 0:4a55d0a21ea9 2278 {
Gendy 0:4a55d0a21ea9 2279 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
Gendy 0:4a55d0a21ea9 2280 return buffer[0];
Gendy 0:4a55d0a21ea9 2281 }
Gendy 0:4a55d0a21ea9 2282 /** Set external data shadow delay enabled status.
Gendy 0:4a55d0a21ea9 2283 * @param enabled New external data shadow delay enabled status.
Gendy 0:4a55d0a21ea9 2284 * @see getExternalShadowDelayEnabled()
Gendy 0:4a55d0a21ea9 2285 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gendy 0:4a55d0a21ea9 2286 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
Gendy 0:4a55d0a21ea9 2287 */
Gendy 0:4a55d0a21ea9 2288 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2289 {
Gendy 0:4a55d0a21ea9 2290 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
Gendy 0:4a55d0a21ea9 2291 }
Gendy 0:4a55d0a21ea9 2292 /** Get slave delay enabled status.
Gendy 0:4a55d0a21ea9 2293 * When a particular slave delay is enabled, the rate of access for the that
Gendy 0:4a55d0a21ea9 2294 * slave device is reduced. When a slave's access rate is decreased relative to
Gendy 0:4a55d0a21ea9 2295 * the Sample Rate, the slave is accessed every:
Gendy 0:4a55d0a21ea9 2296 *
Gendy 0:4a55d0a21ea9 2297 * 1 / (1 + I2C_MST_DLY) Samples
Gendy 0:4a55d0a21ea9 2298 *
Gendy 0:4a55d0a21ea9 2299 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
Gendy 0:4a55d0a21ea9 2300 * and DLPF_CFG (register 26).
Gendy 0:4a55d0a21ea9 2301 *
Gendy 0:4a55d0a21ea9 2302 * For further information regarding I2C_MST_DLY, please refer to register 52.
Gendy 0:4a55d0a21ea9 2303 * For further information regarding the Sample Rate, please refer to register 25.
Gendy 0:4a55d0a21ea9 2304 *
Gendy 0:4a55d0a21ea9 2305 * @param num Slave number (0-4)
Gendy 0:4a55d0a21ea9 2306 * @return Current slave delay enabled status.
Gendy 0:4a55d0a21ea9 2307 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gendy 0:4a55d0a21ea9 2308 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
Gendy 0:4a55d0a21ea9 2309 */
Gendy 0:4a55d0a21ea9 2310 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
Gendy 0:4a55d0a21ea9 2311 {
Gendy 0:4a55d0a21ea9 2312 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
Gendy 0:4a55d0a21ea9 2313 if (num > 4) return 0;
Gendy 0:4a55d0a21ea9 2314 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
Gendy 0:4a55d0a21ea9 2315 return buffer[0];
Gendy 0:4a55d0a21ea9 2316 }
Gendy 0:4a55d0a21ea9 2317 /** Set slave delay enabled status.
Gendy 0:4a55d0a21ea9 2318 * @param num Slave number (0-4)
Gendy 0:4a55d0a21ea9 2319 * @param enabled New slave delay enabled status.
Gendy 0:4a55d0a21ea9 2320 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
Gendy 0:4a55d0a21ea9 2321 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
Gendy 0:4a55d0a21ea9 2322 */
Gendy 0:4a55d0a21ea9 2323 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
Gendy 0:4a55d0a21ea9 2324 {
Gendy 0:4a55d0a21ea9 2325 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
Gendy 0:4a55d0a21ea9 2326 }
Gendy 0:4a55d0a21ea9 2327
Gendy 0:4a55d0a21ea9 2328 // SIGNAL_PATH_RESET register
Gendy 0:4a55d0a21ea9 2329
Gendy 0:4a55d0a21ea9 2330 /** Reset gyroscope signal path.
Gendy 0:4a55d0a21ea9 2331 * The reset will revert the signal path analog to digital converters and
Gendy 0:4a55d0a21ea9 2332 * filters to their power up configurations.
Gendy 0:4a55d0a21ea9 2333 * @see MPU6050_RA_SIGNAL_PATH_RESET
Gendy 0:4a55d0a21ea9 2334 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
Gendy 0:4a55d0a21ea9 2335 */
Gendy 0:4a55d0a21ea9 2336 void MPU6050::resetGyroscopePath()
Gendy 0:4a55d0a21ea9 2337 {
Gendy 0:4a55d0a21ea9 2338 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2339 }
Gendy 0:4a55d0a21ea9 2340 /** Reset accelerometer signal path.
Gendy 0:4a55d0a21ea9 2341 * The reset will revert the signal path analog to digital converters and
Gendy 0:4a55d0a21ea9 2342 * filters to their power up configurations.
Gendy 0:4a55d0a21ea9 2343 * @see MPU6050_RA_SIGNAL_PATH_RESET
Gendy 0:4a55d0a21ea9 2344 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
Gendy 0:4a55d0a21ea9 2345 */
Gendy 0:4a55d0a21ea9 2346 void MPU6050::resetAccelerometerPath()
Gendy 0:4a55d0a21ea9 2347 {
Gendy 0:4a55d0a21ea9 2348 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2349 }
Gendy 0:4a55d0a21ea9 2350 /** Reset temperature sensor signal path.
Gendy 0:4a55d0a21ea9 2351 * The reset will revert the signal path analog to digital converters and
Gendy 0:4a55d0a21ea9 2352 * filters to their power up configurations.
Gendy 0:4a55d0a21ea9 2353 * @see MPU6050_RA_SIGNAL_PATH_RESET
Gendy 0:4a55d0a21ea9 2354 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
Gendy 0:4a55d0a21ea9 2355 */
Gendy 0:4a55d0a21ea9 2356 void MPU6050::resetTemperaturePath()
Gendy 0:4a55d0a21ea9 2357 {
Gendy 0:4a55d0a21ea9 2358 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2359 }
Gendy 0:4a55d0a21ea9 2360
Gendy 0:4a55d0a21ea9 2361 // MOT_DETECT_CTRL register
Gendy 0:4a55d0a21ea9 2362
Gendy 0:4a55d0a21ea9 2363 /** Get accelerometer power-on delay.
Gendy 0:4a55d0a21ea9 2364 * The accelerometer data path provides samples to the sensor registers, Motion
Gendy 0:4a55d0a21ea9 2365 * detection, Zero Motion detection, and Free Fall detection modules. The
Gendy 0:4a55d0a21ea9 2366 * signal path contains filters which must be flushed on wake-up with new
Gendy 0:4a55d0a21ea9 2367 * samples before the detection modules begin operations. The default wake-up
Gendy 0:4a55d0a21ea9 2368 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
Gendy 0:4a55d0a21ea9 2369 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
Gendy 0:4a55d0a21ea9 2370 * any value above zero unless instructed otherwise by InvenSense. Please refer
Gendy 0:4a55d0a21ea9 2371 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
Gendy 0:4a55d0a21ea9 2372 * further information regarding the detection modules.
Gendy 0:4a55d0a21ea9 2373 * @return Current accelerometer power-on delay
Gendy 0:4a55d0a21ea9 2374 * @see MPU6050_RA_MOT_DETECT_CTRL
Gendy 0:4a55d0a21ea9 2375 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
Gendy 0:4a55d0a21ea9 2376 */
Gendy 0:4a55d0a21ea9 2377 uint8_t MPU6050::getAccelerometerPowerOnDelay()
Gendy 0:4a55d0a21ea9 2378 {
Gendy 0:4a55d0a21ea9 2379 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2380 return buffer[0];
Gendy 0:4a55d0a21ea9 2381 }
Gendy 0:4a55d0a21ea9 2382 /** Set accelerometer power-on delay.
Gendy 0:4a55d0a21ea9 2383 * @param delay New accelerometer power-on delay (0-3)
Gendy 0:4a55d0a21ea9 2384 * @see getAccelerometerPowerOnDelay()
Gendy 0:4a55d0a21ea9 2385 * @see MPU6050_RA_MOT_DETECT_CTRL
Gendy 0:4a55d0a21ea9 2386 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
Gendy 0:4a55d0a21ea9 2387 */
Gendy 0:4a55d0a21ea9 2388 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
Gendy 0:4a55d0a21ea9 2389 {
Gendy 0:4a55d0a21ea9 2390 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
Gendy 0:4a55d0a21ea9 2391 }
Gendy 0:4a55d0a21ea9 2392 /** Get Free Fall detection counter decrement configuration.
Gendy 0:4a55d0a21ea9 2393 * Detection is registered by the Free Fall detection module after accelerometer
Gendy 0:4a55d0a21ea9 2394 * measurements meet their respective threshold conditions over a specified
Gendy 0:4a55d0a21ea9 2395 * number of samples. When the threshold conditions are met, the corresponding
Gendy 0:4a55d0a21ea9 2396 * detection counter increments by 1. The user may control the rate at which the
Gendy 0:4a55d0a21ea9 2397 * detection counter decrements when the threshold condition is not met by
Gendy 0:4a55d0a21ea9 2398 * configuring FF_COUNT. The decrement rate can be set according to the
Gendy 0:4a55d0a21ea9 2399 * following table:
Gendy 0:4a55d0a21ea9 2400 *
Gendy 0:4a55d0a21ea9 2401 * <pre>
Gendy 0:4a55d0a21ea9 2402 * FF_COUNT | Counter Decrement
Gendy 0:4a55d0a21ea9 2403 * ---------+------------------
Gendy 0:4a55d0a21ea9 2404 * 0 | Reset
Gendy 0:4a55d0a21ea9 2405 * 1 | 1
Gendy 0:4a55d0a21ea9 2406 * 2 | 2
Gendy 0:4a55d0a21ea9 2407 * 3 | 4
Gendy 0:4a55d0a21ea9 2408 * </pre>
Gendy 0:4a55d0a21ea9 2409 *
Gendy 0:4a55d0a21ea9 2410 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
Gendy 0:4a55d0a21ea9 2411 * reset the counter to 0. For further information on Free Fall detection,
Gendy 0:4a55d0a21ea9 2412 * please refer to Registers 29 to 32.
Gendy 0:4a55d0a21ea9 2413 *
Gendy 0:4a55d0a21ea9 2414 * @return Current decrement configuration
Gendy 0:4a55d0a21ea9 2415 * @see MPU6050_RA_MOT_DETECT_CTRL
Gendy 0:4a55d0a21ea9 2416 * @see MPU6050_DETECT_FF_COUNT_BIT
Gendy 0:4a55d0a21ea9 2417 */
Gendy 0:4a55d0a21ea9 2418 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
Gendy 0:4a55d0a21ea9 2419 {
Gendy 0:4a55d0a21ea9 2420 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2421 return buffer[0];
Gendy 0:4a55d0a21ea9 2422 }
Gendy 0:4a55d0a21ea9 2423 /** Set Free Fall detection counter decrement configuration.
Gendy 0:4a55d0a21ea9 2424 * @param decrement New decrement configuration value
Gendy 0:4a55d0a21ea9 2425 * @see getFreefallDetectionCounterDecrement()
Gendy 0:4a55d0a21ea9 2426 * @see MPU6050_RA_MOT_DETECT_CTRL
Gendy 0:4a55d0a21ea9 2427 * @see MPU6050_DETECT_FF_COUNT_BIT
Gendy 0:4a55d0a21ea9 2428 */
Gendy 0:4a55d0a21ea9 2429 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
Gendy 0:4a55d0a21ea9 2430 {
Gendy 0:4a55d0a21ea9 2431 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
Gendy 0:4a55d0a21ea9 2432 }
Gendy 0:4a55d0a21ea9 2433 /** Get Motion detection counter decrement configuration.
Gendy 0:4a55d0a21ea9 2434 * Detection is registered by the Motion detection module after accelerometer
Gendy 0:4a55d0a21ea9 2435 * measurements meet their respective threshold conditions over a specified
Gendy 0:4a55d0a21ea9 2436 * number of samples. When the threshold conditions are met, the corresponding
Gendy 0:4a55d0a21ea9 2437 * detection counter increments by 1. The user may control the rate at which the
Gendy 0:4a55d0a21ea9 2438 * detection counter decrements when the threshold condition is not met by
Gendy 0:4a55d0a21ea9 2439 * configuring MOT_COUNT. The decrement rate can be set according to the
Gendy 0:4a55d0a21ea9 2440 * following table:
Gendy 0:4a55d0a21ea9 2441 *
Gendy 0:4a55d0a21ea9 2442 * <pre>
Gendy 0:4a55d0a21ea9 2443 * MOT_COUNT | Counter Decrement
Gendy 0:4a55d0a21ea9 2444 * ----------+------------------
Gendy 0:4a55d0a21ea9 2445 * 0 | Reset
Gendy 0:4a55d0a21ea9 2446 * 1 | 1
Gendy 0:4a55d0a21ea9 2447 * 2 | 2
Gendy 0:4a55d0a21ea9 2448 * 3 | 4
Gendy 0:4a55d0a21ea9 2449 * </pre>
Gendy 0:4a55d0a21ea9 2450 *
Gendy 0:4a55d0a21ea9 2451 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
Gendy 0:4a55d0a21ea9 2452 * reset the counter to 0. For further information on Motion detection,
Gendy 0:4a55d0a21ea9 2453 * please refer to Registers 29 to 32.
Gendy 0:4a55d0a21ea9 2454 *
Gendy 0:4a55d0a21ea9 2455 */
Gendy 0:4a55d0a21ea9 2456 uint8_t MPU6050::getMotionDetectionCounterDecrement()
Gendy 0:4a55d0a21ea9 2457 {
Gendy 0:4a55d0a21ea9 2458 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2459 return buffer[0];
Gendy 0:4a55d0a21ea9 2460 }
Gendy 0:4a55d0a21ea9 2461 /** Set Motion detection counter decrement configuration.
Gendy 0:4a55d0a21ea9 2462 * @param decrement New decrement configuration value
Gendy 0:4a55d0a21ea9 2463 * @see getMotionDetectionCounterDecrement()
Gendy 0:4a55d0a21ea9 2464 * @see MPU6050_RA_MOT_DETECT_CTRL
Gendy 0:4a55d0a21ea9 2465 * @see MPU6050_DETECT_MOT_COUNT_BIT
Gendy 0:4a55d0a21ea9 2466 */
Gendy 0:4a55d0a21ea9 2467 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
Gendy 0:4a55d0a21ea9 2468 {
Gendy 0:4a55d0a21ea9 2469 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
Gendy 0:4a55d0a21ea9 2470 }
Gendy 0:4a55d0a21ea9 2471
Gendy 0:4a55d0a21ea9 2472 // USER_CTRL register
Gendy 0:4a55d0a21ea9 2473
Gendy 0:4a55d0a21ea9 2474 /** Get FIFO enabled status.
Gendy 0:4a55d0a21ea9 2475 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
Gendy 0:4a55d0a21ea9 2476 * cannot be written to or read from while disabled. The FIFO buffer's state
Gendy 0:4a55d0a21ea9 2477 * does not change unless the MPU-60X0 is power cycled.
Gendy 0:4a55d0a21ea9 2478 * @return Current FIFO enabled status
Gendy 0:4a55d0a21ea9 2479 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2480 * @see MPU6050_USERCTRL_FIFO_EN_BIT
Gendy 0:4a55d0a21ea9 2481 */
Gendy 0:4a55d0a21ea9 2482 bool MPU6050::getFIFOEnabled()
Gendy 0:4a55d0a21ea9 2483 {
Gendy 0:4a55d0a21ea9 2484 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 2485 return buffer[0];
Gendy 0:4a55d0a21ea9 2486 }
Gendy 0:4a55d0a21ea9 2487 /** Set FIFO enabled status.
Gendy 0:4a55d0a21ea9 2488 * @param enabled New FIFO enabled status
Gendy 0:4a55d0a21ea9 2489 * @see getFIFOEnabled()
Gendy 0:4a55d0a21ea9 2490 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2491 * @see MPU6050_USERCTRL_FIFO_EN_BIT
Gendy 0:4a55d0a21ea9 2492 */
Gendy 0:4a55d0a21ea9 2493 void MPU6050::setFIFOEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2494 {
Gendy 0:4a55d0a21ea9 2495 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 2496 }
Gendy 0:4a55d0a21ea9 2497 /** Get I2C Master Mode enabled status.
Gendy 0:4a55d0a21ea9 2498 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
Gendy 0:4a55d0a21ea9 2499 * external sensor slave devices on the auxiliary I2C bus. When this bit is
Gendy 0:4a55d0a21ea9 2500 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
Gendy 0:4a55d0a21ea9 2501 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
Gendy 0:4a55d0a21ea9 2502 * enabling Bypass Mode. For further information regarding Bypass Mode, please
Gendy 0:4a55d0a21ea9 2503 * refer to Register 55.
Gendy 0:4a55d0a21ea9 2504 * @return Current I2C Master Mode enabled status
Gendy 0:4a55d0a21ea9 2505 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2506 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
Gendy 0:4a55d0a21ea9 2507 */
Gendy 0:4a55d0a21ea9 2508 bool MPU6050::getI2CMasterModeEnabled()
Gendy 0:4a55d0a21ea9 2509 {
Gendy 0:4a55d0a21ea9 2510 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 2511 return buffer[0];
Gendy 0:4a55d0a21ea9 2512 }
Gendy 0:4a55d0a21ea9 2513 /** Set I2C Master Mode enabled status.
Gendy 0:4a55d0a21ea9 2514 * @param enabled New I2C Master Mode enabled status
Gendy 0:4a55d0a21ea9 2515 * @see getI2CMasterModeEnabled()
Gendy 0:4a55d0a21ea9 2516 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2517 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
Gendy 0:4a55d0a21ea9 2518 */
Gendy 0:4a55d0a21ea9 2519 void MPU6050::setI2CMasterModeEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2520 {
Gendy 0:4a55d0a21ea9 2521 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 2522 }
Gendy 0:4a55d0a21ea9 2523 /** Switch from I2C to SPI mode (MPU-6000 only)
Gendy 0:4a55d0a21ea9 2524 * If this is set, the primary SPI interface will be enabled in place of the
Gendy 0:4a55d0a21ea9 2525 * disabled primary I2C interface.
Gendy 0:4a55d0a21ea9 2526 */
Gendy 0:4a55d0a21ea9 2527 void MPU6050::switchSPIEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2528 {
Gendy 0:4a55d0a21ea9 2529 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
Gendy 0:4a55d0a21ea9 2530 }
Gendy 0:4a55d0a21ea9 2531 /** Reset the FIFO.
Gendy 0:4a55d0a21ea9 2532 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
Gendy 0:4a55d0a21ea9 2533 * bit automatically clears to 0 after the reset has been triggered.
Gendy 0:4a55d0a21ea9 2534 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2535 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
Gendy 0:4a55d0a21ea9 2536 */
Gendy 0:4a55d0a21ea9 2537 void MPU6050::resetFIFO()
Gendy 0:4a55d0a21ea9 2538 {
Gendy 0:4a55d0a21ea9 2539 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2540 }
Gendy 0:4a55d0a21ea9 2541 /** Reset the I2C Master.
Gendy 0:4a55d0a21ea9 2542 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
Gendy 0:4a55d0a21ea9 2543 * This bit automatically clears to 0 after the reset has been triggered.
Gendy 0:4a55d0a21ea9 2544 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2545 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
Gendy 0:4a55d0a21ea9 2546 */
Gendy 0:4a55d0a21ea9 2547 void MPU6050::resetI2CMaster()
Gendy 0:4a55d0a21ea9 2548 {
Gendy 0:4a55d0a21ea9 2549 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2550 }
Gendy 0:4a55d0a21ea9 2551 /** Reset all sensor registers and signal paths.
Gendy 0:4a55d0a21ea9 2552 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
Gendy 0:4a55d0a21ea9 2553 * accelerometers, and temperature sensor). This operation will also clear the
Gendy 0:4a55d0a21ea9 2554 * sensor registers. This bit automatically clears to 0 after the reset has been
Gendy 0:4a55d0a21ea9 2555 * triggered.
Gendy 0:4a55d0a21ea9 2556 *
Gendy 0:4a55d0a21ea9 2557 * When resetting only the signal path (and not the sensor registers), please
Gendy 0:4a55d0a21ea9 2558 * use Register 104, SIGNAL_PATH_RESET.
Gendy 0:4a55d0a21ea9 2559 *
Gendy 0:4a55d0a21ea9 2560 * @see MPU6050_RA_USER_CTRL
Gendy 0:4a55d0a21ea9 2561 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
Gendy 0:4a55d0a21ea9 2562 */
Gendy 0:4a55d0a21ea9 2563 void MPU6050::resetSensors()
Gendy 0:4a55d0a21ea9 2564 {
Gendy 0:4a55d0a21ea9 2565 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2566 }
Gendy 0:4a55d0a21ea9 2567
Gendy 0:4a55d0a21ea9 2568 // PWR_MGMT_1 register
Gendy 0:4a55d0a21ea9 2569
Gendy 0:4a55d0a21ea9 2570 /** Trigger a full device reset.
Gendy 0:4a55d0a21ea9 2571 * A small delay of ~50ms may be desirable after triggering a reset.
Gendy 0:4a55d0a21ea9 2572 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2573 * @see MPU6050_PWR1_DEVICE_RESET_BIT
Gendy 0:4a55d0a21ea9 2574 */
Gendy 0:4a55d0a21ea9 2575 void MPU6050::reset()
Gendy 0:4a55d0a21ea9 2576 {
Gendy 0:4a55d0a21ea9 2577 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 2578 }
Gendy 0:4a55d0a21ea9 2579 /** Get sleep mode status.
Gendy 0:4a55d0a21ea9 2580 * Setting the SLEEP bit in the register puts the device into very low power
Gendy 0:4a55d0a21ea9 2581 * sleep mode. In this mode, only the serial interface and internal registers
Gendy 0:4a55d0a21ea9 2582 * remain active, allowing for a very low standby current. Clearing this bit
Gendy 0:4a55d0a21ea9 2583 * puts the device back into normal mode. To save power, the individual standby
Gendy 0:4a55d0a21ea9 2584 * selections for each of the gyros should be used if any gyro axis is not used
Gendy 0:4a55d0a21ea9 2585 * by the application.
Gendy 0:4a55d0a21ea9 2586 * @return Current sleep mode enabled status
Gendy 0:4a55d0a21ea9 2587 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2588 * @see MPU6050_PWR1_SLEEP_BIT
Gendy 0:4a55d0a21ea9 2589 */
Gendy 0:4a55d0a21ea9 2590 bool MPU6050::getSleepEnabled()
Gendy 0:4a55d0a21ea9 2591 {
Gendy 0:4a55d0a21ea9 2592 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
Gendy 0:4a55d0a21ea9 2593 return buffer[0];
Gendy 0:4a55d0a21ea9 2594 }
Gendy 0:4a55d0a21ea9 2595 /** Set sleep mode status.
Gendy 0:4a55d0a21ea9 2596 * @param enabled New sleep mode enabled status
Gendy 0:4a55d0a21ea9 2597 * @see getSleepEnabled()
Gendy 0:4a55d0a21ea9 2598 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2599 * @see MPU6050_PWR1_SLEEP_BIT
Gendy 0:4a55d0a21ea9 2600 */
Gendy 0:4a55d0a21ea9 2601 void MPU6050::setSleepEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2602 {
Gendy 0:4a55d0a21ea9 2603 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
Gendy 0:4a55d0a21ea9 2604 }
Gendy 0:4a55d0a21ea9 2605 /** Get wake cycle enabled status.
Gendy 0:4a55d0a21ea9 2606 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
Gendy 0:4a55d0a21ea9 2607 * between sleep mode and waking up to take a single sample of data from active
Gendy 0:4a55d0a21ea9 2608 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
Gendy 0:4a55d0a21ea9 2609 * @return Current sleep mode enabled status
Gendy 0:4a55d0a21ea9 2610 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2611 * @see MPU6050_PWR1_CYCLE_BIT
Gendy 0:4a55d0a21ea9 2612 */
Gendy 0:4a55d0a21ea9 2613 bool MPU6050::getWakeCycleEnabled()
Gendy 0:4a55d0a21ea9 2614 {
Gendy 0:4a55d0a21ea9 2615 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
Gendy 0:4a55d0a21ea9 2616 return buffer[0];
Gendy 0:4a55d0a21ea9 2617 }
Gendy 0:4a55d0a21ea9 2618 /** Set wake cycle enabled status.
Gendy 0:4a55d0a21ea9 2619 * @param enabled New sleep mode enabled status
Gendy 0:4a55d0a21ea9 2620 * @see getWakeCycleEnabled()
Gendy 0:4a55d0a21ea9 2621 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2622 * @see MPU6050_PWR1_CYCLE_BIT
Gendy 0:4a55d0a21ea9 2623 */
Gendy 0:4a55d0a21ea9 2624 void MPU6050::setWakeCycleEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2625 {
Gendy 0:4a55d0a21ea9 2626 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
Gendy 0:4a55d0a21ea9 2627 }
Gendy 0:4a55d0a21ea9 2628 /** Get temperature sensor enabled status.
Gendy 0:4a55d0a21ea9 2629 * Control the usage of the internal temperature sensor.
Gendy 0:4a55d0a21ea9 2630 *
Gendy 0:4a55d0a21ea9 2631 * Note: this register stores the *disabled* value, but for consistency with the
Gendy 0:4a55d0a21ea9 2632 * rest of the code, the function is named and used with standard true/false
Gendy 0:4a55d0a21ea9 2633 * values to indicate whether the sensor is enabled or disabled, respectively.
Gendy 0:4a55d0a21ea9 2634 *
Gendy 0:4a55d0a21ea9 2635 * @return Current temperature sensor enabled status
Gendy 0:4a55d0a21ea9 2636 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2637 * @see MPU6050_PWR1_TEMP_DIS_BIT
Gendy 0:4a55d0a21ea9 2638 */
Gendy 0:4a55d0a21ea9 2639 bool MPU6050::getTempSensorEnabled()
Gendy 0:4a55d0a21ea9 2640 {
Gendy 0:4a55d0a21ea9 2641 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
Gendy 0:4a55d0a21ea9 2642 return buffer[0] == 0; // 1 is actually disabled here
Gendy 0:4a55d0a21ea9 2643 }
Gendy 0:4a55d0a21ea9 2644 /** Set temperature sensor enabled status.
Gendy 0:4a55d0a21ea9 2645 * Note: this register stores the *disabled* value, but for consistency with the
Gendy 0:4a55d0a21ea9 2646 * rest of the code, the function is named and used with standard true/false
Gendy 0:4a55d0a21ea9 2647 * values to indicate whether the sensor is enabled or disabled, respectively.
Gendy 0:4a55d0a21ea9 2648 *
Gendy 0:4a55d0a21ea9 2649 * @param enabled New temperature sensor enabled status
Gendy 0:4a55d0a21ea9 2650 * @see getTempSensorEnabled()
Gendy 0:4a55d0a21ea9 2651 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2652 * @see MPU6050_PWR1_TEMP_DIS_BIT
Gendy 0:4a55d0a21ea9 2653 */
Gendy 0:4a55d0a21ea9 2654 void MPU6050::setTempSensorEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2655 {
Gendy 0:4a55d0a21ea9 2656 // 1 is actually disabled here
Gendy 0:4a55d0a21ea9 2657 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
Gendy 0:4a55d0a21ea9 2658 }
Gendy 0:4a55d0a21ea9 2659 /** Get clock source setting.
Gendy 0:4a55d0a21ea9 2660 * @return Current clock source setting
Gendy 0:4a55d0a21ea9 2661 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2662 * @see MPU6050_PWR1_CLKSEL_BIT
Gendy 0:4a55d0a21ea9 2663 * @see MPU6050_PWR1_CLKSEL_LENGTH
Gendy 0:4a55d0a21ea9 2664 */
Gendy 0:4a55d0a21ea9 2665 uint8_t MPU6050::getClockSource()
Gendy 0:4a55d0a21ea9 2666 {
Gendy 0:4a55d0a21ea9 2667 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2668 return buffer[0];
Gendy 0:4a55d0a21ea9 2669 }
Gendy 0:4a55d0a21ea9 2670 /** Set clock source setting.
Gendy 0:4a55d0a21ea9 2671 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
Gendy 0:4a55d0a21ea9 2672 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
Gendy 0:4a55d0a21ea9 2673 * or an external source is chosen as the clock source, the MPU-60X0 can operate
Gendy 0:4a55d0a21ea9 2674 * in low power modes with the gyroscopes disabled.
Gendy 0:4a55d0a21ea9 2675 *
Gendy 0:4a55d0a21ea9 2676 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
Gendy 0:4a55d0a21ea9 2677 * However, it is highly recommended that the device be configured to use one of
Gendy 0:4a55d0a21ea9 2678 * the gyroscopes (or an external clock source) as the clock reference for
Gendy 0:4a55d0a21ea9 2679 * improved stability. The clock source can be selected according to the following table:
Gendy 0:4a55d0a21ea9 2680 *
Gendy 0:4a55d0a21ea9 2681 * <pre>
Gendy 0:4a55d0a21ea9 2682 * CLK_SEL | Clock Source
Gendy 0:4a55d0a21ea9 2683 * --------+--------------------------------------
Gendy 0:4a55d0a21ea9 2684 * 0 | Internal oscillator
Gendy 0:4a55d0a21ea9 2685 * 1 | PLL with X Gyro reference
Gendy 0:4a55d0a21ea9 2686 * 2 | PLL with Y Gyro reference
Gendy 0:4a55d0a21ea9 2687 * 3 | PLL with Z Gyro reference
Gendy 0:4a55d0a21ea9 2688 * 4 | PLL with external 32.768kHz reference
Gendy 0:4a55d0a21ea9 2689 * 5 | PLL with external 19.2MHz reference
Gendy 0:4a55d0a21ea9 2690 * 6 | Reserved
Gendy 0:4a55d0a21ea9 2691 * 7 | Stops the clock and keeps the timing generator in reset
Gendy 0:4a55d0a21ea9 2692 * </pre>
Gendy 0:4a55d0a21ea9 2693 *
Gendy 0:4a55d0a21ea9 2694 * @param source New clock source setting
Gendy 0:4a55d0a21ea9 2695 * @see getClockSource()
Gendy 0:4a55d0a21ea9 2696 * @see MPU6050_RA_PWR_MGMT_1
Gendy 0:4a55d0a21ea9 2697 * @see MPU6050_PWR1_CLKSEL_BIT
Gendy 0:4a55d0a21ea9 2698 * @see MPU6050_PWR1_CLKSEL_LENGTH
Gendy 0:4a55d0a21ea9 2699 */
Gendy 0:4a55d0a21ea9 2700 void MPU6050::setClockSource(uint8_t source)
Gendy 0:4a55d0a21ea9 2701 {
Gendy 0:4a55d0a21ea9 2702 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
Gendy 0:4a55d0a21ea9 2703 }
Gendy 0:4a55d0a21ea9 2704
Gendy 0:4a55d0a21ea9 2705 // PWR_MGMT_2 register
Gendy 0:4a55d0a21ea9 2706
Gendy 0:4a55d0a21ea9 2707 /** Get wake frequency in Accel-Only Low Power Mode.
Gendy 0:4a55d0a21ea9 2708 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
Gendy 0:4a55d0a21ea9 2709 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
Gendy 0:4a55d0a21ea9 2710 * the device will power off all devices except for the primary I2C interface,
Gendy 0:4a55d0a21ea9 2711 * waking only the accelerometer at fixed intervals to take a single
Gendy 0:4a55d0a21ea9 2712 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
Gendy 0:4a55d0a21ea9 2713 * as shown below:
Gendy 0:4a55d0a21ea9 2714 *
Gendy 0:4a55d0a21ea9 2715 * <pre>
Gendy 0:4a55d0a21ea9 2716 * LP_WAKE_CTRL | Wake-up Frequency
Gendy 0:4a55d0a21ea9 2717 * -------------+------------------
Gendy 0:4a55d0a21ea9 2718 * 0 | 1.25 Hz
Gendy 0:4a55d0a21ea9 2719 * 1 | 2.5 Hz
Gendy 0:4a55d0a21ea9 2720 * 2 | 5 Hz
Gendy 0:4a55d0a21ea9 2721 * 3 | 10 Hz
Gendy 0:4a55d0a21ea9 2722 * <pre>
Gendy 0:4a55d0a21ea9 2723 *
Gendy 0:4a55d0a21ea9 2724 * For further information regarding the MPU-60X0's power modes, please refer to
Gendy 0:4a55d0a21ea9 2725 * Register 107.
Gendy 0:4a55d0a21ea9 2726 *
Gendy 0:4a55d0a21ea9 2727 * @return Current wake frequency
Gendy 0:4a55d0a21ea9 2728 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2729 */
Gendy 0:4a55d0a21ea9 2730 uint8_t MPU6050::getWakeFrequency()
Gendy 0:4a55d0a21ea9 2731 {
Gendy 0:4a55d0a21ea9 2732 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2733 return buffer[0];
Gendy 0:4a55d0a21ea9 2734 }
Gendy 0:4a55d0a21ea9 2735 /** Set wake frequency in Accel-Only Low Power Mode.
Gendy 0:4a55d0a21ea9 2736 * @param frequency New wake frequency
Gendy 0:4a55d0a21ea9 2737 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2738 */
Gendy 0:4a55d0a21ea9 2739 void MPU6050::setWakeFrequency(uint8_t frequency)
Gendy 0:4a55d0a21ea9 2740 {
Gendy 0:4a55d0a21ea9 2741 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
Gendy 0:4a55d0a21ea9 2742 }
Gendy 0:4a55d0a21ea9 2743
Gendy 0:4a55d0a21ea9 2744 /** Get X-axis accelerometer standby enabled status.
Gendy 0:4a55d0a21ea9 2745 * If enabled, the X-axis will not gather or report data (or use power).
Gendy 0:4a55d0a21ea9 2746 * @return Current X-axis standby enabled status
Gendy 0:4a55d0a21ea9 2747 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2748 * @see MPU6050_PWR2_STBY_XA_BIT
Gendy 0:4a55d0a21ea9 2749 */
Gendy 0:4a55d0a21ea9 2750 bool MPU6050::getStandbyXAccelEnabled()
Gendy 0:4a55d0a21ea9 2751 {
Gendy 0:4a55d0a21ea9 2752 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
Gendy 0:4a55d0a21ea9 2753 return buffer[0];
Gendy 0:4a55d0a21ea9 2754 }
Gendy 0:4a55d0a21ea9 2755 /** Set X-axis accelerometer standby enabled status.
Gendy 0:4a55d0a21ea9 2756 * @param New X-axis standby enabled status
Gendy 0:4a55d0a21ea9 2757 * @see getStandbyXAccelEnabled()
Gendy 0:4a55d0a21ea9 2758 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2759 * @see MPU6050_PWR2_STBY_XA_BIT
Gendy 0:4a55d0a21ea9 2760 */
Gendy 0:4a55d0a21ea9 2761 void MPU6050::setStandbyXAccelEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2762 {
Gendy 0:4a55d0a21ea9 2763 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
Gendy 0:4a55d0a21ea9 2764 }
Gendy 0:4a55d0a21ea9 2765 /** Get Y-axis accelerometer standby enabled status.
Gendy 0:4a55d0a21ea9 2766 * If enabled, the Y-axis will not gather or report data (or use power).
Gendy 0:4a55d0a21ea9 2767 * @return Current Y-axis standby enabled status
Gendy 0:4a55d0a21ea9 2768 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2769 * @see MPU6050_PWR2_STBY_YA_BIT
Gendy 0:4a55d0a21ea9 2770 */
Gendy 0:4a55d0a21ea9 2771 bool MPU6050::getStandbyYAccelEnabled()
Gendy 0:4a55d0a21ea9 2772 {
Gendy 0:4a55d0a21ea9 2773 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
Gendy 0:4a55d0a21ea9 2774 return buffer[0];
Gendy 0:4a55d0a21ea9 2775 }
Gendy 0:4a55d0a21ea9 2776 /** Set Y-axis accelerometer standby enabled status.
Gendy 0:4a55d0a21ea9 2777 * @param New Y-axis standby enabled status
Gendy 0:4a55d0a21ea9 2778 * @see getStandbyYAccelEnabled()
Gendy 0:4a55d0a21ea9 2779 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2780 * @see MPU6050_PWR2_STBY_YA_BIT
Gendy 0:4a55d0a21ea9 2781 */
Gendy 0:4a55d0a21ea9 2782 void MPU6050::setStandbyYAccelEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2783 {
Gendy 0:4a55d0a21ea9 2784 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
Gendy 0:4a55d0a21ea9 2785 }
Gendy 0:4a55d0a21ea9 2786 /** Get Z-axis accelerometer standby enabled status.
Gendy 0:4a55d0a21ea9 2787 * If enabled, the Z-axis will not gather or report data (or use power).
Gendy 0:4a55d0a21ea9 2788 * @return Current Z-axis standby enabled status
Gendy 0:4a55d0a21ea9 2789 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2790 * @see MPU6050_PWR2_STBY_ZA_BIT
Gendy 0:4a55d0a21ea9 2791 */
Gendy 0:4a55d0a21ea9 2792 bool MPU6050::getStandbyZAccelEnabled()
Gendy 0:4a55d0a21ea9 2793 {
Gendy 0:4a55d0a21ea9 2794 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
Gendy 0:4a55d0a21ea9 2795 return buffer[0];
Gendy 0:4a55d0a21ea9 2796 }
Gendy 0:4a55d0a21ea9 2797 /** Set Z-axis accelerometer standby enabled status.
Gendy 0:4a55d0a21ea9 2798 * @param New Z-axis standby enabled status
Gendy 0:4a55d0a21ea9 2799 * @see getStandbyZAccelEnabled()
Gendy 0:4a55d0a21ea9 2800 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2801 * @see MPU6050_PWR2_STBY_ZA_BIT
Gendy 0:4a55d0a21ea9 2802 */
Gendy 0:4a55d0a21ea9 2803 void MPU6050::setStandbyZAccelEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2804 {
Gendy 0:4a55d0a21ea9 2805 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
Gendy 0:4a55d0a21ea9 2806 }
Gendy 0:4a55d0a21ea9 2807 /** Get X-axis gyroscope standby enabled status.
Gendy 0:4a55d0a21ea9 2808 * If enabled, the X-axis will not gather or report data (or use power).
Gendy 0:4a55d0a21ea9 2809 * @return Current X-axis standby enabled status
Gendy 0:4a55d0a21ea9 2810 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2811 * @see MPU6050_PWR2_STBY_XG_BIT
Gendy 0:4a55d0a21ea9 2812 */
Gendy 0:4a55d0a21ea9 2813 bool MPU6050::getStandbyXGyroEnabled()
Gendy 0:4a55d0a21ea9 2814 {
Gendy 0:4a55d0a21ea9 2815 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
Gendy 0:4a55d0a21ea9 2816 return buffer[0];
Gendy 0:4a55d0a21ea9 2817 }
Gendy 0:4a55d0a21ea9 2818 /** Set X-axis gyroscope standby enabled status.
Gendy 0:4a55d0a21ea9 2819 * @param New X-axis standby enabled status
Gendy 0:4a55d0a21ea9 2820 * @see getStandbyXGyroEnabled()
Gendy 0:4a55d0a21ea9 2821 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2822 * @see MPU6050_PWR2_STBY_XG_BIT
Gendy 0:4a55d0a21ea9 2823 */
Gendy 0:4a55d0a21ea9 2824 void MPU6050::setStandbyXGyroEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2825 {
Gendy 0:4a55d0a21ea9 2826 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
Gendy 0:4a55d0a21ea9 2827 }
Gendy 0:4a55d0a21ea9 2828 /** Get Y-axis gyroscope standby enabled status.
Gendy 0:4a55d0a21ea9 2829 * If enabled, the Y-axis will not gather or report data (or use power).
Gendy 0:4a55d0a21ea9 2830 * @return Current Y-axis standby enabled status
Gendy 0:4a55d0a21ea9 2831 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2832 * @see MPU6050_PWR2_STBY_YG_BIT
Gendy 0:4a55d0a21ea9 2833 */
Gendy 0:4a55d0a21ea9 2834 bool MPU6050::getStandbyYGyroEnabled()
Gendy 0:4a55d0a21ea9 2835 {
Gendy 0:4a55d0a21ea9 2836 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
Gendy 0:4a55d0a21ea9 2837 return buffer[0];
Gendy 0:4a55d0a21ea9 2838 }
Gendy 0:4a55d0a21ea9 2839 /** Set Y-axis gyroscope standby enabled status.
Gendy 0:4a55d0a21ea9 2840 * @param New Y-axis standby enabled status
Gendy 0:4a55d0a21ea9 2841 * @see getStandbyYGyroEnabled()
Gendy 0:4a55d0a21ea9 2842 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2843 * @see MPU6050_PWR2_STBY_YG_BIT
Gendy 0:4a55d0a21ea9 2844 */
Gendy 0:4a55d0a21ea9 2845 void MPU6050::setStandbyYGyroEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2846 {
Gendy 0:4a55d0a21ea9 2847 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
Gendy 0:4a55d0a21ea9 2848 }
Gendy 0:4a55d0a21ea9 2849 /** Get Z-axis gyroscope standby enabled status.
Gendy 0:4a55d0a21ea9 2850 * If enabled, the Z-axis will not gather or report data (or use power).
Gendy 0:4a55d0a21ea9 2851 * @return Current Z-axis standby enabled status
Gendy 0:4a55d0a21ea9 2852 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2853 * @see MPU6050_PWR2_STBY_ZG_BIT
Gendy 0:4a55d0a21ea9 2854 */
Gendy 0:4a55d0a21ea9 2855 bool MPU6050::getStandbyZGyroEnabled()
Gendy 0:4a55d0a21ea9 2856 {
Gendy 0:4a55d0a21ea9 2857 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
Gendy 0:4a55d0a21ea9 2858 return buffer[0];
Gendy 0:4a55d0a21ea9 2859 }
Gendy 0:4a55d0a21ea9 2860 /** Set Z-axis gyroscope standby enabled status.
Gendy 0:4a55d0a21ea9 2861 * @param New Z-axis standby enabled status
Gendy 0:4a55d0a21ea9 2862 * @see getStandbyZGyroEnabled()
Gendy 0:4a55d0a21ea9 2863 * @see MPU6050_RA_PWR_MGMT_2
Gendy 0:4a55d0a21ea9 2864 * @see MPU6050_PWR2_STBY_ZG_BIT
Gendy 0:4a55d0a21ea9 2865 */
Gendy 0:4a55d0a21ea9 2866 void MPU6050::setStandbyZGyroEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 2867 {
Gendy 0:4a55d0a21ea9 2868 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
Gendy 0:4a55d0a21ea9 2869 }
Gendy 0:4a55d0a21ea9 2870
Gendy 0:4a55d0a21ea9 2871 // FIFO_COUNT* registers
Gendy 0:4a55d0a21ea9 2872
Gendy 0:4a55d0a21ea9 2873 /** Get current FIFO buffer size.
Gendy 0:4a55d0a21ea9 2874 * This value indicates the number of bytes stored in the FIFO buffer. This
Gendy 0:4a55d0a21ea9 2875 * number is in turn the number of bytes that can be read from the FIFO buffer
Gendy 0:4a55d0a21ea9 2876 * and it is directly proportional to the number of samples available given the
Gendy 0:4a55d0a21ea9 2877 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
Gendy 0:4a55d0a21ea9 2878 * @return Current FIFO buffer size
Gendy 0:4a55d0a21ea9 2879 */
Gendy 0:4a55d0a21ea9 2880 uint16_t MPU6050::getFIFOCount()
Gendy 0:4a55d0a21ea9 2881 {
Gendy 0:4a55d0a21ea9 2882 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
Gendy 0:4a55d0a21ea9 2883 return (((uint16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 2884 }
Gendy 0:4a55d0a21ea9 2885
Gendy 0:4a55d0a21ea9 2886 // FIFO_R_W register
Gendy 0:4a55d0a21ea9 2887
Gendy 0:4a55d0a21ea9 2888 /** Get byte from FIFO buffer.
Gendy 0:4a55d0a21ea9 2889 * This register is used to read and write data from the FIFO buffer. Data is
Gendy 0:4a55d0a21ea9 2890 * written to the FIFO in order of register number (from lowest to highest). If
Gendy 0:4a55d0a21ea9 2891 * all the FIFO enable flags (see below) are enabled and all External Sensor
Gendy 0:4a55d0a21ea9 2892 * Data registers (Registers 73 to 96) are associated with a Slave device, the
Gendy 0:4a55d0a21ea9 2893 * contents of registers 59 through 96 will be written in order at the Sample
Gendy 0:4a55d0a21ea9 2894 * Rate.
Gendy 0:4a55d0a21ea9 2895 *
Gendy 0:4a55d0a21ea9 2896 * The contents of the sensor data registers (Registers 59 to 96) are written
Gendy 0:4a55d0a21ea9 2897 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
Gendy 0:4a55d0a21ea9 2898 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
Gendy 0:4a55d0a21ea9 2899 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
Gendy 0:4a55d0a21ea9 2900 *
Gendy 0:4a55d0a21ea9 2901 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
Gendy 0:4a55d0a21ea9 2902 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
Gendy 0:4a55d0a21ea9 2903 * When the FIFO buffer has overflowed, the oldest data will be lost and new
Gendy 0:4a55d0a21ea9 2904 * data will be written to the FIFO.
Gendy 0:4a55d0a21ea9 2905 *
Gendy 0:4a55d0a21ea9 2906 * If the FIFO buffer is empty, reading this register will return the last byte
Gendy 0:4a55d0a21ea9 2907 * that was previously read from the FIFO until new data is available. The user
Gendy 0:4a55d0a21ea9 2908 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
Gendy 0:4a55d0a21ea9 2909 * empty.
Gendy 0:4a55d0a21ea9 2910 *
Gendy 0:4a55d0a21ea9 2911 * @return Byte from FIFO buffer
Gendy 0:4a55d0a21ea9 2912 */
Gendy 0:4a55d0a21ea9 2913 uint8_t MPU6050::getFIFOByte()
Gendy 0:4a55d0a21ea9 2914 {
Gendy 0:4a55d0a21ea9 2915 i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
Gendy 0:4a55d0a21ea9 2916 return buffer[0];
Gendy 0:4a55d0a21ea9 2917 }
Gendy 0:4a55d0a21ea9 2918 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
Gendy 0:4a55d0a21ea9 2919 {
Gendy 0:4a55d0a21ea9 2920 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
Gendy 0:4a55d0a21ea9 2921 }
Gendy 0:4a55d0a21ea9 2922 /** Write byte to FIFO buffer.
Gendy 0:4a55d0a21ea9 2923 * @see getFIFOByte()
Gendy 0:4a55d0a21ea9 2924 * @see MPU6050_RA_FIFO_R_W
Gendy 0:4a55d0a21ea9 2925 */
Gendy 0:4a55d0a21ea9 2926 void MPU6050::setFIFOByte(uint8_t data)
Gendy 0:4a55d0a21ea9 2927 {
Gendy 0:4a55d0a21ea9 2928 i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
Gendy 0:4a55d0a21ea9 2929 }
Gendy 0:4a55d0a21ea9 2930
Gendy 0:4a55d0a21ea9 2931 // WHO_AM_I register
Gendy 0:4a55d0a21ea9 2932
Gendy 0:4a55d0a21ea9 2933 /** Get Device ID.
Gendy 0:4a55d0a21ea9 2934 * This register is used to verify the identity of the device (0b110100, 0x34).
Gendy 0:4a55d0a21ea9 2935 * @return Device ID (6 bits only! should be 0x34)
Gendy 0:4a55d0a21ea9 2936 * @see MPU6050_RA_WHO_AM_I
Gendy 0:4a55d0a21ea9 2937 * @see MPU6050_WHO_AM_I_BIT
Gendy 0:4a55d0a21ea9 2938 * @see MPU6050_WHO_AM_I_LENGTH
Gendy 0:4a55d0a21ea9 2939 */
Gendy 0:4a55d0a21ea9 2940 uint8_t MPU6050::getDeviceID()
Gendy 0:4a55d0a21ea9 2941 {
Gendy 0:4a55d0a21ea9 2942 i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2943 return buffer[0];
Gendy 0:4a55d0a21ea9 2944 }
Gendy 0:4a55d0a21ea9 2945 /** Set Device ID.
Gendy 0:4a55d0a21ea9 2946 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
Gendy 0:4a55d0a21ea9 2947 * necessary though).
Gendy 0:4a55d0a21ea9 2948 * @param id New device ID to set.
Gendy 0:4a55d0a21ea9 2949 * @see getDeviceID()
Gendy 0:4a55d0a21ea9 2950 * @see MPU6050_RA_WHO_AM_I
Gendy 0:4a55d0a21ea9 2951 * @see MPU6050_WHO_AM_I_BIT
Gendy 0:4a55d0a21ea9 2952 * @see MPU6050_WHO_AM_I_LENGTH
Gendy 0:4a55d0a21ea9 2953 */
Gendy 0:4a55d0a21ea9 2954 void MPU6050::setDeviceID(uint8_t id)
Gendy 0:4a55d0a21ea9 2955 {
Gendy 0:4a55d0a21ea9 2956 i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
Gendy 0:4a55d0a21ea9 2957 }
Gendy 0:4a55d0a21ea9 2958
Gendy 0:4a55d0a21ea9 2959 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
Gendy 0:4a55d0a21ea9 2960
Gendy 0:4a55d0a21ea9 2961 // XG_OFFS_TC register
Gendy 0:4a55d0a21ea9 2962
Gendy 0:4a55d0a21ea9 2963 uint8_t MPU6050::getOTPBankValid()
Gendy 0:4a55d0a21ea9 2964 {
Gendy 0:4a55d0a21ea9 2965 i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
Gendy 0:4a55d0a21ea9 2966 return buffer[0];
Gendy 0:4a55d0a21ea9 2967 }
Gendy 0:4a55d0a21ea9 2968 void MPU6050::setOTPBankValid(bool enabled)
Gendy 0:4a55d0a21ea9 2969 {
Gendy 0:4a55d0a21ea9 2970 i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
Gendy 0:4a55d0a21ea9 2971 }
Gendy 0:4a55d0a21ea9 2972 int8_t MPU6050::getXGyroOffset()
Gendy 0:4a55d0a21ea9 2973 {
Gendy 0:4a55d0a21ea9 2974 i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2975 return buffer[0];
Gendy 0:4a55d0a21ea9 2976 }
Gendy 0:4a55d0a21ea9 2977 void MPU6050::setXGyroOffset(int8_t offset)
Gendy 0:4a55d0a21ea9 2978 {
Gendy 0:4a55d0a21ea9 2979 i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Gendy 0:4a55d0a21ea9 2980 }
Gendy 0:4a55d0a21ea9 2981
Gendy 0:4a55d0a21ea9 2982 // YG_OFFS_TC register
Gendy 0:4a55d0a21ea9 2983
Gendy 0:4a55d0a21ea9 2984 int8_t MPU6050::getYGyroOffset()
Gendy 0:4a55d0a21ea9 2985 {
Gendy 0:4a55d0a21ea9 2986 i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2987 return buffer[0];
Gendy 0:4a55d0a21ea9 2988 }
Gendy 0:4a55d0a21ea9 2989 void MPU6050::setYGyroOffset(int8_t offset)
Gendy 0:4a55d0a21ea9 2990 {
Gendy 0:4a55d0a21ea9 2991 i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Gendy 0:4a55d0a21ea9 2992 }
Gendy 0:4a55d0a21ea9 2993
Gendy 0:4a55d0a21ea9 2994 // ZG_OFFS_TC register
Gendy 0:4a55d0a21ea9 2995
Gendy 0:4a55d0a21ea9 2996 int8_t MPU6050::getZGyroOffset()
Gendy 0:4a55d0a21ea9 2997 {
Gendy 0:4a55d0a21ea9 2998 i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
Gendy 0:4a55d0a21ea9 2999 return buffer[0];
Gendy 0:4a55d0a21ea9 3000 }
Gendy 0:4a55d0a21ea9 3001 void MPU6050::setZGyroOffset(int8_t offset)
Gendy 0:4a55d0a21ea9 3002 {
Gendy 0:4a55d0a21ea9 3003 i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
Gendy 0:4a55d0a21ea9 3004 }
Gendy 0:4a55d0a21ea9 3005
Gendy 0:4a55d0a21ea9 3006 // X_FINE_GAIN register
Gendy 0:4a55d0a21ea9 3007
Gendy 0:4a55d0a21ea9 3008 int8_t MPU6050::getXFineGain()
Gendy 0:4a55d0a21ea9 3009 {
Gendy 0:4a55d0a21ea9 3010 i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
Gendy 0:4a55d0a21ea9 3011 return buffer[0];
Gendy 0:4a55d0a21ea9 3012 }
Gendy 0:4a55d0a21ea9 3013 void MPU6050::setXFineGain(int8_t gain)
Gendy 0:4a55d0a21ea9 3014 {
Gendy 0:4a55d0a21ea9 3015 i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
Gendy 0:4a55d0a21ea9 3016 }
Gendy 0:4a55d0a21ea9 3017
Gendy 0:4a55d0a21ea9 3018 // Y_FINE_GAIN register
Gendy 0:4a55d0a21ea9 3019
Gendy 0:4a55d0a21ea9 3020 int8_t MPU6050::getYFineGain()
Gendy 0:4a55d0a21ea9 3021 {
Gendy 0:4a55d0a21ea9 3022 i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
Gendy 0:4a55d0a21ea9 3023 return buffer[0];
Gendy 0:4a55d0a21ea9 3024 }
Gendy 0:4a55d0a21ea9 3025 void MPU6050::setYFineGain(int8_t gain)
Gendy 0:4a55d0a21ea9 3026 {
Gendy 0:4a55d0a21ea9 3027 i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
Gendy 0:4a55d0a21ea9 3028 }
Gendy 0:4a55d0a21ea9 3029
Gendy 0:4a55d0a21ea9 3030 // Z_FINE_GAIN register
Gendy 0:4a55d0a21ea9 3031
Gendy 0:4a55d0a21ea9 3032 int8_t MPU6050::getZFineGain()
Gendy 0:4a55d0a21ea9 3033 {
Gendy 0:4a55d0a21ea9 3034 i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
Gendy 0:4a55d0a21ea9 3035 return buffer[0];
Gendy 0:4a55d0a21ea9 3036 }
Gendy 0:4a55d0a21ea9 3037 void MPU6050::setZFineGain(int8_t gain)
Gendy 0:4a55d0a21ea9 3038 {
Gendy 0:4a55d0a21ea9 3039 i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
Gendy 0:4a55d0a21ea9 3040 }
Gendy 0:4a55d0a21ea9 3041
Gendy 0:4a55d0a21ea9 3042 // XA_OFFS_* registers
Gendy 0:4a55d0a21ea9 3043
Gendy 0:4a55d0a21ea9 3044 int16_t MPU6050::getXAccelOffset()
Gendy 0:4a55d0a21ea9 3045 {
Gendy 0:4a55d0a21ea9 3046 i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
Gendy 0:4a55d0a21ea9 3047 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 3048 }
Gendy 0:4a55d0a21ea9 3049 void MPU6050::setXAccelOffset(int16_t offset)
Gendy 0:4a55d0a21ea9 3050 {
Gendy 0:4a55d0a21ea9 3051 i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
Gendy 0:4a55d0a21ea9 3052 }
Gendy 0:4a55d0a21ea9 3053
Gendy 0:4a55d0a21ea9 3054 // YA_OFFS_* register
Gendy 0:4a55d0a21ea9 3055
Gendy 0:4a55d0a21ea9 3056 int16_t MPU6050::getYAccelOffset()
Gendy 0:4a55d0a21ea9 3057 {
Gendy 0:4a55d0a21ea9 3058 i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
Gendy 0:4a55d0a21ea9 3059 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 3060 }
Gendy 0:4a55d0a21ea9 3061 void MPU6050::setYAccelOffset(int16_t offset)
Gendy 0:4a55d0a21ea9 3062 {
Gendy 0:4a55d0a21ea9 3063 i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
Gendy 0:4a55d0a21ea9 3064 }
Gendy 0:4a55d0a21ea9 3065
Gendy 0:4a55d0a21ea9 3066 // ZA_OFFS_* register
Gendy 0:4a55d0a21ea9 3067
Gendy 0:4a55d0a21ea9 3068 int16_t MPU6050::getZAccelOffset()
Gendy 0:4a55d0a21ea9 3069 {
Gendy 0:4a55d0a21ea9 3070 i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
Gendy 0:4a55d0a21ea9 3071 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 3072 }
Gendy 0:4a55d0a21ea9 3073 void MPU6050::setZAccelOffset(int16_t offset)
Gendy 0:4a55d0a21ea9 3074 {
Gendy 0:4a55d0a21ea9 3075 i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
Gendy 0:4a55d0a21ea9 3076 }
Gendy 0:4a55d0a21ea9 3077
Gendy 0:4a55d0a21ea9 3078 // XG_OFFS_USR* registers
Gendy 0:4a55d0a21ea9 3079
Gendy 0:4a55d0a21ea9 3080 int16_t MPU6050::getXGyroOffsetUser()
Gendy 0:4a55d0a21ea9 3081 {
Gendy 0:4a55d0a21ea9 3082 i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
Gendy 0:4a55d0a21ea9 3083 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 3084 }
Gendy 0:4a55d0a21ea9 3085 void MPU6050::setXGyroOffsetUser(int16_t offset)
Gendy 0:4a55d0a21ea9 3086 {
Gendy 0:4a55d0a21ea9 3087 i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
Gendy 0:4a55d0a21ea9 3088 }
Gendy 0:4a55d0a21ea9 3089
Gendy 0:4a55d0a21ea9 3090 // YG_OFFS_USR* register
Gendy 0:4a55d0a21ea9 3091
Gendy 0:4a55d0a21ea9 3092 int16_t MPU6050::getYGyroOffsetUser()
Gendy 0:4a55d0a21ea9 3093 {
Gendy 0:4a55d0a21ea9 3094 i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
Gendy 0:4a55d0a21ea9 3095 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 3096 }
Gendy 0:4a55d0a21ea9 3097 void MPU6050::setYGyroOffsetUser(int16_t offset)
Gendy 0:4a55d0a21ea9 3098 {
Gendy 0:4a55d0a21ea9 3099 i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
Gendy 0:4a55d0a21ea9 3100 }
Gendy 0:4a55d0a21ea9 3101
Gendy 0:4a55d0a21ea9 3102 // ZG_OFFS_USR* register
Gendy 0:4a55d0a21ea9 3103
Gendy 0:4a55d0a21ea9 3104 int16_t MPU6050::getZGyroOffsetUser()
Gendy 0:4a55d0a21ea9 3105 {
Gendy 0:4a55d0a21ea9 3106 i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
Gendy 0:4a55d0a21ea9 3107 return (((int16_t)buffer[0]) << 8) | buffer[1];
Gendy 0:4a55d0a21ea9 3108 }
Gendy 0:4a55d0a21ea9 3109 void MPU6050::setZGyroOffsetUser(int16_t offset)
Gendy 0:4a55d0a21ea9 3110 {
Gendy 0:4a55d0a21ea9 3111 i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
Gendy 0:4a55d0a21ea9 3112 }
Gendy 0:4a55d0a21ea9 3113
Gendy 0:4a55d0a21ea9 3114 // INT_ENABLE register (DMP functions)
Gendy 0:4a55d0a21ea9 3115
Gendy 0:4a55d0a21ea9 3116 bool MPU6050::getIntPLLReadyEnabled()
Gendy 0:4a55d0a21ea9 3117 {
Gendy 0:4a55d0a21ea9 3118 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
Gendy 0:4a55d0a21ea9 3119 return buffer[0];
Gendy 0:4a55d0a21ea9 3120 }
Gendy 0:4a55d0a21ea9 3121 void MPU6050::setIntPLLReadyEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 3122 {
Gendy 0:4a55d0a21ea9 3123 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
Gendy 0:4a55d0a21ea9 3124 }
Gendy 0:4a55d0a21ea9 3125 bool MPU6050::getIntDMPEnabled()
Gendy 0:4a55d0a21ea9 3126 {
Gendy 0:4a55d0a21ea9 3127 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
Gendy 0:4a55d0a21ea9 3128 return buffer[0];
Gendy 0:4a55d0a21ea9 3129 }
Gendy 0:4a55d0a21ea9 3130 void MPU6050::setIntDMPEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 3131 {
Gendy 0:4a55d0a21ea9 3132 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
Gendy 0:4a55d0a21ea9 3133 }
Gendy 0:4a55d0a21ea9 3134
Gendy 0:4a55d0a21ea9 3135 // DMP_INT_STATUS
Gendy 0:4a55d0a21ea9 3136
Gendy 0:4a55d0a21ea9 3137 bool MPU6050::getDMPInt5Status()
Gendy 0:4a55d0a21ea9 3138 {
Gendy 0:4a55d0a21ea9 3139 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
Gendy 0:4a55d0a21ea9 3140 return buffer[0];
Gendy 0:4a55d0a21ea9 3141 }
Gendy 0:4a55d0a21ea9 3142 bool MPU6050::getDMPInt4Status()
Gendy 0:4a55d0a21ea9 3143 {
Gendy 0:4a55d0a21ea9 3144 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
Gendy 0:4a55d0a21ea9 3145 return buffer[0];
Gendy 0:4a55d0a21ea9 3146 }
Gendy 0:4a55d0a21ea9 3147 bool MPU6050::getDMPInt3Status()
Gendy 0:4a55d0a21ea9 3148 {
Gendy 0:4a55d0a21ea9 3149 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
Gendy 0:4a55d0a21ea9 3150 return buffer[0];
Gendy 0:4a55d0a21ea9 3151 }
Gendy 0:4a55d0a21ea9 3152 bool MPU6050::getDMPInt2Status()
Gendy 0:4a55d0a21ea9 3153 {
Gendy 0:4a55d0a21ea9 3154 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
Gendy 0:4a55d0a21ea9 3155 return buffer[0];
Gendy 0:4a55d0a21ea9 3156 }
Gendy 0:4a55d0a21ea9 3157 bool MPU6050::getDMPInt1Status()
Gendy 0:4a55d0a21ea9 3158 {
Gendy 0:4a55d0a21ea9 3159 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
Gendy 0:4a55d0a21ea9 3160 return buffer[0];
Gendy 0:4a55d0a21ea9 3161 }
Gendy 0:4a55d0a21ea9 3162 bool MPU6050::getDMPInt0Status()
Gendy 0:4a55d0a21ea9 3163 {
Gendy 0:4a55d0a21ea9 3164 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
Gendy 0:4a55d0a21ea9 3165 return buffer[0];
Gendy 0:4a55d0a21ea9 3166 }
Gendy 0:4a55d0a21ea9 3167
Gendy 0:4a55d0a21ea9 3168 // INT_STATUS register (DMP functions)
Gendy 0:4a55d0a21ea9 3169
Gendy 0:4a55d0a21ea9 3170 bool MPU6050::getIntPLLReadyStatus()
Gendy 0:4a55d0a21ea9 3171 {
Gendy 0:4a55d0a21ea9 3172 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
Gendy 0:4a55d0a21ea9 3173 return buffer[0];
Gendy 0:4a55d0a21ea9 3174 }
Gendy 0:4a55d0a21ea9 3175 bool MPU6050::getIntDMPStatus()
Gendy 0:4a55d0a21ea9 3176 {
Gendy 0:4a55d0a21ea9 3177 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
Gendy 0:4a55d0a21ea9 3178 return buffer[0];
Gendy 0:4a55d0a21ea9 3179 }
Gendy 0:4a55d0a21ea9 3180
Gendy 0:4a55d0a21ea9 3181 // USER_CTRL register (DMP functions)
Gendy 0:4a55d0a21ea9 3182
Gendy 0:4a55d0a21ea9 3183 bool MPU6050::getDMPEnabled()
Gendy 0:4a55d0a21ea9 3184 {
Gendy 0:4a55d0a21ea9 3185 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
Gendy 0:4a55d0a21ea9 3186 return buffer[0];
Gendy 0:4a55d0a21ea9 3187 }
Gendy 0:4a55d0a21ea9 3188 void MPU6050::setDMPEnabled(bool enabled)
Gendy 0:4a55d0a21ea9 3189 {
Gendy 0:4a55d0a21ea9 3190 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
Gendy 0:4a55d0a21ea9 3191 }
Gendy 0:4a55d0a21ea9 3192 void MPU6050::resetDMP()
Gendy 0:4a55d0a21ea9 3193 {
Gendy 0:4a55d0a21ea9 3194 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
Gendy 0:4a55d0a21ea9 3195 }
Gendy 0:4a55d0a21ea9 3196
Gendy 0:4a55d0a21ea9 3197 // BANK_SEL register
Gendy 0:4a55d0a21ea9 3198
Gendy 0:4a55d0a21ea9 3199 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
Gendy 0:4a55d0a21ea9 3200 {
Gendy 0:4a55d0a21ea9 3201 bank &= 0x1F;
Gendy 0:4a55d0a21ea9 3202 if (userBank) bank |= 0x20;
Gendy 0:4a55d0a21ea9 3203 if (prefetchEnabled) bank |= 0x40;
Gendy 0:4a55d0a21ea9 3204 i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
Gendy 0:4a55d0a21ea9 3205 }
Gendy 0:4a55d0a21ea9 3206
Gendy 0:4a55d0a21ea9 3207 // MEM_START_ADDR register
Gendy 0:4a55d0a21ea9 3208
Gendy 0:4a55d0a21ea9 3209 void MPU6050::setMemoryStartAddress(uint8_t address)
Gendy 0:4a55d0a21ea9 3210 {
Gendy 0:4a55d0a21ea9 3211 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
Gendy 0:4a55d0a21ea9 3212 }
Gendy 0:4a55d0a21ea9 3213
Gendy 0:4a55d0a21ea9 3214 // MEM_R_W register
Gendy 0:4a55d0a21ea9 3215
Gendy 0:4a55d0a21ea9 3216 uint8_t MPU6050::readMemoryByte()
Gendy 0:4a55d0a21ea9 3217 {
Gendy 0:4a55d0a21ea9 3218 i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
Gendy 0:4a55d0a21ea9 3219 return buffer[0];
Gendy 0:4a55d0a21ea9 3220 }
Gendy 0:4a55d0a21ea9 3221 void MPU6050::writeMemoryByte(uint8_t data)
Gendy 0:4a55d0a21ea9 3222 {
Gendy 0:4a55d0a21ea9 3223 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
Gendy 0:4a55d0a21ea9 3224 }
Gendy 0:4a55d0a21ea9 3225 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
Gendy 0:4a55d0a21ea9 3226 {
Gendy 0:4a55d0a21ea9 3227 setMemoryBank(bank);
Gendy 0:4a55d0a21ea9 3228 setMemoryStartAddress(address);
Gendy 0:4a55d0a21ea9 3229 uint8_t chunkSize;
Gendy 0:4a55d0a21ea9 3230 for (uint16_t i = 0; i < dataSize;) {
Gendy 0:4a55d0a21ea9 3231 // determine correct chunk size according to bank position and data size
Gendy 0:4a55d0a21ea9 3232 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
Gendy 0:4a55d0a21ea9 3233
Gendy 0:4a55d0a21ea9 3234 // make sure we don't go past the data size
Gendy 0:4a55d0a21ea9 3235 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
Gendy 0:4a55d0a21ea9 3236
Gendy 0:4a55d0a21ea9 3237 // make sure this chunk doesn't go past the bank boundary (256 bytes)
Gendy 0:4a55d0a21ea9 3238 if (chunkSize > 256 - address) chunkSize = 256 - address;
Gendy 0:4a55d0a21ea9 3239
Gendy 0:4a55d0a21ea9 3240 // read the chunk of data as specified
Gendy 0:4a55d0a21ea9 3241 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
Gendy 0:4a55d0a21ea9 3242
Gendy 0:4a55d0a21ea9 3243 // increase byte index by [chunkSize]
Gendy 0:4a55d0a21ea9 3244 i += chunkSize;
Gendy 0:4a55d0a21ea9 3245
Gendy 0:4a55d0a21ea9 3246 // uint8_t automatically wraps to 0 at 256
Gendy 0:4a55d0a21ea9 3247 address += chunkSize;
Gendy 0:4a55d0a21ea9 3248
Gendy 0:4a55d0a21ea9 3249 // if we aren't done, update bank (if necessary) and address
Gendy 0:4a55d0a21ea9 3250 if (i < dataSize) {
Gendy 0:4a55d0a21ea9 3251 if (address == 0) bank++;
Gendy 0:4a55d0a21ea9 3252 setMemoryBank(bank);
Gendy 0:4a55d0a21ea9 3253 setMemoryStartAddress(address);
Gendy 0:4a55d0a21ea9 3254 }
Gendy 0:4a55d0a21ea9 3255 }
Gendy 0:4a55d0a21ea9 3256 }
Gendy 0:4a55d0a21ea9 3257 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
Gendy 0:4a55d0a21ea9 3258 {
Gendy 0:4a55d0a21ea9 3259 setMemoryBank(bank);
Gendy 0:4a55d0a21ea9 3260 setMemoryStartAddress(address);
Gendy 0:4a55d0a21ea9 3261 uint8_t chunkSize;
Gendy 0:4a55d0a21ea9 3262 uint8_t *verifyBuffer = NULL;
Gendy 0:4a55d0a21ea9 3263 uint8_t *progBuffer = NULL;
Gendy 0:4a55d0a21ea9 3264 uint16_t i;
Gendy 0:4a55d0a21ea9 3265 uint8_t j;
Gendy 0:4a55d0a21ea9 3266 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
Gendy 0:4a55d0a21ea9 3267 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
Gendy 0:4a55d0a21ea9 3268 for (i = 0; i < dataSize;) {
Gendy 0:4a55d0a21ea9 3269 // determine correct chunk size according to bank position and data size
Gendy 0:4a55d0a21ea9 3270 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
Gendy 0:4a55d0a21ea9 3271
Gendy 0:4a55d0a21ea9 3272 // make sure we don't go past the data size
Gendy 0:4a55d0a21ea9 3273 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
Gendy 0:4a55d0a21ea9 3274
Gendy 0:4a55d0a21ea9 3275 // make sure this chunk doesn't go past the bank boundary (256 bytes)
Gendy 0:4a55d0a21ea9 3276 if (chunkSize > 256 - address) chunkSize = 256 - address;
Gendy 0:4a55d0a21ea9 3277
Gendy 0:4a55d0a21ea9 3278 if (useProgMem) {
Gendy 0:4a55d0a21ea9 3279 // write the chunk of data as specified
Gendy 0:4a55d0a21ea9 3280 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
Gendy 0:4a55d0a21ea9 3281 } else {
Gendy 0:4a55d0a21ea9 3282 // write the chunk of data as specified
Gendy 0:4a55d0a21ea9 3283 progBuffer = (uint8_t *)data + i;
Gendy 0:4a55d0a21ea9 3284 }
Gendy 0:4a55d0a21ea9 3285
Gendy 0:4a55d0a21ea9 3286 i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
Gendy 0:4a55d0a21ea9 3287
Gendy 0:4a55d0a21ea9 3288 // verify data if needed
Gendy 0:4a55d0a21ea9 3289 if (verify && verifyBuffer) {
Gendy 0:4a55d0a21ea9 3290 setMemoryBank(bank);
Gendy 0:4a55d0a21ea9 3291 setMemoryStartAddress(address);
Gendy 0:4a55d0a21ea9 3292 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
Gendy 0:4a55d0a21ea9 3293 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
Gendy 0:4a55d0a21ea9 3294 /*Serial.print("Block write verification error, bank ");
Gendy 0:4a55d0a21ea9 3295 Serial.print(bank, DEC);
Gendy 0:4a55d0a21ea9 3296 Serial.print(", address ");
Gendy 0:4a55d0a21ea9 3297 Serial.print(address, DEC);
Gendy 0:4a55d0a21ea9 3298 Serial.print("!\nExpected:");
Gendy 0:4a55d0a21ea9 3299 for (j = 0; j < chunkSize; j++) {
Gendy 0:4a55d0a21ea9 3300 Serial.print(" 0x");
Gendy 0:4a55d0a21ea9 3301 if (progBuffer[j] < 16) Serial.print("0");
Gendy 0:4a55d0a21ea9 3302 Serial.print(progBuffer[j], HEX);
Gendy 0:4a55d0a21ea9 3303 }
Gendy 0:4a55d0a21ea9 3304 Serial.print("\nReceived:");
Gendy 0:4a55d0a21ea9 3305 for (uint8_t j = 0; j < chunkSize; j++) {
Gendy 0:4a55d0a21ea9 3306 Serial.print(" 0x");
Gendy 0:4a55d0a21ea9 3307 if (verifyBuffer[i + j] < 16) Serial.print("0");
Gendy 0:4a55d0a21ea9 3308 Serial.print(verifyBuffer[i + j], HEX);
Gendy 0:4a55d0a21ea9 3309 }
Gendy 0:4a55d0a21ea9 3310 Serial.print("\n");*/
Gendy 0:4a55d0a21ea9 3311 free(verifyBuffer);
Gendy 0:4a55d0a21ea9 3312 if (useProgMem) free(progBuffer);
Gendy 0:4a55d0a21ea9 3313 return false; // uh oh.
Gendy 0:4a55d0a21ea9 3314 }
Gendy 0:4a55d0a21ea9 3315 }
Gendy 0:4a55d0a21ea9 3316
Gendy 0:4a55d0a21ea9 3317 // increase byte index by [chunkSize]
Gendy 0:4a55d0a21ea9 3318 i += chunkSize;
Gendy 0:4a55d0a21ea9 3319
Gendy 0:4a55d0a21ea9 3320 // uint8_t automatically wraps to 0 at 256
Gendy 0:4a55d0a21ea9 3321 address += chunkSize;
Gendy 0:4a55d0a21ea9 3322
Gendy 0:4a55d0a21ea9 3323 // if we aren't done, update bank (if necessary) and address
Gendy 0:4a55d0a21ea9 3324 if (i < dataSize) {
Gendy 0:4a55d0a21ea9 3325 if (address == 0) bank++;
Gendy 0:4a55d0a21ea9 3326 setMemoryBank(bank);
Gendy 0:4a55d0a21ea9 3327 setMemoryStartAddress(address);
Gendy 0:4a55d0a21ea9 3328 }
Gendy 0:4a55d0a21ea9 3329 }
Gendy 0:4a55d0a21ea9 3330 if (verify) free(verifyBuffer);
Gendy 0:4a55d0a21ea9 3331 if (useProgMem) free(progBuffer);
Gendy 0:4a55d0a21ea9 3332 return true;
Gendy 0:4a55d0a21ea9 3333 }
Gendy 0:4a55d0a21ea9 3334 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
Gendy 0:4a55d0a21ea9 3335 {
Gendy 0:4a55d0a21ea9 3336 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
Gendy 0:4a55d0a21ea9 3337 }
Gendy 0:4a55d0a21ea9 3338 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
Gendy 0:4a55d0a21ea9 3339 {
Gendy 0:4a55d0a21ea9 3340 uint8_t success, special;
Gendy 0:4a55d0a21ea9 3341 uint8_t *progBuffer = NULL;
Gendy 0:4a55d0a21ea9 3342 uint16_t i, j;
Gendy 0:4a55d0a21ea9 3343 if (useProgMem) {
Gendy 0:4a55d0a21ea9 3344 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
Gendy 0:4a55d0a21ea9 3345 }
Gendy 0:4a55d0a21ea9 3346
Gendy 0:4a55d0a21ea9 3347 // config set data is a long string of blocks with the following structure:
Gendy 0:4a55d0a21ea9 3348 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
Gendy 0:4a55d0a21ea9 3349 uint8_t bank, offset, length;
Gendy 0:4a55d0a21ea9 3350 for (i = 0; i < dataSize;) {
Gendy 0:4a55d0a21ea9 3351 if (useProgMem) {
Gendy 0:4a55d0a21ea9 3352 bank = pgm_read_byte(data + i++);
Gendy 0:4a55d0a21ea9 3353 offset = pgm_read_byte(data + i++);
Gendy 0:4a55d0a21ea9 3354 length = pgm_read_byte(data + i++);
Gendy 0:4a55d0a21ea9 3355 } else {
Gendy 0:4a55d0a21ea9 3356 bank = data[i++];
Gendy 0:4a55d0a21ea9 3357 offset = data[i++];
Gendy 0:4a55d0a21ea9 3358 length = data[i++];
Gendy 0:4a55d0a21ea9 3359 }
Gendy 0:4a55d0a21ea9 3360
Gendy 0:4a55d0a21ea9 3361 // write data or perform special action
Gendy 0:4a55d0a21ea9 3362 if (length > 0) {
Gendy 0:4a55d0a21ea9 3363 // regular block of data to write
Gendy 0:4a55d0a21ea9 3364 /*Serial.print("Writing config block to bank ");
Gendy 0:4a55d0a21ea9 3365 Serial.print(bank);
Gendy 0:4a55d0a21ea9 3366 Serial.print(", offset ");
Gendy 0:4a55d0a21ea9 3367 Serial.print(offset);
Gendy 0:4a55d0a21ea9 3368 Serial.print(", length=");
Gendy 0:4a55d0a21ea9 3369 Serial.println(length);*/
Gendy 0:4a55d0a21ea9 3370 if (useProgMem) {
Gendy 0:4a55d0a21ea9 3371 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
Gendy 0:4a55d0a21ea9 3372 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
Gendy 0:4a55d0a21ea9 3373 } else {
Gendy 0:4a55d0a21ea9 3374 progBuffer = (uint8_t *)data + i;
Gendy 0:4a55d0a21ea9 3375 }
Gendy 0:4a55d0a21ea9 3376 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
Gendy 0:4a55d0a21ea9 3377 i += length;
Gendy 0:4a55d0a21ea9 3378 } else {
Gendy 0:4a55d0a21ea9 3379 // special instruction
Gendy 0:4a55d0a21ea9 3380 // NOTE: this kind of behavior (what and when to do certain things)
Gendy 0:4a55d0a21ea9 3381 // is totally undocumented. This code is in here based on observed
Gendy 0:4a55d0a21ea9 3382 // behavior only, and exactly why (or even whether) it has to be here
Gendy 0:4a55d0a21ea9 3383 // is anybody's guess for now.
Gendy 0:4a55d0a21ea9 3384 if (useProgMem) {
Gendy 0:4a55d0a21ea9 3385 special = pgm_read_byte(data + i++);
Gendy 0:4a55d0a21ea9 3386 } else {
Gendy 0:4a55d0a21ea9 3387 special = data[i++];
Gendy 0:4a55d0a21ea9 3388 }
Gendy 0:4a55d0a21ea9 3389 /*Serial.print("Special command code ");
Gendy 0:4a55d0a21ea9 3390 Serial.print(special, HEX);
Gendy 0:4a55d0a21ea9 3391 Serial.println(" found...");*/
Gendy 0:4a55d0a21ea9 3392 if (special == 0x01) {
Gendy 0:4a55d0a21ea9 3393 // enable DMP-related interrupts
Gendy 0:4a55d0a21ea9 3394
Gendy 0:4a55d0a21ea9 3395 //setIntZeroMotionEnabled(true);
Gendy 0:4a55d0a21ea9 3396 //setIntFIFOBufferOverflowEnabled(true);
Gendy 0:4a55d0a21ea9 3397 //setIntDMPEnabled(true);
Gendy 0:4a55d0a21ea9 3398 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
Gendy 0:4a55d0a21ea9 3399
Gendy 0:4a55d0a21ea9 3400 success = true;
Gendy 0:4a55d0a21ea9 3401 } else {
Gendy 0:4a55d0a21ea9 3402 // unknown special command
Gendy 0:4a55d0a21ea9 3403 success = false;
Gendy 0:4a55d0a21ea9 3404 }
Gendy 0:4a55d0a21ea9 3405 }
Gendy 0:4a55d0a21ea9 3406
Gendy 0:4a55d0a21ea9 3407 if (!success) {
Gendy 0:4a55d0a21ea9 3408 if (useProgMem) free(progBuffer);
Gendy 0:4a55d0a21ea9 3409 return false; // uh oh
Gendy 0:4a55d0a21ea9 3410 }
Gendy 0:4a55d0a21ea9 3411 }
Gendy 0:4a55d0a21ea9 3412 if (useProgMem) free(progBuffer);
Gendy 0:4a55d0a21ea9 3413 return true;
Gendy 0:4a55d0a21ea9 3414 }
Gendy 0:4a55d0a21ea9 3415 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
Gendy 0:4a55d0a21ea9 3416 {
Gendy 0:4a55d0a21ea9 3417 return writeDMPConfigurationSet(data, dataSize, false);
Gendy 0:4a55d0a21ea9 3418 }
Gendy 0:4a55d0a21ea9 3419
Gendy 0:4a55d0a21ea9 3420 // DMP_CFG_1 register
Gendy 0:4a55d0a21ea9 3421
Gendy 0:4a55d0a21ea9 3422 uint8_t MPU6050::getDMPConfig1()
Gendy 0:4a55d0a21ea9 3423 {
Gendy 0:4a55d0a21ea9 3424 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
Gendy 0:4a55d0a21ea9 3425 return buffer[0];
Gendy 0:4a55d0a21ea9 3426 }
Gendy 0:4a55d0a21ea9 3427 void MPU6050::setDMPConfig1(uint8_t config)
Gendy 0:4a55d0a21ea9 3428 {
Gendy 0:4a55d0a21ea9 3429 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
Gendy 0:4a55d0a21ea9 3430 }
Gendy 0:4a55d0a21ea9 3431
Gendy 0:4a55d0a21ea9 3432 // DMP_CFG_2 register
Gendy 0:4a55d0a21ea9 3433
Gendy 0:4a55d0a21ea9 3434 uint8_t MPU6050::getDMPConfig2()
Gendy 0:4a55d0a21ea9 3435 {
Gendy 0:4a55d0a21ea9 3436 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
Gendy 0:4a55d0a21ea9 3437 return buffer[0];
Gendy 0:4a55d0a21ea9 3438 }
Gendy 0:4a55d0a21ea9 3439 void MPU6050::setDMPConfig2(uint8_t config)
Gendy 0:4a55d0a21ea9 3440 {
Gendy 0:4a55d0a21ea9 3441 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
Gendy 0:4a55d0a21ea9 3442 }