Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed QEI HIDScope biquadFilter MODSERIAL FastPWM
main.cpp
- Committer:
- paulstuiver
- Date:
- 2019-10-31
- Revision:
- 25:45c131af2dba
- Parent:
- 24:e87e4fcf6226
- Child:
- 26:418f025a30c6
File content as of revision 25:45c131af2dba:
// Operating mode might not go to next state when SW2 is pressed
#include "mbed.h"
#include "HIDScope.h"
#include "BiQuad.h"
#include "MODSERIAL.h"
#include "FastPWM.h"
#include "QEI.h"
#include <cmath> // Included to use different math operations
#include "Servo.h" // Included to control the servo motor
Servo myservo(D13); // To control the servo motor
DigitalIn but3(SW2); // To go to the next state or to choose one of two game modes when in state START_GAME
DigitalIn but4(SW3); // To choose one of two game modes when in state START_GAME or to move the gripper
AnalogIn S0(A0);
AnalogIn S1(A1);
AnalogIn S2(A2);
AnalogIn S3(A3);
DigitalOut motor1Direction(D7);
FastPWM motor1Velocity(D6);
DigitalOut motor2Direction(D4);
FastPWM motor2Velocity(D5);
// Encoders 1 and 2 respectively
QEI Encoder1(D8,D9,NC,8400);
QEI Encoder2(D11,D10,NC,8400);
Ticker measurecontrol; // Ticker function for the measurements
// Make arrays for the different variables for the motors
//AnalogIn Shields[4] = {S0, S1, S2, S3};
//DigitalOut MotorDirections[2] = {MD0, MD1};
//FastPWM MotorVelocities[2] = {MV0, MV1};
//QEI Encoders[2] = {E0, E1};
Serial pc(USBTX, USBRX);
double PI = 3.14159265358;//97932384626433832795028841971693993;
volatile double timeinterval = 0.001f; // Time interval of the Ticker function
volatile double frequency = 17000.0; // Set motorfrequency
double period_signal = 1.0/frequency; // Convert to period of the signal
double yendeffector = 10.6159;
double xendeffector = 0;
int ingedrukt = 0;
int state_int;
int previous_state_int;
double motorvalue1;
double motorvalue2;
// Define the different states in which the robot can be
enum States {MOTORS_OFF, EMG_CALIBRATION, START_GAME,
DEMO_MODE, OPERATING_MODE, END_GAME
};
// Default state is the state in which the motors are turned off
States MyState = MOTORS_OFF;
// Initialise the functions
void motorsoff();
void measure_data(double &f_y0, double &f_y1, double &f_y2, double &f_y3);
void det_max(double y, double &max_y);
void emgcalibration();
void nothing()
{
// Do nothing
}
void startgame() ;
void demo_mode();
void operating_mode();
void New_State();
void Set_State();
double PID_controller1(double error1);
double PID_controller2(double error2);
void getmeasuredposition(double & measuredposition1, double & measuredposition2);
void getreferenceposition(double & referenceposition1, double & referenceposition2);
void sendtomotor(double motorvalue1, double motorvalue2);
void measureandcontrol();
int main()
{
pc.baud(115200);
pc.printf("Starting...\r\n\r\n");
motor1Velocity.period(period_signal); // Set the period of the PWMfunction
motor2Velocity.period(period_signal); // Set the period of the PWMfunction
previous_state_int = (int)MyState; // Save previous state to compare with current state and possibly execute New_State()
// in the while loop
New_State(); // Execute the functions belonging to the current state
while(true) {
if ( (previous_state_int - (int)MyState) != 0 ) { // If current state is not previous state execute New_State()
New_State();
}
}
}
double PID_controller1(double error1)
{
// Define errors for motor 1 and 2
static double error_integral1 = 0;
static double error_prev1 = error1;
// Low-pass filter
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// PID variables: we assume them to be the same for both motors
double Kp = 63;
double Ki = 3.64;
double Kd = 5;
//Proportional part:
double u_k1 = Kp * error1;
// Integreal part
error_integral1 = error_integral1 + error1 * timeinterval;
double u_i1 = Ki*error_integral1;
// Derivate part
double error_derivative1 = (error1 - error_prev1)/timeinterval;
double filtered_error_derivative1 = LowPassFilter.step(error_derivative1);
double u_d1 = Kd * filtered_error_derivative1;
error_prev1 = error1;
//sum all parts and return it
return u_k1 + u_i1 + u_d1;
}
double PID_controller2(double error2)
{
// Define errors for motor 1 and 2
static double error_integral2 = 0;
static double error_prev2 = error2;
// Low-pass filter
static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241);
// PID variables: we assume them to be the same for both motors
double Kp = 63;
double Ki = 3.64;
double Kd = 5;
//Proportional part:
double u_k2 = Kp * error2;
// Integreal part
error_integral2 = error_integral2 + error2 * timeinterval;
double u_i2 = Ki*error_integral2;
// Derivate part
double error_derivative2 = (error2 - error_prev2)/timeinterval;
double filtered_error_derivative2 = LowPassFilter.step(error_derivative2);
double u_d2 = Kd * filtered_error_derivative2;
error_prev2 = error2;
//sum all parts and return it
return u_k2 + u_i2 + u_d2;
}
//get the measured position
void getmeasuredposition(double & measuredposition1, double & measuredposition2)
{
// Obtain the counts of motors 1 and 2 from the encoder
int countsmotor1;
int countsmotor2;
countsmotor1 = Encoder1.getPulses();
countsmotor2 = Encoder2.getPulses();
// Obtain the measured position for motor 1 and 2
measuredposition1 = ((double)countsmotor1) / 8400.0f * 2.0f;
measuredposition2 = ((double)countsmotor2) / 8400.0f * 2.0f;
}
//get the reference of the
void getreferenceposition(double & referenceposition1, double & referenceposition2)
{
//Measurements of the arm
double L0=1.95;
double L1=15;
double L2=20;
//Inverse kinematics: given the end position, what are the desired motor angles of 1 and 2
double desiredmotorangle1, desiredmotorangle2;
desiredmotorangle1 = (atan2(yendeffector,(L0+xendeffector))*180.0/PI + acos((pow(L1,2)+pow(L0+xendeffector,2)+pow(yendeffector,2)-pow(L2,2))/(2*L1*sqrt(pow(L0+xendeffector,2)+pow(yendeffector,2))))*180.0/PI)-180.0;
desiredmotorangle2 = (atan2(yendeffector,(L0-xendeffector))*180.0/PI + acos((pow(L1,2)+pow(L0-xendeffector,2)+pow(yendeffector,2)-pow(L2,2))/(2*L1*sqrt(pow(L0-xendeffector,2)+pow(yendeffector,2))))*180.0/PI)-180.0;
//Convert motor angles to counts
double desiredmotorrounds1;
double desiredmotorrounds2;
desiredmotorrounds1 = (desiredmotorangle1)/360.0;
desiredmotorrounds2 = (desiredmotorangle2)/360.0;
//Assign this to new variables because otherwise it doesn't work
referenceposition1 = desiredmotorrounds1;
referenceposition2 = desiredmotorrounds2;
}
//send value to motor
// IT WAS "void sendtomotor(float & motorvalue1, float & motorvalue2)" BUT I REMOVED THE REFERENCE, BECAUSE I THOUGHT IT WAS NOT NEEDED
void sendtomotor(double motorvalue1, double motorvalue2)
{
// Define the absolute motor values
double absolutemotorvalue1;
double absolutemotorvalue2;
absolutemotorvalue1 = fabs(motorvalue1);
absolutemotorvalue2 = fabs(motorvalue2);
// If absolutemotorvalueocity is greater than 1, reduce to 1, otherwise remain absolutemotorvalue
absolutemotorvalue1 = absolutemotorvalue1 > 1.0f ? 1.0f : absolutemotorvalue1;
absolutemotorvalue2 = absolutemotorvalue2 > 1.0f ? 1.0f : absolutemotorvalue2;
// Send the absolutemotorvalue to the motors
motor1Velocity = absolutemotorvalue1;
motor2Velocity = absolutemotorvalue2;
// Determine the motor direction. Boolean output: true gives counterclockwise direction, false gives clockwise direction
motor1Direction = (motorvalue1 > 0.0f);
motor2Direction = (motorvalue2 > 0.0f);
}
// function to call reference absolutemotorvalueocity, measured absolutemotorvalueocity and controls motor with feedback
void measureandcontrol()
{
// Get the reference positions of motor 1 and 2
double reference1, reference2;
getreferenceposition(reference1, reference2);
// Get the measured positions of motor 1 and 2
double measured1, measured2;
getmeasuredposition(measured1, measured2);
// Calculate the motor values
//double motorvalue1, motorvalue2;
motorvalue1 = PID_controller1(reference1 - measured1);
motorvalue2 = PID_controller2(reference2 - measured2);
sendtomotor(motorvalue1, motorvalue2);
}
void motorsoff()
{
// Function to turn the motors off. First state that the robot has. Robot will stay in this state untill button SW2 is pressed.
// Robot will not return to this state anymore unless the user sets it back to this state with the keyboard input.
sendtomotor(0.0,0.0); // Set motor velocity to 0
state_int = 10;
bool whileloop_boolean = true; // Boolean for the while loop
while (whileloop_boolean) {
if (but3.read() == 0) { // If button SW2 is pressed:
MyState = (States)((int)MyState+1); // set MyState to EMG_CALIBRATION and exit the while loop
whileloop_boolean = false; // by making whileloop_boolean equal to false
wait(0.5f);
}
}
}
void measure_data(double &f_y0, double &f_y1, double &f_y2, double &f_y3)
{
// High pass
double hb0 = 0.9169; // Coefficients from the following formula:
double hb1 = -1.8338; //
double hb2 = 0.9169; // b0 + b1 z^-1 + b2 z^-2
double ha0 = 1.0; // H(z) = ----------------------
double ha1 = -1.8268; // a0 + a1 z^-1 + a2 z^-2
double ha2 = 0.8407; //
// Low pass
double lb0 = 0.000083621; // Coefficients from the following formula:
double lb1 = 0.0006724; //
double lb2 = 0.000083621; // b0 + b1 z^-1 + b2 z^-2
double la0 = 1.0; // H(z) = ----------------------
double la1 = -1.9740; // a0 + a1 z^-1 + a2 z^-2
double la2 = 0.9743; //
static double max_y0 = 0.001;
static double max_y1 = 0.001;
static double max_y2 = 0.001;
static double max_y3 = 0.001;
static BiQuad hFilter0(hb0,hb1,hb2,ha0,ha1,ha2); // Create 4 equal filters used for the different EMG signals
static BiQuad hFilter1(hb0,hb1,hb2,ha0,ha1,ha2);
static BiQuad hFilter2(hb0,hb1,hb2,ha0,ha1,ha2);
static BiQuad hFilter3(hb0,hb1,hb2,ha0,ha1,ha2);
static BiQuad lFilter0(lb0,lb1,lb2,la0,la1,la2); // Create 4 equal filters used for the different EMG signals
static BiQuad lFilter1(lb0,lb1,lb2,la0,la1,la2);
static BiQuad lFilter2(lb0,lb1,lb2,la0,la1,la2);
static BiQuad lFilter3(lb0,lb1,lb2,la0,la1,la2);
f_y0 = hFilter0.step(S0); // Apply filters on the different EMG signals
f_y1 = hFilter1.step(S1);
f_y2 = hFilter2.step(S2);
f_y3 = hFilter3.step(S3);
f_y0 = abs(f_y0);
f_y1 = abs(f_y1);
f_y2 = abs(f_y2);
f_y3 = abs(f_y3);
f_y0 = lFilter0.step(f_y0);
f_y1 = lFilter1.step(f_y1);
f_y2 = lFilter2.step(f_y2);
f_y3 = lFilter3.step(f_y3);
if (MyState == EMG_CALIBRATION) {
det_max(f_y0, max_y0); // Determine the maximum RMS value of the EMG signals during the EMG_CALIBRATION state
det_max(f_y1, max_y1);
det_max(f_y2, max_y2);
det_max(f_y3, max_y3);
} else if ((int)MyState > 3) {
f_y0 = f_y0/max_y0; // Normalise the RMS value by dividing by the maximum RMS value
f_y1 = f_y1/max_y1; // This is done during the states with a value higher than 3, as this is when you start the operating mode
f_y2 = f_y2/max_y2;
f_y3 = f_y3/max_y3;
}
}
void det_max(double y, double &max_y)
{
max_y = max_y < y ? y : max_y; // if max_rms is smaller than rms, set rms as new max_rms, otherwise keep max_rms
}
void emgcalibration()
{
double y0, y1, y2, y3; // RMS values of the different EMG signals
measure_data(y0, y1, y2, y3); // Calculate RMS values
double duration = 15.0; // Duration of the emgcalibration function, in this case 10 seconds
int rounds = (duration / timeinterval); // Determine the amount of times this function has to run to run for the duration time
// rounds is an integer so the value of duration / timeinterval is floored
static int counter = 0; // Counter which keeps track of the amount of times the function has executed
if (counter >= rounds) {
MyState = START_GAME; // If counter is larger than rounds, change MyState to the next state
measurecontrol.detach();
} else {
counter++; // Else increase counter by 1
}
}
void startgame()
{
pc.printf("Please choose which game you would like to start:\r\n");
pc.printf("- Press button SW2 to start the demo mode\r\n Demo mode is a mode in which the different movements of the robot are shown.\r\n");
pc.printf(" It will move in straight lines to show that the robot meets the requirements.\r\n");
pc.printf(" It will also show how it is able to grab and lift objects which are on the board.\r\n\r\n");
pc.printf("- Press button SW3 to start the operating mode\r\n The operating mode is a mode in which you can control the robot by flexing the muscles to which the electrodes are attached.\r\n");
pc.printf(" You will be able to move the arm and use the gripper to try and grab and lift objects from the board to the container.\r\n\r\n");
while (MyState == START_GAME) {
if (but3.read() == 0) {
MyState = (States)((int)MyState+1);
wait(0.5f);
} else if (but4.read() == 0) {
MyState = (States)((int)MyState+2);
wait(0.5f);
}
}
}
void demo_mode()
{
//state_int = 10;
// 5 pre determined positions of the end effector to show it can move in straight lines
xendeffector=-5;
yendeffector=10.6159;
wait(0.5);
xendeffector=10;
yendeffector=25.6159;
wait(0.5);
xendeffector=-14;
yendeffector=21.6159;
wait(0.5);
xendeffector=10;
yendeffector=11.6159;
wait(0.5);
// Last position is the start position
xendeffector=0;
yendeffector=10.6159;
wait(0.5);
MyState = START_GAME; // Go back to START_GAME mode
}
void operating_mode()
{
double y0,y1,y2,y3;
measure_data(y0,y1,y2,y3);
double threshold = 0.3; // When the analysed signal is above this threshold, the position of the end effector is changed
double dr = 0.01; // The change in position with each step
if(y0 > threshold && xendeffector < 16) {
xendeffector=xendeffector+dr;
}
else if(y1 > threshold && xendeffector > -16) {
xendeffector=xendeffector-dr;
}
if(y2 > threshold && yendeffector < 28) {
yendeffector=yendeffector+dr;
}
else if(y3 > threshold && yendeffector > 8) {
yendeffector=yendeffector-dr;
}
//servo besturing
if(but4.read() == 0 && ingedrukt == 0) {
for(int i=0; i<100; i++) {
myservo = i/100.0;
}
ingedrukt = 1;
} else if(but4.read() == 0 && ingedrukt == 1) {
for(int i=100; i>0; i--) {
myservo = i/100.0;
}
ingedrukt = 0;
}
if (but3.read() == 0) {
bool buttonss = true;
while (buttonss) {
if (but3.read() == 1) {
buttonss = false;
}
}
pc.printf("The game has ended, will move the end effector to (0,0), put the motors off and will now return to the state START_GAME");
MyState = END_GAME;
//xendeffector=0.0;
//yendeffector=10.6159;
}
/*
if (but3.read() == 0) {
pc.printf("The game has ended, will move the end effector to (0,10.6159), put the motors off and will now return to the state START_GAME");
MyState = END_GAME;
xendeffector=0.0;
yendeffector=10.6159;
}
*/
measureandcontrol();
}
void endgame()
{
/*
current_y = yendeffector;
current_x = xendeffector;
while (abs(current_y-10.6159) >= 0.01 && abs(current_x-10.6159) >= 0.01) [
}
*/
xendeffector = 0.0;
yendeffector = 20.6159;
//motorvalue1 = 0;
//motorvalue2 = 0;
wait(0.5);
measurecontrol.detach();
MyState = START_GAME;
}
void New_State()
{
previous_state_int = (int)MyState; // Change previous state to current state
switch (MyState) {
case MOTORS_OFF :
pc.printf("\r\nState: Motors turned off\r\n");
motorsoff();
break;
case EMG_CALIBRATION :
pc.printf("\r\nState: EMG Calibration\r\n");
pc.printf("Emg calibration mode will run for 20 seconds. Try to flex the muscles to which the electrodes are attached as hard as possible during this time.\r\n");
measurecontrol.attach(emgcalibration,timeinterval);
break;
case START_GAME :
pc.printf("\r\nState: Start game\r\n");
startgame();
break;
case DEMO_MODE :
pc.printf("\r\nState: Demo mode\r\n");
measurecontrol.attach(measureandcontrol,timeinterval);
demo_mode();
measurecontrol.detach();
break;
case OPERATING_MODE :
pc.printf("\r\nState: Operating mode\r\n");
measurecontrol.attach(operating_mode,timeinterval);
break;
case END_GAME :
pc.printf("\r\nState: End of the game\r\n");
endgame();
break;
default :
pc.printf("\r\nDefault state: Motors are turned off\r\n");
sendtomotor(0.0,0.0);
break;
}
}
void Set_State()
{
xendeffector=0.0;
yendeffector=10.6159;
wait(0.3f);
sendtomotor(0.0,0.0); // Stop the motors
// Stop the ticker function from running
pc.printf("\r\nPress number: | To go to state:");
pc.printf("\r\n (0) | MOTORS_OFF: Set motorspeed just in case to 0 and wait till button SW2 is pressed");
pc.printf("\r\n (1) | EMG_CALIBRATION: Calibrate the maximum of the emg signals and normalise the emg signals with these maxima");
pc.printf("\r\n (2) | START_GAME: Determine by keyboard input if you want to go to the demo or operating mode");
pc.printf("\r\n (3) | DEMO_MODE: The demo mode will show the different motions that the robot can make");
pc.printf("\r\n (4) | OPERATING_MODE: Move the arms and gripper of the arm by flexing your muscles");
pc.printf("\r\n (5) | END_GAME: End effector returns to (0,0) and the motors are turned off, returns to START_GAME mode afterwards");
wait(0.5f);
char a = '0';
char b = '5';
bool boolean = true;
while (boolean) {
char c = pc.getc();
if (c >= a && c <= b) {
MyState = (States)(c-'0');
boolean = false;
} else {
pc.printf("\r\nPlease enter a number between 0 and 5\r\n");
}
}
}