pid gecomment

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed

Fork of a_pid_kal_end_def by Daniqe Kottelenberg

Files at this revision

API Documentation at this revision

Comitter:
FloorC
Date:
Tue Nov 08 20:31:45 2016 +0000
Parent:
58:c91723359f62
Commit message:
alle pid gecomment

Changed in this revision

main.cpp Show annotated file Show diff for this revision Revisions of this file
diff -r c91723359f62 -r 1725a3f02f37 main.cpp
--- a/main.cpp	Tue Nov 08 07:16:08 2016 +0000
+++ b/main.cpp	Tue Nov 08 20:31:45 2016 +0000
@@ -11,9 +11,9 @@
 //Define objects
 
 //EMG
-AnalogIn    emg_biceps_right_in (A0);               //analog in to get EMG biceps  (r) in to c++
-AnalogIn    emg_triceps_right_in(A1);               //analog in to get EMG triceps (r) in to c++
-AnalogIn    emg_biceps_left_in  (A2);               //analog in to get EMG biceps  (l) in to c++
+AnalogIn    emg_biceps_right_in (A0);   //analog in to get EMG biceps  (r) in to c++
+AnalogIn    emg_triceps_right_in(A1);   //analog in to get EMG triceps (r) in to c++
+AnalogIn    emg_biceps_left_in  (A2);   //analog in to get EMG biceps  (l) in to c++
 
 //Tickers
 Ticker      sample_timer;               //ticker for EMG signal sampling, analog becomes digital
@@ -35,13 +35,13 @@
 DigitalOut blue(LED_BLUE);              //LED on K64f board, 1 is out; o is on
 
 //buttons
-DigitalIn   button_calibration_biceps  (SW3);                //button to start calibration biceps
-DigitalIn   button_calibration_triceps (SW2);               // button to start calibration triceps
+DigitalIn   button_calibration_biceps  (SW3);    //button to start calibration biceps
+DigitalIn   button_calibration_triceps (SW2);    // button to start calibration triceps
 
 //motors
-DigitalOut richting_motor1(D7);         //motor 1 connected to motor 1 at k64f board; for turningtable
+DigitalOut richting_motor1(D7);  //motor 1 connected to motor 1 at k64f board; for turningtable
 PwmOut pwm_motor1(D6);
-DigitalOut richting_motor2(D4);         //motor 2 connected to motor 2 at k64f board; for linear actuator
+DigitalOut richting_motor2(D4);  //motor 2 connected to motor 2 at k64f board; for linear actuator
 PwmOut pwm_motor2(D5);
 
 //encoders
@@ -49,15 +49,15 @@
 DigitalIn encoder1B(D12);
 
 //controller
-BiQuad PID_controller;
+BiQuad PID_controller;                  
 
 //=======================================================================================================================================================   
 //define variables
 
 //thresholds
-double treshold_biceps_right = 0.04;                 //common values that work.
-double treshold_biceps_left = -0.04;                 // tested on multiple persons 
-double treshold_triceps = -0.04;                     //triceps and left biceps is specified negative, thus negative treshold
+double treshold_biceps_right = 0.04;        //common values that work.
+double treshold_biceps_left = -0.04;        //tested on multiple persons 
+double treshold_triceps = -0.04;            //triceps and left biceps is specified negative, thus negative treshold
 
 
 //calibration variables
@@ -67,93 +67,92 @@
 double max_triceps;                         //calibration maximum triceps
 
 //on/off and switch signals
-int switch_signal = 0;                      //start of counter, switch made by even and odd numbers
-int onoffsignal_biceps;                     //on/off signal created by the bicepssignal. (-1: left biceps contract, 0: nothing contracted, 1: right biceps contracted)
+int switch_signal = 0;        //start of counter, switch made by even and odd numbers
+int onoffsignal_biceps;       //on/off signal created by the bicepssignal. (-1: left biceps contract, 0: nothing contracted, 1: right biceps contracted)
 int switch_signal_triceps;
 
 //motorvariables
-float speedmotor1=0.18; //speed of motor 1 is 0.18pwm at start
+float speedmotor1=0.18; //speed of motor 1 is 0.18 pwm at start
 float speedmotor2=1.0;  //speed of motor 2 is 1.0 pwm at start
 
 int cw=0;               //clockwise direction
 int ccw=1;              //counterclockwise direction
 
 //encoder
-int   counts_encoder1;              //variable to count the pulses given by the encoder, 1 indicates motor 1.
-float rev_counts_motor1;            //Calculated revolutions
+int   counts_encoder1;              //variable to count the pulses given by the encoder, 1 indicates motor 1
+float rev_counts_motor1;            //calculated revolutions
 float rev_counts_motor1_rad;        //calculated revolutions in rad!
-const float gearboxratio=131.25;    // gearboxratio from encoder to motor
-const float rev_rond=64.0;          // number of revolutions per rotation 
+const float gearboxratio=131.25;    //gearboxratio from encoder to motor
+const float rev_rond=64.0;          //number of revolutions per rotation 
 
-QEI Encoder1(D13,D12,NC,rev_rond,QEI::X4_ENCODING); //To set the Encoder. 
+QEI Encoder1(D13,D12,NC,rev_rond,QEI::X4_ENCODING); //To set the encoder 
 
 //reference
-volatile float          d_ref = 0;
-const float             w_ref = 1.5;
-volatile double         t_start;
-volatile double         w_var;
-const double            Ts = 0.001; //Time for diverse tickers. It is comparable to a frequency of 1000Hz. 
+volatile float   d_ref = 0;     //reference angle, starts off 0
+const float      w_ref = 1.5;   //reference speed, constant
+volatile double  t_start;       //starttime of the timer
+volatile double  w_var;         //variable reference speed for making the reference signal 
+const double     Ts = 0.001;    //time step for diverse tickers. It is comparable to a frequency of 1000Hz
 
 //controller
-const double        Kp = 0.3823;      
-const double        Ki = 0.1279;
-const double        Kd = 0.2519;
-const double        N = 100;
-volatile double     error1;
-volatile double     controlOutput; 
-bool                start_motor = true;
-volatile double     starttime;
+const double        Kp = 1.2614;    //calculated value for the proportional action of the PID      
+const double        Ki = 0.4219;    //calculated value for the integral action of the PID
+const double        Kd = 0.8312;    //calculated value for the derivative action of the PID
+const double        N = 100;        //specified value for the filter coefficient of the PID
+volatile double     error1;         //calculated error
+volatile double     controlOutput;  //output of the PID-controller
+bool                start_motor = true; //bool to start the reference when the motor turns
+
 
 //=======================================================================================================================================================   
 //filter coefficients
 
 //b1 = biceps right arm
-BiQuad filterhigh_b1(9.5654e-01,-1.9131e+00,9.5654e-01,-1.9112e+00,9.1498e-01);                 // second order highpass filter, with frequency of 10 Hz
-BiQuad filternotch1_b1 (9.5654e-01, -1.9131e+00, 9.5654e-01 ,-1.9112e+00 ,9.1498e-01;           // IIRnotch filter, with frequency of 50 Hz
+BiQuad filterhigh_b1(9.5654e-01,-1.9131e+00,9.5654e-01,-1.9112e+00,9.1498e-01);        // second order highpass filter, with frequency of 10 Hz
+BiQuad filternotch1_b1 (9.5654e-01, -1.9131e+00, 9.5654e-01 ,-1.9112e+00 ,9.1498e-01;  // IIRnotch filter, with frequency of 50 Hz
 
 //t1= triceps right arm
-BiQuad filterhigh_t1(9.5654e-01,-1.9131e+00,9.5654e-01,-1.9112e+00,9.1498e-01);                  // second order highpass filter, with frequency of 10 Hz
-BiQuad filternotch1_t1 (9.5654e-01, -1.9131e+00, 9.5654e-01 ,-1.9112e+00 ,9.1498e-01;           // IIRnotch filter, with frequency of 50 Hz
+BiQuad filterhigh_t1(9.5654e-01,-1.9131e+00,9.5654e-01,-1.9112e+00,9.1498e-01);        // second order highpass filter, with frequency of 10 Hz
+BiQuad filternotch1_t1 (9.5654e-01, -1.9131e+00, 9.5654e-01 ,-1.9112e+00 ,9.1498e-01;  // IIRnotch filter, with frequency of 50 Hz
 
 //b2= biceps left arm
-BiQuad filterhigh_b2(9.5654e-01,-1.9131e+00,9.5654e-01,-1.9112e+00,9.1498e-01);                  // second order highpass filter, with frequency of 10 Hz
-BiQuad filternotch1_b2 (9.5654e-01, -1.9131e+00, 9.5654e-01 ,-1.9112e+00 ,9.1498e-01;           // IIRnotch filter, with frequency of 50 Hz
+BiQuad filterhigh_b2(9.5654e-01,-1.9131e+00,9.5654e-01,-1.9112e+00,9.1498e-01);        // second order highpass filter, with frequency of 10 Hz
+BiQuad filternotch1_b2 (9.5654e-01, -1.9131e+00, 9.5654e-01 ,-1.9112e+00 ,9.1498e-01;  // IIRnotch filter, with frequency of 50 Hz
 
 //after abs filtering
-BiQuad filterlow_b1 (6.2942e-06, 1.2588e-05,6.2942e-06,-1.9929e+00,9.9292e-01);                 // second order lowpass filter, with frequency of 2 Hz
-BiQuad filterlow_t1 (6.2942e-06, 1.2588e-05,6.2942e-06,-1.9929e+00,9.9292e-01);                 // second order lowpass filter, with frequency of 2 Hz
-BiQuad filterlow_b2 (6.2942e-06, 1.2588e-05,6.2942e-06,-1.9929e+00,9.9292e-01);                 // second order lowpass filter, with frequency of 2 Hz
+BiQuad filterlow_b1 (6.2942e-06, 1.2588e-05,6.2942e-06,-1.9929e+00,9.9292e-01);        // second order lowpass filter, with frequency of 2 Hz
+BiQuad filterlow_t1 (6.2942e-06, 1.2588e-05,6.2942e-06,-1.9929e+00,9.9292e-01);        // second order lowpass filter, with frequency of 2 Hz
+BiQuad filterlow_b2 (6.2942e-06, 1.2588e-05,6.2942e-06,-1.9929e+00,9.9292e-01);        // second order lowpass filter, with frequency of 2 Hz
 
 //=======================================================================================================================================================   
 //voids
 //=======================================================================================================================================================   
 
 //function teller
-void switch_function() {                        // The switch function. Makes it possible to switch between the motors. It simply adds one at switch_signal.
-    if(switch_signal_triceps==1)
-    {
+void switch_function() {         // The switch function. Makes it possible to switch between the motors. It simply adds one at switch_signal.
+    if(switch_signal_triceps==1){
         switch_signal++;
            
-    // To monitor what is happening: we will show the text in putty  and change led color from red to green or vice versa.
+    // To monitor what is happening: we will show the text in putty and change led color from red to green or vice versa.
     
         green=!green;
         red=!red;
         
-    if (switch_signal%2==0)  
-     {pc.printf("If you contract the biceps, the robot will go right \r\n");    
-     pc.printf("If you contract the triceps, the robot will go left \r\n");
-     pc.printf("\r\n");
-     }
+        if (switch_signal%2==0){
+             pc.printf("If you contract the biceps, the robot will go right \r\n");    
+             pc.printf("If you contract the triceps, the robot will go left \r\n");
+             pc.printf("\r\n");
+        }
        
     
-    else
-     {pc.printf("If you contract the biceps, the robot will go up \r\n");
-     pc.printf("If you contract the triceps, the robot will go down \r\n");
-    pc.printf("\r\n");
-     }
+        else{
+             pc.printf("If you contract the biceps, the robot will go up \r\n");
+             pc.printf("If you contract the triceps, the robot will go down \r\n");
+             pc.printf("\r\n");
+        }
      
     }    
-    }
+}
  
 //=======================================================================================================================================================   
 //functions which are called in ticker to sample the analog signal and make the on/off and switch signal. 
@@ -187,80 +186,87 @@
        double bicepstriceps_rightarm=emg_filtered_biceps_right-emg_filtered_triceps_right;       
         
         //creating of on/off signal with the created on/off signals, with if statement   for right arm!    
-            if (signal_biceps_sum>treshold_biceps_right)
-            {onoffsignal_biceps=1;}
+        if (signal_biceps_sum>treshold_biceps_right){
+            onoffsignal_biceps=1;
+        }
           
-            else if (signal_biceps_sum<treshold_biceps_left)
-            {        onoffsignal_biceps=-1;       }    
+        else if (signal_biceps_sum<treshold_biceps_left){
+            onoffsignal_biceps=-1;
+        }    
         
-            else
-            {onoffsignal_biceps=0;}
+        else{
+            onoffsignal_biceps=0;
+        }
                       
         //creating on/off signal for switch (left arm)
         
-            if (bicepstriceps_rightarm<treshold_triceps)
-        {        switch_signal_triceps=1;            }    
+        if (bicepstriceps_rightarm<treshold_triceps){
+            switch_signal_triceps=1;            
+        }    
         
-        else
-        {        switch_signal_triceps=0;       }
+        else{        
+            switch_signal_triceps=0;       
+        }
         
         //send signals  to scope to monitor the EMG signals
-        scope.set(0, emg_filtered_biceps_right);                    //set emg signal of right biceps to scope in channel 0
-        scope.set(1, emg_filtered_triceps_right);                   // set emg signal of right triceps to scope in channel 1
-        scope.set(2, emg_filtered_biceps_left);                     // set emg signal of left biceps to scope in channel 2
-        scope.set(3, bicepstriceps_rightarm);                           // set on/off signal for the motors to scope in channel 3
-        scope.set(4, switch_signal_triceps);                        // set the switch signal to scope in channel 4 
+        scope.set(0, emg_filtered_biceps_right);            //set emg signal of right biceps to scope in channel 0
+        scope.set(1, emg_filtered_triceps_right);           // set emg signal of right triceps to scope in channel 1
+        scope.set(2, emg_filtered_biceps_left);             // set emg signal of left biceps to scope in channel 2
+        scope.set(3, bicepstriceps_rightarm);               // set on/off signal for the motors to scope in channel 3
+        scope.set(4, switch_signal_triceps);                // set the switch signal to scope in channel 4 
         
-        scope.send();                                               //send all the signals to the scope
-                }
+        scope.send();         //send all the signals to the scope
+}
 //=======================================================================================================================================================   
 
 //reference void makes the reference that the controllor should follow. There is only a controller for motor 1. 
-void reference(){
-    if (start_motor == true){ 
-        timer.start();
+void reference(){                       
+    if (start_motor == true){         //bool that is true when the motor starts turning
+        timer.start();                //timer that starts counting in milliseconds
     }
-    if (onoffsignal_biceps==-1 && switch_signal%2==0){ //switch even      
-         t_start = timer.read_ms();
-         start_motor = false;                           //It means that motor 2 is running and therefore the PID controllor should not be working. Therefore the bool is set on false. 
+    if (onoffsignal_biceps==-1 && switch_signal%2==0){  //the signal of the biceps is -1 and the switch is even, so motor 1 is being controlled      
+         t_start = timer.read_ms();     //read the current time passed from the timer
+         start_motor = false;           //it means that the motor is not running or has started up
          
-         if (t_start < 1.0){
-             w_var = t_start*1.5;
-            }
+        if (t_start < 1.0){            //the time passed is less than one second
+            w_var = t_start*1.5;       //the reference velocity is the time passed multiplied with the eventual constant velocity it should reach
+        }
             
-        else {
-         w_var = 1.5;
+        else{
+            w_var = 1.5;                //if the time passed is more than one second, the velocity is constant
+        }
+         
+         d_ref = d_ref + w_var * Ts;    //makes the reference angle
+         
+    }
+         if (d_ref > 12){               //set the restrictions
+            d_ref = 12;
+            start_motor = true;         //after the restriction is reached the motor (if turned the other way) will start up again so the bool has to be set to true
          }
          
-         d_ref = d_ref + w_var * Ts;
-         
-    }
-         if (d_ref > 12){
-            d_ref = 12;
-            start_motor = true;
-            //d_ref_const_cw = 1;
-         }
     else{ 
-        d_ref = d_ref;
+        d_ref = d_ref;                  //if there is no signal, the referance angle is constant
     }
     
-    if (onoffsignal_biceps==1 && switch_signal%2==0){ //switch even    //left biceps contracted{
+    if (onoffsignal_biceps==1 && switch_signal%2==0){   //the signal of the biceps is -1 and the switch is even, so motor 1 is being controlled
         t_start = timer.read_ms();
         start_motor = false;
         
         if (t_start < 1.0){
             w_var = t_start*1.5;
-            }
+        }
+        
         else {
             w_var = 1.5;
-            }
-        d_ref = d_ref - w_var * Ts;
-        
+        }
+        d_ref = d_ref - w_var * Ts;             //the motor should turn the other way now so the reference becomes negative     
     }
-        if (d_ref < -12){
-        d_ref = -12;
-        start_motor = true;
+    
+        if (d_ref < -12){       //negative restriction
+            d_ref = -12;
+            start_motor = true;
         }
+        
     else{
         d_ref = d_ref;
     }
@@ -269,8 +275,8 @@
 //=======================================================================================================================================================   
 //This void calculates the error and makes the control output. 
 void m1_controller(){
-    error1 = d_ref-rev_counts_motor1_rad;
-    controlOutput = PID_controller.step(error1);
+    error1 = d_ref-rev_counts_motor1_rad;               //calculate the error = reference-output
+    controlOutput = PID_controller.step(error1);        //give the error as input to the controller
 }
 //=======================================================================================================================================================   
 
@@ -278,8 +284,7 @@
 void encoders(){
     counts_encoder1 = Encoder1.getPulses();
     rev_counts_motor1 = (float)counts_encoder1/(gearboxratio*rev_rond);
-    rev_counts_motor1_rad = rev_counts_motor1*6.28318530718;
-    
+    rev_counts_motor1_rad = rev_counts_motor1*6.28318530718;    //calculate the angle in radians
 }
 
 //=======================================================================================================================================================   
@@ -289,44 +294,45 @@
 void calibration_biceps(){
         if (button_calibration_biceps==0){              //only runs when button is pressed
             
-        //detach tickers of other voids that control the switched and motors. To avoid unwanted moving and switching of the motors. 
-        ticker_switch.detach();
-        sample_timer.detach();
-        
-        //let the user know what is happening, blue led on: calibration is going. 
-        pc.printf("start of calibration biceps, contract maximal \r\n");
-        pc.printf("\r\n");
-        red=1;
-        green=1;
-        blue=0;
+            //detach tickers of other voids that control the switched and motors. To avoid unwanted moving and switching of the motors. 
+            ticker_switch.detach();
+            sample_timer.detach();
+            
+            //let the user know what is happening, blue led on: calibration is going. 
+            pc.printf("start of calibration biceps, contract maximal \r\n");
+            pc.printf("\r\n");
+            red=1;
+            green=1;
+            blue=0;
  
  //start callibration of biceps      
-    for(int n =0; n<1500;n++)                                                  //read for 1500 samples as calibration
-                {
-       //biceps right arm read+filtering
-       double emg_biceps_right=emg_biceps_right_in.read();                                                      //read the emg value from the elektrodes 
-       double emg_filtered_high_biceps_right= filterhigh_b1.step(emg_biceps_right);                             //high pass filter, to remove offset
-       double emg_filtered_high_notch_1_biceps_right=filternotch1_b1.step(emg_filtered_high_biceps_right);      //notch filter, to remove noise
-       double emg_abs_biceps_right=fabs(emg_filtered_high_notch_1_biceps_right);                                //rectify the signal, fabs because float   
-       double emg_filtered_biceps_right=filterlow_b1.step(emg_abs_biceps_right);                                //low pass filter to envelope the signal
-       
-        //triceps right arm read+filtering
-       double emg_triceps_right=emg_triceps_right_in.read();                                                    //read the emg value from the elektrodes
-       double emg_filtered_high_triceps_right= filterhigh_t1.step(emg_triceps_right);                           //high pass filter, to remove offset
-       double emg_filtered_high_notch_1_triceps_right=filternotch1_t1.step(emg_filtered_high_triceps_right);    //notch filter, to remove noise
-       double emg_abs_triceps_right=fabs(emg_filtered_high_notch_1_triceps_right);                              //rectify the signal, fabs because float   
-       double emg_filtered_triceps_right=filterlow_t1.step(emg_abs_triceps_right);                              //low pass filter to envelope the signal
-       
-       //biceps is +, triceps is -
-       double bicepstriceps_rightarm=emg_filtered_biceps_right-emg_filtered_triceps_right; 
+            for(int n =0; n<1500;n++){                                                  //read for 1500 samples as calibration
+                
+               //biceps right arm read+filtering
+               double emg_biceps_right=emg_biceps_right_in.read();                                                      //read the emg value from the elektrodes 
+               double emg_filtered_high_biceps_right= filterhigh_b1.step(emg_biceps_right);                             //high pass filter, to remove offset
+               double emg_filtered_high_notch_1_biceps_right=filternotch1_b1.step(emg_filtered_high_biceps_right);      //notch filter, to remove noise
+               double emg_abs_biceps_right=fabs(emg_filtered_high_notch_1_biceps_right);                                //rectify the signal, fabs because float   
+               double emg_filtered_biceps_right=filterlow_b1.step(emg_abs_biceps_right);                                //low pass filter to envelope the signal
+               
+                //triceps right arm read+filtering
+               double emg_triceps_right=emg_triceps_right_in.read();                                                    //read the emg value from the elektrodes
+               double emg_filtered_high_triceps_right= filterhigh_t1.step(emg_triceps_right);                           //high pass filter, to remove offset
+               double emg_filtered_high_notch_1_triceps_right=filternotch1_t1.step(emg_filtered_high_triceps_right);    //notch filter, to remove noise
+               double emg_abs_triceps_right=fabs(emg_filtered_high_notch_1_triceps_right);                              //rectify the signal, fabs because float   
+               double emg_filtered_triceps_right=filterlow_t1.step(emg_abs_triceps_right);                              //low pass filter to envelope the signal
+               
+               //biceps is +, triceps is -
+               double bicepstriceps_rightarm=emg_filtered_biceps_right-emg_filtered_triceps_right; 
                                 
-            if (bicepstriceps_rightarm > max_biceps)                    //determine what the highest reachable emg signal is
-                {
-            max_biceps = bicepstriceps_rightarm;
+                    if (bicepstriceps_rightarm > max_biceps){                    //determine what the highest reachable emg signal is
+                
+                        max_biceps = bicepstriceps_rightarm;
             
-                }
+                    }
                 wait(0.001f); //to sample at same freq; 1000Hz
-                }
+            }
+            
             treshold_biceps_right=percentage_max_biceps*max_biceps; //determine new treshold, right biceps is +
             treshold_biceps_left=-treshold_biceps_right;            //determine new treshold, right biceps is -
             
@@ -339,190 +345,192 @@
             wait(0.2f);
             
             //remind the person of what motor will go on an which direction  
-            if (switch_signal%2==0)
-            {green=0;
-            red=1;}
+                if (switch_signal%2==0){
+                    green=0;
+                    red=1;
+                }
             
-            else       {green=1;
-            red=0;}
+                else{
+                    green=1;
+                    red=0;
                 }
-            //reattach the functions to the tickers that were detached.     
-            ticker_switch.attach(&switch_function,1.0);
-            sample_timer.attach(&filter, 0.001);
-                }
+        }
+    //reattach the functions to the tickers that were detached.     
+    ticker_switch.attach(&switch_function,1.0);
+    sample_timer.attach(&filter, 0.001);
+}
 //=======================================================================================================================================================   
 
-//The calibration of the Triceps threshold is started by a button. 
+//The calibration of the triceps threshold is started by a button. 
 //It determines the maximum reachable EMG signal and takes a percentage of this to determine the new threshold. 
 void calibration_triceps(){
         if(button_calibration_triceps==0){      //only runs when button is pressed
         
-        //detach tickers of other voids that control the switched and motors. To avoid unwanted moving and switching of the motors. 
-        ticker_switch.detach();
-        sample_timer.detach();
-        
-        //toggel LEDS and let the user know that callibration of triceps is starting. 
-        red=1;
-        green=1;
-        blue=0;
-      
-        pc.printf("start of calibration triceps\r\n");
-        pc.printf("\r\n");
+            //detach tickers of other voids that control the switched and motors. To avoid unwanted moving and switching of the motors. 
+            ticker_switch.detach();
+            sample_timer.detach();
+            
+            //toggel LEDS and let the user know that callibration of triceps is starting. 
+            red=1;
+            green=1;
+            blue=0;
+          
+            pc.printf("start of calibration triceps\r\n");
+            pc.printf("\r\n");
 
-//start calibration of triceps 
-        for(int n =0; n<1500;n++)                                                  //read for 2000 samples as calibration
-                {
-         //biceps right arm read+filtering
-       double emg_biceps_right=emg_biceps_right_in.read();                                                      //read the emg value from the elektrodes 
-       double emg_filtered_high_biceps_right= filterhigh_b1.step(emg_biceps_right);                             //high pass filter, to remove offset
-       double emg_filtered_high_notch_1_biceps_right=filternotch1_b1.step(emg_filtered_high_biceps_right);      //notch filter, to remove noise
-       double emg_abs_biceps_right=fabs(emg_filtered_high_notch_1_biceps_right);                                //rectify the signal, fabs because float   
-       double emg_filtered_biceps_right=filterlow_b1.step(emg_abs_biceps_right);                                //low pass filter to envelope the signal
-       
-        //triceps right arm read+filtering
-       double emg_triceps_right=emg_triceps_right_in.read();                                                    //read the emg value from the elektrodes
-       double emg_filtered_high_triceps_right= filterhigh_t1.step(emg_triceps_right);                           //high pass filter, to remove offset
-       double emg_filtered_high_notch_1_triceps_right=filternotch1_t1.step(emg_filtered_high_triceps_right);    //notch filter, to remove noise
-       double emg_abs_triceps_right=fabs(emg_filtered_high_notch_1_triceps_right);                              //rectify the signal, fabs because float   
-       double emg_filtered_triceps_right=filterlow_t1.step(emg_abs_triceps_right);                              //low pass filter to envelope the signal
-       
-       //biceps is +, triceps is -
-       double bicepstriceps_rightarm=emg_filtered_biceps_right-emg_filtered_triceps_right; 
-                                
-            if (bicepstriceps_rightarm < max_triceps)                    //determine what the lowest reachable emg of triceps (max in negative part) signal is
-                {
-            max_triceps = bicepstriceps_rightarm;
-            
-                }
-                wait(0.001f); //to sample at same freq; 1000Hz
+        //start calibration of triceps 
+                for(int n =0; n<1500;n++){                                                  //read for 2000 samples as calibration
+    
+                     //biceps right arm read+filtering
+                   double emg_biceps_right=emg_biceps_right_in.read();                                                      //read the emg value from the elektrodes 
+                   double emg_filtered_high_biceps_right= filterhigh_b1.step(emg_biceps_right);                             //high pass filter, to remove offset
+                   double emg_filtered_high_notch_1_biceps_right=filternotch1_b1.step(emg_filtered_high_biceps_right);      //notch filter, to remove noise
+                   double emg_abs_biceps_right=fabs(emg_filtered_high_notch_1_biceps_right);                                //rectify the signal, fabs because float   
+                   double emg_filtered_biceps_right=filterlow_b1.step(emg_abs_biceps_right);                                //low pass filter to envelope the signal
+                   
+                    //triceps right arm read+filtering
+                   double emg_triceps_right=emg_triceps_right_in.read();                                                    //read the emg value from the elektrodes
+                   double emg_filtered_high_triceps_right= filterhigh_t1.step(emg_triceps_right);                           //high pass filter, to remove offset
+                   double emg_filtered_high_notch_1_triceps_right=filternotch1_t1.step(emg_filtered_high_triceps_right);    //notch filter, to remove noise
+                   double emg_abs_triceps_right=fabs(emg_filtered_high_notch_1_triceps_right);                              //rectify the signal, fabs because float   
+                   double emg_filtered_triceps_right=filterlow_t1.step(emg_abs_triceps_right);                              //low pass filter to envelope the signal
+                   
+                   //biceps is +, triceps is -
+                   double bicepstriceps_rightarm=emg_filtered_biceps_right-emg_filtered_triceps_right; 
+                                        
+                        if (bicepstriceps_rightarm < max_triceps){                    //determine what the lowest reachable emg of triceps (max in negative part) signal is
+                            
+                        max_triceps = bicepstriceps_rightarm;
+                        
+                        }
+                    wait(0.001f); //to sample at same freq; 1000Hz
                 }
             treshold_triceps=percentage_max_triceps*max_triceps;        //calculate the new treshold. This is a negative number due to the sum!
-            
+                        
             //Let the user know that the calibration is done. 
             pc.printf(" end of calibration\r\n");   
             pc.printf(" change of cv triceps: %f ",treshold_triceps ); 
             blue=!blue;
             wait(0.2f);
-            if (switch_signal%2==0)
-            {green=0;
-            red=1;}
-            
-            else       {green=1;
-            red=0;}  
+                if (switch_signal%2==0){
+                    green=0;
+                    red=1;
                 }
+                        
+                else{
+                    green=1;
+                    red=0;
+                }  
+            }
                 
-            //reattach the functions to the tickers that were detached. 
-            sample_timer.attach(&filter, 0.001);    
-            ticker_switch.attach(&switch_function,1.0);    
-                }
+    //reattach the functions to the tickers that were detached. 
+    sample_timer.attach(&filter, 0.001);    
+    ticker_switch.attach(&switch_function,1.0);    
+}
 //=======================================================================================================================================================   
 
 //=======================================================================================================================================================   
 //program
 //=======================================================================================================================================================   
-int main()
-{  
-
-pc.baud(115200); //connect with pc with baudrate 115200
-green=1;            //led is off (1), at beginning  
-blue=1;             //led is off (1), at beginning
-red=0;              //led is on (0),  at beginning
+int main(){  
 
-//attach tickers to functions
-sample_timer.attach(&filter, Ts);                             //continously execute the EMG reader and filter, it ensures that filter and sampling is executed every 1/frequency seconds
-ticker_switch.attach(&switch_function,1.0);                   //it is possible to switch only once in a second, this ensures that the switch is not reacting on one signal multiple times.
-ticker_referenceangle.attach(&reference, Ts);
-ticker_controllerm1.attach(&m1_controller, Ts);
-ticker_encoder.attach(&encoders, Ts);
-ticker_calibration_biceps.attach (&calibration_biceps,2.0);   //to call calibration biceps, stop EMG sampling and switch
-ticker_calibration_triceps.attach(&calibration_triceps,2.0);  //to call calibration triceps, stop EMG sampling and switch
-
-//PID controller
-PID_controller.PIDF(Kp,Ki,Kd,N,Ts);
+    pc.baud(115200); //connect with pc with baudrate 115200
+    green=1;            //led is off (1), at beginning  
+    blue=1;             //led is off (1), at beginning
+    red=0;              //led is on (0),  at beginning
+    
+    //attach tickers to functions
+    sample_timer.attach(&filter, Ts);                             //continously execute the EMG reader and filter, it ensures that filter and sampling is executed every 1/frequency seconds
+    ticker_switch.attach(&switch_function,1.0);                   //it is possible to switch only once in a second, this ensures that the switch is not reacting on one signal multiple times.
+    ticker_referenceangle.attach(&reference, Ts);
+    ticker_controllerm1.attach(&m1_controller, Ts);
+    ticker_encoder.attach(&encoders, Ts);
+    ticker_calibration_biceps.attach (&calibration_biceps,2.0);   //to call calibration biceps, stop EMG sampling and switch
+    ticker_calibration_triceps.attach(&calibration_triceps,2.0);  //to call calibration triceps, stop EMG sampling and switch
+    
+    //PID controller
+    PID_controller.PIDF(Kp,Ki,Kd,N,Ts);
+    
+    //Encoder
+    //QEI Encoder1(D13,D12, NC, rev_rond,QEI::X4_ENCODING);
+    
+    //Show the user what the starting motor will be and what will happen
+    pc.printf("We will start the demonstration\r\n");
+    pc.printf("\r\n\r\n\r\n");
 
-//Encoder
-//QEI Encoder1(D13,D12, NC, rev_rond,QEI::X4_ENCODING);
-
-//Show the user what the starting motor will be and what will happen
-pc.printf("We will start the demonstration\r\n");
-pc.printf("\r\n\r\n\r\n");
-
-    if (switch_signal%2==0)  
-     {pc.printf("If you contract the biceps, the robot will go right \r\n");
-     pc.printf("If you contract the triceps, the robot will go left \r\n");
-      pc.printf("\r\n");
-     }
+        if (switch_signal%2==0){  
+            pc.printf("If you contract the biceps, the robot will go right \r\n");
+            pc.printf("If you contract the triceps, the robot will go left \r\n");
+            pc.printf("\r\n");
+         }
        
     
-    else
-     {pc.printf("If you contract the biceps, the robot will go up \r\n");
-     pc.printf("If you contract the triceps, the robot will go down \r\n");
-      pc.printf("\r\n");
-     }
+        else{
+            pc.printf("If you contract the biceps, the robot will go up \r\n");
+            pc.printf("If you contract the triceps, the robot will go down \r\n");
+            pc.printf("\r\n");
+        }
      
 //=======================================================================================================================================================   
 //endless loop
 
 
-    while (true) {                        // neverending loop
+    while (true) {                      //neverending loop
         
-    if (onoffsignal_biceps==-1){  //left biceps contracted                        
+        if (onoffsignal_biceps==-1){    //left biceps contracted                        
     
-         if (switch_signal%2==0){ //switch even                    
+            if (switch_signal%2==0){    //switch even                    
           
-            speedmotor1=controlOutput;
+                speedmotor1=controlOutput;  //output PID-controller is the speed for motor1
 
-            if (speedmotor1<0){
-                richting_motor1 = cw;                   // motor 1, right
+                if (speedmotor1<0){         //if the output of the controller is negative, the direction is clockwise
+                    richting_motor1 = cw;      //motor 1, right
                 }
-            else   {
-                richting_motor1 = ccw;                  //motor 1, left
+                else   {                    //if the output is positive, the direction is counterclockwise
+                    richting_motor1 = ccw;     //motor 1, left
                 }
-                pwm_motor1 = fabs(speedmotor1);         //speed of motor 1
+                pwm_motor1 = fabs(speedmotor1);  //speed of motor 1, absolute because pwm cannot be negative
                
-         } 
+            } 
             
          
-         else                       //switch odd        
-         {
-           richting_motor2 = ccw;   //motor 2, up 
-           pwm_motor2 = speedmotor2;//speed of motor 2
+            else{               //switch odd        
+         
+                richting_motor2 = ccw;    //motor 2, up 
+                pwm_motor2 = speedmotor2; //speed of motor 2
            
-         }      
+            }      
               
-    }
-    else if (onoffsignal_biceps==1)                  //right biceps contracted
-    {
-         if (switch_signal%2==0)                     //switch signal even
-         {
-           speedmotor1=controlOutput;
+        }
+        else if (onoffsignal_biceps==1){       //right biceps contracted
+        
+            if (switch_signal%2==0){           //switch signal even         
+                speedmotor1=controlOutput;
      
-            if (speedmotor1<0){
-                richting_motor1 = cw;   //motor 1, right
+                if (speedmotor1<0){         //the same as for the left biceps, the robot turns in the right direction because of the reference signal
+                    richting_motor1 = cw;   //motor 1, right
                 }
-            else   {
-                richting_motor1 = ccw;  //motor 1, left
+                else {
+                    richting_motor1 = ccw;  //motor 1, left
                 }
                 pwm_motor1 = fabs(speedmotor1);      //speed of motor 1
           
-        } 
-         else                           //switch signal odd
-         {
-           richting_motor2 = cw;        //motor 2, down
-           pwm_motor2 = speedmotor2;    //speed motor 2
+            } 
+            else{                           //switch signal odd
+                richting_motor2 = cw;       //motor 2, down
+                pwm_motor2 = speedmotor2;   //speed motor 2
                 
-         }  
-    }   
-    else{ 
-    //no contraction of biceps, thus no motoraction.   
-    pwm_motor2=0;
-    pwm_motor1=0;
-    start_motor = true;
+            }  
+        }   
+        else{ 
+            //no contraction of biceps, thus no motoraction.   
+            pwm_motor2=0;
+            pwm_motor1=0;
+            start_motor = true;             //every time the motor is off, the bool is reset so that the reference void can start when the motor starts
     
-    
-       }              
+        }              
                
-}//while true closed
+    } //while true closed
         
 } //int main closed