Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: BSP OneHopeOnePrayer FINAL_AUDIO_RECORD AudioDemo
Fork of STM32L4xx_HAL_Driver by
Diff: Src/stm32l4xx_hal_cryp_ex.c
- Revision:
- 0:80ee8f3b695e
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Src/stm32l4xx_hal_cryp_ex.c Mon Nov 02 19:37:23 2015 +0000
@@ -0,0 +1,2331 @@
+/**
+ ******************************************************************************
+ * @file stm32l4xx_hal_cryp_ex.c
+ * @author MCD Application Team
+ * @version V1.1.0
+ * @date 16-September-2015
+ * @brief CRYPEx HAL module driver.
+ * This file provides firmware functions to manage the extended
+ * functionalities of the Cryptography (CRYP) peripheral.
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. Neither the name of STMicroelectronics nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l4xx_hal.h"
+
+#ifdef HAL_CRYP_MODULE_ENABLED
+
+#if defined(STM32L485xx) || defined(STM32L486xx)
+
+/** @addtogroup STM32L4xx_HAL_Driver
+ * @{
+ */
+
+/** @defgroup CRYPEx CRYPEx
+ * @brief CRYP Extended HAL module driver
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup CRYPEx_Private_Constants CRYPEx Private Constants
+ * @{
+ */
+#define CRYP_CCF_TIMEOUTVALUE 22000 /*!< CCF flag raising time-out value */
+#define CRYP_BUSY_TIMEOUTVALUE 22000 /*!< BUSY flag reset time-out value */
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup CRYPEx_Private_Functions CRYPEx Private Functions
+ * @{
+ */
+static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout);
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup CRYPEx_Exported_Functions CRYPEx Exported Functions
+ * @{
+ */
+
+
+/** @defgroup CRYPEx_Exported_Functions_Group1 Extended callback function
+ * @brief Extended callback functions.
+ *
+@verbatim
+ ===============================================================================
+ ##### Extended callback functions #####
+ ===============================================================================
+ [..] This section provides callback function:
+ (+) Computation completed.
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Computation completed callbacks.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+__weak void HAL_CRYPEx_ComputationCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* NOTE : This function should not be modified; when the callback is needed,
+ the HAL_CRYP_ErrorCallback can be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup CRYPEx_Exported_Functions_Group2 AES extended processing functions
+ * @brief Extended processing functions.
+ *
+@verbatim
+ ==============================================================================
+ ##### AES extended processing functions #####
+ ==============================================================================
+ [..] This section provides functions allowing to:
+ (+) Encrypt plaintext or decrypt cipher text using AES algorithm in different chaining modes.
+ Functions are generic (handles ECB, CBC and CTR and all modes) and are only differentiated
+ based on the processing type. Three processing types are available:
+ (++) Polling mode
+ (++) Interrupt mode
+ (++) DMA mode
+ (+) Generate and authentication tag in addition to encrypt/decrypt a plain/cipher text using AES
+ algorithm in different chaining modes.
+ Functions are generic (handles GCM, GMAC and CMAC) and process only one phase so that steps
+ can be skipped if so required. Functions are only differentiated based on the processing type.
+ Three processing types are available:
+ (++) Polling mode
+ (++) Interrupt mode
+ (++) DMA mode
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Carry out in polling mode the ciphering or deciphering operation according to
+ * hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and
+ * chaining modes ECB, CBC and CTR are managed by this function in polling mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
+ * or key derivation+decryption.
+ * Parameter is meaningless in case of key derivation.
+ * @param Size: Length of the input data buffer in bytes, must be a multiple of 16.
+ * Parameter is meaningless in case of key derivation.
+ * @param pOutputData: Pointer to the cipher text in case of encryption or plain text in case of
+ * decryption/key derivation+decryption, or pointer to the derivative keys in
+ * case of key derivation only.
+ * @param Timeout: Specify Timeout value
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYPEx_AES(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData, uint32_t Timeout)
+{
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Check parameters setting */
+ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+ {
+ if (pOutputData == NULL)
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+
+ /* Process Locked */
+ __HAL_LOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Call CRYP_ReadKey() API if the operating mode is set to
+ key derivation, CRYP_ProcessData() otherwise */
+ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+ {
+ if(CRYP_ReadKey(hcryp, pOutputData, Timeout) != HAL_OK)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ else
+ {
+ if(CRYP_ProcessData(hcryp, pInputData, Size, pOutputData, Timeout) != HAL_OK)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ /* If the state has not been set to SUSPENDED, set it to
+ READY, otherwise keep it as it is */
+ if (hcryp->State != HAL_CRYP_STATE_SUSPENDED)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+
+/**
+ * @brief Carry out in interrupt mode the ciphering or deciphering operation according to
+ * hcryp->Init structure fields, all operating modes (encryption, key derivation and/or decryption) and
+ * chaining modes ECB, CBC and CTR are managed by this function in interrupt mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
+ * or key derivation+decryption.
+ * Parameter is meaningless in case of key derivation.
+ * @param Size: Length of the input data buffer in bytes, must be a multiple of 16.
+ * Parameter is meaningless in case of key derivation.
+ * @param pOutputData: Pointer to the cipher text in case of encryption or plain text in case of
+ * decryption/key derivation+decryption, or pointer to the derivative keys in
+ * case of key derivation only.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYPEx_AES_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
+{
+ uint32_t inputaddr = 0;
+
+ if(hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Check parameters setting */
+ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+ {
+ if (pOutputData == NULL)
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+ /* Process Locked */
+ __HAL_LOCK(hcryp);
+
+ /* If operating mode is not limited to key derivation only,
+ get the buffers addresses and sizes */
+ if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
+ {
+
+ hcryp->CrypInCount = Size;
+ hcryp->pCrypInBuffPtr = pInputData;
+ hcryp->pCrypOutBuffPtr = pOutputData;
+ hcryp->CrypOutCount = Size;
+ }
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Enable Computation Complete Flag and Error Interrupts */
+ __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+
+
+ /* If operating mode is key derivation only, the input data have
+ already been entered during the initialization process. For
+ the other operating modes, they are fed to the CRYP hardware
+ block at this point. */
+ if (hcryp->Init.OperatingMode != CRYP_ALGOMODE_KEYDERIVATION)
+ {
+ /* Initiate the processing under interrupt in entering
+ the first input data */
+ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+ /* Increment/decrement instance pointer/counter */
+ hcryp->pCrypInBuffPtr += 16;
+ hcryp->CrypInCount -= 16;
+ /* Write the first input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+
+
+
+/**
+ * @brief Carry out in DMA mode the ciphering or deciphering operation according to
+ * hcryp->Init structure fields.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param pInputData: Pointer to the plain text in case of encryption or cipher text in case of decryption
+ * or key derivation+decryption.
+ * @param Size: Length of the input data buffer in bytes, must be a multiple of 16.
+ * @param pOutputData: Pointer to the cipher text in case of encryption or plain text in case of
+ * decryption/key derivation+decryption.
+ * @note Chaining modes ECB, CBC and CTR are managed by this function in DMA mode.
+ * @note Supported operating modes are encryption, decryption and key derivation with decryption.
+ * @note No DMA channel is provided for key derivation only and therefore, access to AES_KEYRx
+ * registers must be done by software.
+ * @note This API is not applicable to key derivation only; for such a mode, access to AES_KEYRx
+ * registers must be done by software thru HAL_CRYPEx_AES() or HAL_CRYPEx_AES_IT() APIs.
+ * @note pInputData and pOutputData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYPEx_AES_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint16_t Size, uint8_t *pOutputData)
+{
+ uint32_t inputaddr = 0;
+ uint32_t outputaddr = 0;
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Check parameters setting */
+ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_KEYDERIVATION)
+ {
+ /* no DMA channel is provided for key derivation operating mode,
+ access to AES_KEYRx registers must be done by software */
+ return HAL_ERROR;
+ }
+ else
+ {
+ if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+
+
+ /* Process Locked */
+ __HAL_LOCK(hcryp);
+
+ inputaddr = (uint32_t)pInputData;
+ outputaddr = (uint32_t)pOutputData;
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Set the input and output addresses and start DMA transfer */
+ CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Return function status */
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+
+
+
+
+/**
+ * @brief Carry out in polling mode the authentication tag generation as well as the ciphering or deciphering
+ * operation according to hcryp->Init structure fields.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param pInputData: Pointer to payload data in GCM payload phase,
+ * Parameter is meaningless in case of GCM/GMAC init, header and final phases,
+ * Pointer to B0 blocks in CMAC header phase,
+ * Pointer to C block in CMAC final phase.
+ * @param Size: Length of the input payload data buffer in bytes, must be a multiple of 16,
+ * Parameter is meaningless in case of GCM/GMAC init and header phases,
+ * Length of B blocks (in bytes, must be a multiple of 16) in CMAC header phase,
+ * Length of C block (in bytes) in CMAC final phase.
+ * @param pOutputData: Pointer to plain or cipher text in GCM payload phase,
+ * pointer to authentication tag in GCM/GMAC and CMAC final phases.
+ * Parameter is meaningless in case of GCM/GMAC init and header phases
+ * and in case of CMAC header phase.
+ * @param Timeout: Specify Timeout value
+ * @note Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+ * @note Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes
+ * can be skipped by the user if so required.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData, uint32_t Timeout)
+{
+ uint32_t index = 0;
+ uint32_t inputaddr = 0;
+ uint32_t outputaddr = 0;
+ uint32_t tagaddr = 0;
+ uint64_t headerlength = 0;
+ uint64_t inputlength = 0;
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* input/output parameters check */
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ if ((hcryp->Init.Header == NULL) || (hcryp->Init.HeaderSize == 0))
+ {
+ return HAL_ERROR;
+ }
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ /* In case of CMAC header phase resumption, we can have pInputData = NULL and Size = 0 */
+ if (((pInputData != NULL) && (Size == 0)) || ((pInputData == NULL) && (Size != 0)))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+ if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ if (pOutputData == NULL)
+ {
+ return HAL_ERROR;
+ }
+ if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+ {
+ return HAL_ERROR;
+ }
+ }
+
+
+ /* Process Locked */
+ __HAL_LOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /*=====================*/
+ /* GCM/GMAC init phase */
+ /*=====================*/
+ /* In case of init phase, the input data (Key and Initialization Vector) have
+ already been entered during the initialization process. Therefore, the
+ API just waits for the CCF flag to be set. */
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+ {
+ /* just wait for hash computation */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Mark that the initialization phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+ }
+ /*===============================*/
+ /* GCM/GMAC or CMAC header phase */
+ /*===============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ /* Set header phase; for GCM or GMAC, set data-byte at this point */
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+ }
+ else
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+ }
+
+ /* Enable the Peripheral */
+ __HAL_CRYP_ENABLE();
+
+ /* in case of CMAC, enter B0 block in header phase, before the header itself. */
+ /* If Size = 0 (possible case of resumption after CMAC header phase suspension),
+ skip these steps and go directly to header buffer feeding to the HW */
+ if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (Size != 0))
+ {
+ inputaddr = (uint32_t)pInputData;
+
+ for(index=0; (index < Size); index += 16)
+ {
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* If the suspension flag has been raised and if the processing is not about
+ to end, suspend processing */
+ if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < Size))
+ {
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+
+ /* Save current reading and writing locations of Input and Output buffers */
+ hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
+ /* Save the total number of bytes (B blocks + header) that remain to be
+ processed at this point */
+ hcryp->CrypInCount = hcryp->Init.HeaderSize + Size - (index+16);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ } /* for(index=0; (index < Size); index += 16) */
+ }
+
+ /* Enter header */
+ inputaddr = (uint32_t)hcryp->Init.Header;
+ for(index=0; (index < hcryp->Init.HeaderSize); index += 16)
+ {
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* If the suspension flag has been raised and if the processing is not about
+ to end, suspend processing */
+ if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < hcryp->Init.HeaderSize))
+ {
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+
+ /* Save current reading and writing locations of Input and Output buffers */
+ hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
+ /* Save the total number of bytes that remain to be processed at this point */
+ hcryp->CrypInCount = hcryp->Init.HeaderSize - (index+16);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ }
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+ }
+ /*========================*/
+ /* GCM/GMAC payload phase */
+ /*========================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+
+ /* if the header phase has been bypassed, AES must be enabled again */
+ if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+ {
+ __HAL_CRYP_ENABLE();
+ }
+
+ inputaddr = (uint32_t)pInputData;
+ outputaddr = (uint32_t)pOutputData;
+
+ /* Enter payload */
+ for(index=0; (index < Size); index += 16)
+ {
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* Retrieve output data: read the output block
+ from the Data Output Register */
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+
+ /* If the suspension flag has been raised and if the processing is not about
+ to end, suspend processing */
+ if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < Size))
+ {
+ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+ {
+ /* Ensure that Busy flag is reset */
+ if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ }
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+
+ /* Save current reading and writing locations of Input and Output buffers */
+ hcryp->pCrypOutBuffPtr = (uint8_t *)outputaddr;
+ hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
+ /* Save the number of bytes that remain to be processed at this point */
+ hcryp->CrypInCount = Size - (index+16);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+
+ }
+ /* Mark that the payload phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
+ }
+ /*==============================*/
+ /* GCM/GMAC or CMAC final phase */
+ /*==============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ tagaddr = (uint32_t)pOutputData;
+
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+
+ /* if the header and payload phases have been bypassed, AES must be enabled again */
+ if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+ {
+ __HAL_CRYP_ENABLE();
+ }
+
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+ {
+ headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+ inputlength = Size * 8; /* input length in bits */
+
+
+ if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+ {
+ hcryp->Instance->DINR = __RBIT((headerlength)>>32);
+ hcryp->Instance->DINR = __RBIT(headerlength);
+ hcryp->Instance->DINR = __RBIT((inputlength)>>32);
+ hcryp->Instance->DINR = __RBIT(inputlength);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+ {
+ hcryp->Instance->DINR = __REV((headerlength)>>32);
+ hcryp->Instance->DINR = __REV(headerlength);
+ hcryp->Instance->DINR = __REV((inputlength)>>32);
+ hcryp->Instance->DINR = __REV(inputlength);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+ {
+ hcryp->Instance->DINR = __ROR((headerlength)>>32, 16);
+ hcryp->Instance->DINR = __ROR(headerlength, 16);
+ hcryp->Instance->DINR = __ROR((inputlength)>>32, 16);
+ hcryp->Instance->DINR = __ROR(inputlength, 16);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+ {
+ hcryp->Instance->DINR = (uint32_t)(headerlength>>32);
+ hcryp->Instance->DINR = (uint32_t)(headerlength);
+ hcryp->Instance->DINR = (uint32_t)(inputlength>>32);
+ hcryp->Instance->DINR = (uint32_t)(inputlength);
+ }
+ }
+ else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ inputaddr = (uint32_t)pInputData;
+ /* Enter the last block made of a 128-bit value formatted
+ from the original B0 packet. */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ }
+
+
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+
+ /* Read the Auth TAG in the Data Out register */
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+ tagaddr+=4;
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+ tagaddr+=4;
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+ tagaddr+=4;
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Mark that the final phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+ /* Disable the Peripheral */
+ __HAL_CRYP_DISABLE();
+ }
+ /*=================================================*/
+ /* case incorrect hcryp->Init.GCMCMACPhase setting */
+ /*=================================================*/
+ else
+ {
+ hcryp->State = HAL_CRYP_STATE_ERROR;
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+
+
+/**
+ * @brief Carry out in interrupt mode the authentication tag generation as well as the ciphering or deciphering
+ * operation according to hcryp->Init structure fields.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param pInputData: Pointer to payload data in GCM payload phase,
+ * Parameter is meaningless in case of GCM/GMAC init, header and final phases,
+ * Pointer to B0 blocks in CMAC header phase,
+ * Pointer to C block in CMAC final phase.
+ * @param Size: Length of the input payload data buffer in bytes, must be a multiple of 16,
+ * Parameter is meaningless in case of GCM/GMAC init and header phases,
+ * Length of B blocks (in bytes, must be a multiple of 16) in CMAC header phase,
+ * Length of C block (in bytes) in CMAC final phase.
+ * @param pOutputData: Pointer to plain or cipher text in GCM payload phase,
+ * pointer to authentication tag in GCM/GMAC and CMAC final phases.
+ * Parameter is meaningless in case of GCM/GMAC init and header phases
+ * and in case of CMAC header phase.
+ * @note Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+ * @note Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes
+ * can be skipped by the user if so required.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
+{
+
+ uint32_t inputaddr = 0;
+ uint64_t headerlength = 0;
+ uint64_t inputlength = 0;
+
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* input/output parameters check */
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ if ((hcryp->Init.Header == NULL) || (hcryp->Init.HeaderSize == 0))
+ {
+ return HAL_ERROR;
+ }
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ /* In case of CMAC header phase resumption, we can have pInputData = NULL and Size = 0 */
+ if (((pInputData != NULL) && (Size == 0)) || ((pInputData == NULL) && (Size != 0)))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+ if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ if (pOutputData == NULL)
+ {
+ return HAL_ERROR;
+ }
+ if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+ {
+ return HAL_ERROR;
+ }
+ }
+
+
+ /* Process Locked */
+ __HAL_LOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Enable Computation Complete Flag and Error Interrupts */
+ __HAL_CRYP_ENABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+
+
+
+ /*=====================*/
+ /* GCM/GMAC init phase */
+ /*=====================*/
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+ {
+ /* In case of init phase, the input data (Key and Initialization Vector) have
+ already been entered during the initialization process. Therefore, the
+ software just waits for the CCF interrupt to be raised and which will
+ be handled by CRYP_AES_Auth_IT() API. */
+ }
+ /*===============================*/
+ /* GCM/GMAC or CMAC header phase */
+ /*===============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ /* In case of CMAC, B blocks are first entered, before the header.
+ Therefore, B blocks and the header are entered back-to-back
+ as if it was only one single block.
+ However, in case of resumption after suspension, if all the
+ B blocks have been entered (in that case, Size = 0), only the
+ remainder of the non-processed header bytes are entered. */
+ if (Size != 0)
+ {
+ hcryp->CrypInCount = Size + hcryp->Init.HeaderSize;
+ hcryp->pCrypInBuffPtr = pInputData;
+ }
+ else
+ {
+ hcryp->CrypInCount = hcryp->Init.HeaderSize;
+ hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+ }
+ }
+ else
+ {
+ /* Get the header addresses and sizes */
+ hcryp->CrypInCount = hcryp->Init.HeaderSize;
+ hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+ }
+
+ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+
+ /* Set header phase; for GCM or GMAC, set data-byte at this point */
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+ }
+ else
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+ }
+
+ /* Enable the Peripheral */
+ __HAL_CRYP_ENABLE();
+
+ /* Increment/decrement instance pointer/counter */
+ hcryp->pCrypInBuffPtr += 16;
+ hcryp->CrypInCount -= 16;
+
+
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
+ {
+ /* All B blocks will have been entered after the next
+ four DINR writing, so point at header buffer for
+ the next iteration */
+ hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+ }
+ }
+
+ /* Enter header first block to initiate the process
+ in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ }
+ /*========================*/
+ /* GCM/GMAC payload phase */
+ /*========================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+ /* Get the buffer addresses and sizes */
+ hcryp->CrypInCount = Size;
+ hcryp->pCrypInBuffPtr = pInputData;
+ hcryp->pCrypOutBuffPtr = pOutputData;
+ hcryp->CrypOutCount = Size;
+
+ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+
+ /* if the header phase has been bypassed, AES must be enabled again */
+ if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+ {
+ __HAL_CRYP_ENABLE();
+ }
+
+ /* Increment/decrement instance pointer/counter */
+ hcryp->pCrypInBuffPtr += 16;
+ hcryp->CrypInCount -= 16;
+
+ /* Enter payload first block to initiate the process
+ in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ }
+ /*==============================*/
+ /* GCM/GMAC or CMAC final phase */
+ /*==============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ hcryp->pCrypOutBuffPtr = pOutputData;
+
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+
+ /* if the header and payload phases have been bypassed, AES must be enabled again */
+ if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+ {
+ __HAL_CRYP_ENABLE();
+ }
+
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+ {
+ headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+ inputlength = Size * 8; /* input length in bits */
+ /* Write the number of bits in the header on 64 bits followed by the number
+ of bits in the payload on 64 bits as well */
+ if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+ {
+ hcryp->Instance->DINR = __RBIT((headerlength)>>32);
+ hcryp->Instance->DINR = __RBIT(headerlength);
+ hcryp->Instance->DINR = __RBIT((inputlength)>>32);
+ hcryp->Instance->DINR = __RBIT(inputlength);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+ {
+ hcryp->Instance->DINR = __REV((headerlength)>>32);
+ hcryp->Instance->DINR = __REV(headerlength);
+ hcryp->Instance->DINR = __REV((inputlength)>>32);
+ hcryp->Instance->DINR = __REV(inputlength);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+ {
+ hcryp->Instance->DINR = __ROR((headerlength)>>32, 16);
+ hcryp->Instance->DINR = __ROR(headerlength, 16);
+ hcryp->Instance->DINR = __ROR((inputlength)>>32, 16);
+ hcryp->Instance->DINR = __ROR(inputlength, 16);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+ {
+ hcryp->Instance->DINR = (uint32_t)(headerlength>>32);
+ hcryp->Instance->DINR = (uint32_t)(headerlength);
+ hcryp->Instance->DINR = (uint32_t)(inputlength>>32);
+ hcryp->Instance->DINR = (uint32_t)(inputlength);
+ }
+ }
+ else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ inputaddr = (uint32_t)pInputData;
+ /* Enter the last block made of a 128-bit value formatted
+ from the original B0 packet. */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ }
+ }
+ /*=================================================*/
+ /* case incorrect hcryp->Init.GCMCMACPhase setting */
+ /*=================================================*/
+ else
+ {
+ hcryp->State = HAL_CRYP_STATE_ERROR;
+ return HAL_ERROR;
+ }
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+
+
+/**
+ * @brief Carry out in DMA mode the authentication tag generation as well as the ciphering or deciphering
+ * operation according to hcryp->Init structure fields.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param pInputData: Pointer to payload data in GCM payload phase,
+ * Parameter is meaningless in case of GCM/GMAC init, header and final phases,
+ * Pointer to B0 blocks in CMAC header phase,
+ * Pointer to C block in CMAC final phase.
+ * @param Size: Length of the input payload data buffer in bytes, must be a multiple of 16,
+ * Parameter is meaningless in case of GCM/GMAC init and header phases,
+ * Length of B blocks (in bytes, must be a multiple of 16) in CMAC header phase,
+ * Length of C block (in bytes) in CMAC final phase.
+ * @param pOutputData: Pointer to plain or cipher text in GCM payload phase,
+ * pointer to authentication tag in GCM/GMAC and CMAC final phases.
+ * Parameter is meaningless in case of GCM/GMAC init and header phases
+ * and in case of CMAC header phase.
+ * @note Supported operating modes are encryption and decryption, supported chaining modes are GCM, GMAC and CMAC.
+ * @note Phases are singly processed according to hcryp->Init.GCMCMACPhase so that steps in these specific chaining modes
+ * can be skipped by the user if so required.
+ * @note pInputData and pOutputData buffers must be 32-bit aligned to ensure a correct DMA transfer to and from the IP.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYPEx_AES_Auth_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pInputData, uint64_t Size, uint8_t *pOutputData)
+{
+ uint32_t inputaddr = 0;
+ uint32_t outputaddr = 0;
+ uint32_t tagaddr = 0;
+ uint64_t headerlength = 0;
+ uint64_t inputlength = 0;
+
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* input/output parameters check */
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ if ((hcryp->Init.Header == NULL) || (hcryp->Init.HeaderSize == 0))
+ {
+ return HAL_ERROR;
+ }
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ if ((pInputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+ if ((pInputData == NULL) || (pOutputData == NULL) || (Size == 0))
+ {
+ return HAL_ERROR;
+ }
+ }
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ if (pOutputData == NULL)
+ {
+ return HAL_ERROR;
+ }
+ if ((hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC) && (pInputData == NULL))
+ {
+ return HAL_ERROR;
+ }
+ }
+
+
+ /* Process Locked */
+ __HAL_LOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /*=====================*/
+ /* GCM/GMAC init phase */
+ /*=====================*/
+ /* In case of init phase, the input data (Key and Initialization Vector) have
+ already been entered during the initialization process. No DMA transfer is
+ required at that point therefore, the software just waits for the CCF flag
+ to be raised. */
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+ {
+ /* just wait for hash computation */
+ if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Mark that the initialization phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+ /*===============================*/
+ /* GCM/GMAC or CMAC header phase */
+ /*===============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ /* Set header phase; for GCM or GMAC, set data-byte at this point */
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH|AES_CR_DATATYPE, CRYP_GCMCMAC_HEADER_PHASE|hcryp->Init.DataType);
+ }
+ else
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_HEADER_PHASE);
+ }
+
+ /* enter first B0 block in polling mode (no DMA transfer for B0) */
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE();
+
+ inputaddr = (uint32_t)pInputData;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+
+ if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ }
+
+
+ inputaddr = (uint32_t)hcryp->Init.Header;
+ /* Set the input address and start DMA transfer */
+ CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, hcryp->Init.HeaderSize, 0);
+ }
+ /*========================*/
+ /* GCM/GMAC payload phase */
+ /*========================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCM_PAYLOAD_PHASE);
+
+ inputaddr = (uint32_t)pInputData;
+ outputaddr = (uint32_t)pOutputData;
+ /* Set the input and output addresses and start DMA transfer */
+ CRYP_GCMCMAC_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+ }
+ /*==============================*/
+ /* GCM/GMAC or CMAC final phase */
+ /*==============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ tagaddr = (uint32_t)pOutputData;
+
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_GCMCMAC_FINAL_PHASE);
+
+ /* if the header and payload phases have been bypassed, AES must be enabled again */
+ if (hcryp->Phase == HAL_CRYP_PHASE_INIT_OVER)
+ {
+ __HAL_CRYP_ENABLE();
+ }
+
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_GCM_GMAC)
+ {
+ headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+ inputlength = Size * 8; /* input length in bits */
+ /* Write the number of bits in the header on 64 bits followed by the number
+ of bits in the payload on 64 bits as well */
+ if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+ {
+ hcryp->Instance->DINR = __RBIT((headerlength)>>32);
+ hcryp->Instance->DINR = __RBIT(headerlength);
+ hcryp->Instance->DINR = __RBIT((inputlength)>>32);
+ hcryp->Instance->DINR = __RBIT(inputlength);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+ {
+ hcryp->Instance->DINR = __REV((headerlength)>>32);
+ hcryp->Instance->DINR = __REV(headerlength);
+ hcryp->Instance->DINR = __REV((inputlength)>>32);
+ hcryp->Instance->DINR = __REV(inputlength);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+ {
+ hcryp->Instance->DINR = __ROR((headerlength)>>32, 16);
+ hcryp->Instance->DINR = __ROR(headerlength, 16);
+ hcryp->Instance->DINR = __ROR((inputlength)>>32, 16);
+ hcryp->Instance->DINR = __ROR(inputlength, 16);
+ }
+ else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+ {
+ hcryp->Instance->DINR = (uint32_t)(headerlength>>32);
+ hcryp->Instance->DINR = (uint32_t)(headerlength);
+ hcryp->Instance->DINR = (uint32_t)(inputlength>>32);
+ hcryp->Instance->DINR = (uint32_t)(inputlength);
+ }
+ }
+ else if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ inputaddr = (uint32_t)pInputData;
+ /* Enter the last block made of a 128-bit value formatted
+ from the original B0 packet. */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ }
+
+ /* No DMA transfer is required at that point therefore, the software
+ just waits for the CCF flag to be raised. */
+ if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Read the Auth TAG in the IN FIFO */
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+ tagaddr+=4;
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+ tagaddr+=4;
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+ tagaddr+=4;
+ *(uint32_t*)(tagaddr) = hcryp->Instance->DOUTR;
+
+ /* Mark that the final phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+ hcryp->State = HAL_CRYP_STATE_READY;
+ /* Disable the Peripheral */
+ __HAL_CRYP_DISABLE();
+ }
+ /*=================================================*/
+ /* case incorrect hcryp->Init.GCMCMACPhase setting */
+ /*=================================================*/
+ else
+ {
+ hcryp->State = HAL_CRYP_STATE_ERROR;
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup CRYPEx_Exported_Functions_Group3 AES suspension/resumption functions
+ * @brief Extended processing functions.
+ *
+@verbatim
+ ==============================================================================
+ ##### AES extended suspension and resumption functions #####
+ ==============================================================================
+ [..] This section provides functions allowing to:
+ (+) save in memory the Initialization Vector, the Key registers, the Control register or
+ the Suspend registers when a process is suspended by a higher priority message
+ (+) write back in CRYP hardware block the saved values listed above when the suspended
+ lower priority message processing is resumed.
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief In case of message processing suspension, read the Initialization Vector.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output: Pointer to the buffer containing the saved Initialization Vector.
+ * @note This value has to be stored for reuse by writing the AES_IVRx registers
+ * as soon as the interrupted processing has to be resumed.
+ * Applicable to all chaining modes.
+ * @note AES must be disabled when reading or resetting the IV values.
+ * @retval None
+ */
+void HAL_CRYPEx_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+ uint32_t outputaddr = (uint32_t)Output;
+
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR3);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR2);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR1);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->IVR0);
+}
+
+/**
+ * @brief In case of message processing resumption, rewrite the Initialization
+ * Vector in the AES_IVRx registers.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input: Pointer to the buffer containing the saved Initialization Vector to
+ * write back in the CRYP hardware block.
+ * @note Applicable to all chaining modes.
+ * @note AES must be disabled when reading or resetting the IV values.
+ * @retval None
+ */
+void HAL_CRYPEx_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+ uint32_t ivaddr = (uint32_t)Input;
+
+ hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
+}
+
+
+/**
+ * @brief In case of message GCM/GMAC or CMAC processing suspension, read the Suspend Registers.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output: Pointer to the buffer containing the saved Suspend Registers.
+ * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers
+ * as soon as the interrupted processing has to be resumed.
+ * @retval None
+ */
+void HAL_CRYPEx_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+ uint32_t outputaddr = (uint32_t)Output;
+
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP7R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP6R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP5R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP4R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP3R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP2R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP1R);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->SUSP0R);
+}
+
+/**
+ * @brief In case of message GCM/GMAC or CMAC processing resumption, rewrite the Suspend
+ * Registers in the AES_SUSPxR registers.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input: Pointer to the buffer containing the saved suspend registers to
+ * write back in the CRYP hardware block.
+ * @retval None
+ */
+void HAL_CRYPEx_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+ uint32_t ivaddr = (uint32_t)Input;
+
+ hcryp->Instance->SUSP7R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP6R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP5R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP4R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP3R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP2R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP1R = __REV(*(uint32_t*)(ivaddr));
+ ivaddr+=4;
+ hcryp->Instance->SUSP0R = __REV(*(uint32_t*)(ivaddr));
+}
+
+
+/**
+ * @brief In case of message GCM/GMAC or CMAC processing suspension, read the Key Registers.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output: Pointer to the buffer containing the saved Key Registers.
+ * @param KeySize: Indicates the key size (128 or 256 bits).
+ * @note These values have to be stored for reuse by writing back the AES_KEYRx registers
+ * as soon as the interrupted processing has to be resumed.
+ * @retval None
+ */
+void HAL_CRYPEx_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t KeySize)
+{
+ uint32_t keyaddr = (uint32_t)Output;
+
+ if (KeySize == CRYP_KEYSIZE_256B)
+ {
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR7);
+ keyaddr+=4;
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR6);
+ keyaddr+=4;
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR5);
+ keyaddr+=4;
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR4);
+ keyaddr+=4;
+ }
+
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR3);
+ keyaddr+=4;
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR2);
+ keyaddr+=4;
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR1);
+ keyaddr+=4;
+ *(uint32_t*)(keyaddr) = __REV(hcryp->Instance->KEYR0);
+}
+
+/**
+ * @brief In case of message GCM/GMAC or CMAC processing resumption, rewrite the Key
+ * Registers in the AES_KEYRx registers.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input: Pointer to the buffer containing the saved key registers to
+ * write back in the CRYP hardware block.
+ * @param KeySize: Indicates the key size (128 or 256 bits)
+ * @retval None
+ */
+void HAL_CRYPEx_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint32_t KeySize)
+{
+ uint32_t keyaddr = (uint32_t)Input;
+
+ if (KeySize == CRYP_KEYSIZE_256B)
+ {
+ hcryp->Instance->KEYR7 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ hcryp->Instance->KEYR6 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ hcryp->Instance->KEYR5 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ hcryp->Instance->KEYR4 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ }
+
+ hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
+ keyaddr+=4;
+ hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));
+}
+
+
+/**
+ * @brief In case of message GCM/GMAC or CMAC processing suspension, read the Control Register.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output: Pointer to the buffer containing the saved Control Register.
+ * @note This values has to be stored for reuse by writing back the AES_CR register
+ * as soon as the interrupted processing has to be resumed.
+ * @retval None
+ */
+void HAL_CRYPEx_Read_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Output)
+{
+ *(uint32_t*)(Output) = hcryp->Instance->CR;
+}
+
+/**
+ * @brief In case of message GCM/GMAC or CMAC processing resumption, rewrite the Control
+ * Registers in the AES_CR register.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input: Pointer to the buffer containing the saved Control Register to
+ * write back in the CRYP hardware block.
+ * @retval None
+ */
+void HAL_CRYPEx_Write_ControlRegister(CRYP_HandleTypeDef *hcryp, uint8_t* Input)
+{
+ hcryp->Instance->CR = *(uint32_t*)(Input);
+}
+
+/**
+ * @brief Request CRYP processing suspension when in polling or interruption mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @note Set the handle field SuspendRequest to the appropriate value so that
+ * the on-going CRYP processing is suspended as soon as the required
+ * conditions are met.
+ * @note It is advised not to suspend the CRYP processing when the DMA controller
+ * is managing the data transfer
+ * @retval None
+ */
+void HAL_CRYPEx_ProcessSuspend(CRYP_HandleTypeDef *hcryp)
+{
+ /* Set Handle Suspend Request field */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @addtogroup CRYPEx_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief DMA CRYP Input Data process complete callback
+ * for GCM, GMAC or CMAC chainging modes.
+ * @note Specific setting of hcryp fields are required only
+ * in the case of header phase where no output data DMA
+ * transfer is on-going (only input data transfer is enabled
+ * in such a case).
+ * @param hdma: DMA handle.
+ * @retval None
+ */
+static void CRYP_GCMCMAC_DMAInCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Disable the DMA transfer for input request */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+ }
+
+ /* Call input data transfer complete callback */
+ HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+ * @brief DMA CRYP Output Data process complete callback
+ * for GCM, GMAC or CMAC chainging modes.
+ * @note This callback is called only in the payload phase.
+ * @param hdma: DMA handle.
+ * @retval None
+ */
+static void CRYP_GCMCMAC_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Disable the DMA transfer for output request */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* Change the CRYP state to ready */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ /* Mark that the payload phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
+
+ /* Call output data transfer complete callback */
+ HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+ * @brief DMA CRYP communication error callback
+ * for GCM, GMAC or CMAC chainging modes.
+ * @param hdma: DMA handle
+ * @retval None
+ */
+static void CRYP_GCMCMAC_DMAError(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ hcryp->State= HAL_CRYP_STATE_ERROR;
+ hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;
+ HAL_CRYP_ErrorCallback(hcryp);
+ /* Clear Error Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
+}
+
+
+
+/**
+ * @brief Handle CRYP block input/output data handling under interruption
+ * for GCM, GMAC or CMAC chainging modes.
+ * @note The function is called under interruption only, once
+ * interruptions have been enabled by HAL_CRYPEx_AES_Auth_IT().
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef CRYP_AES_Auth_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t inputaddr = 0x0;
+ uint32_t outputaddr = 0x0;
+
+ if(hcryp->State == HAL_CRYP_STATE_BUSY)
+ {
+ /*=====================*/
+ /* GCM/GMAC init phase */
+ /*=====================*/
+ if (hcryp->Init.GCMCMACPhase == CRYP_GCM_INIT_PHASE)
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Mark that the initialization phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_INIT_OVER;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+ /* Call computation complete callback */
+ HAL_CRYPEx_ComputationCpltCallback(hcryp);
+ return HAL_OK;
+ }
+ /*===============================*/
+ /* GCM/GMAC or CMAC header phase */
+ /*===============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_HEADER_PHASE)
+ {
+ /* Check if all input header data have been entered */
+ if (hcryp->CrypInCount == 0)
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_OVER;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call computation complete callback */
+ HAL_CRYPEx_ComputationCpltCallback(hcryp);
+
+ return HAL_OK;
+ }
+ /* If suspension flag has been raised, suspend processing */
+ else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+ {
+ /* Ensure that CCF flag is set */
+ if(CRYP_WaitOnCCFlag(hcryp, CRYP_CCF_TIMEOUTVALUE) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ else /* Carry on feeding input data to the CRYP hardware block */
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Get the last Input data address */
+ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+
+ /* Increment/decrement instance pointer/counter */
+ hcryp->pCrypInBuffPtr += 16;
+ hcryp->CrypInCount -= 16;
+
+ if (hcryp->Init.ChainingMode == CRYP_CHAINMODE_AES_CMAC)
+ {
+ if (hcryp->CrypInCount == hcryp->Init.HeaderSize)
+ {
+ /* All B blocks will have been entered after the next
+ four DINR writing, so point at header buffer for
+ the next iteration */
+ hcryp->pCrypInBuffPtr = hcryp->Init.Header;
+ }
+ }
+
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+
+ return HAL_OK;
+ }
+ }
+ /*========================*/
+ /* GCM/GMAC payload phase */
+ /*========================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCM_PAYLOAD_PHASE)
+ {
+ /* Get the last output data address */
+ outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+
+ /* Retrieve the last block available from the CRYP hardware block:
+ read the output block from the Data Output Register */
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+
+ /* Increment/decrement instance pointer/counter */
+ hcryp->pCrypOutBuffPtr += 16;
+ hcryp->CrypOutCount -= 16;
+
+ /* Check if all output text has been retrieved */
+ if (hcryp->CrypOutCount == 0)
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ /* Mark that the payload phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_PAYLOAD_OVER;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call computation complete callback */
+ HAL_CRYPEx_ComputationCpltCallback(hcryp);
+
+ return HAL_OK;
+ }
+ /* If suspension flag has been raised, suspend processing */
+ else if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+ {
+ if (hcryp->Init.OperatingMode == CRYP_ALGOMODE_ENCRYPT)
+ {
+ /* Ensure that Busy flag is reset */
+ if(CRYP_WaitOnBusyFlagReset(hcryp, CRYP_BUSY_TIMEOUTVALUE) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_HEADER_SUSPENDED;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ return HAL_OK;
+ }
+ else /* Output data are still expected, carry on feeding the CRYP
+ hardware block with input data */
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ /* Get the last Input data address */
+ inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+
+ /* Increment/decrement instance pointer/counter */
+ hcryp->pCrypInBuffPtr += 16;
+ hcryp->CrypInCount -= 16;
+
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+
+ return HAL_OK;
+ }
+ }
+ /*==============================*/
+ /* GCM/GMAC or CMAC final phase */
+ /*==============================*/
+ else if (hcryp->Init.GCMCMACPhase == CRYP_GCMCMAC_FINAL_PHASE)
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* Get the last output data address */
+ outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+
+ /* Retrieve the last expected data from the CRYP hardware block:
+ read the output block from the Data Output Register */
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(CRYP_IT_CCFIE|CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ /* Mark that the header phase is over */
+ hcryp->Phase = HAL_CRYP_PHASE_FINAL_OVER;
+
+ /* Disable the Peripheral */
+ __HAL_CRYP_DISABLE();
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call computation complete callback */
+ HAL_CRYPEx_ComputationCpltCallback(hcryp);
+
+ return HAL_OK;
+ }
+ else
+ {
+ /* Clear Computation Complete Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+ hcryp->State = HAL_CRYP_STATE_ERROR;
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ return HAL_BUSY;
+ }
+}
+
+
+
+/**
+ * @brief Set the DMA configuration and start the DMA transfer
+ * for GCM, GMAC or CMAC chainging modes.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param inputaddr: Address of the Input buffer.
+ * @param Size: Size of the Input buffer un bytes, must be a multiple of 16.
+ * @param outputaddr: Address of the Output buffer, null pointer when no output DMA stream
+ * has to be configured.
+ * @retval None
+ */
+static void CRYP_GCMCMAC_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+
+ /* Set the input CRYP DMA transfer complete callback */
+ hcryp->hdmain->XferCpltCallback = CRYP_GCMCMAC_DMAInCplt;
+ /* Set the DMA error callback */
+ hcryp->hdmain->XferErrorCallback = CRYP_GCMCMAC_DMAError;
+
+ if (outputaddr != 0)
+ {
+ /* Set the output CRYP DMA transfer complete callback */
+ hcryp->hdmaout->XferCpltCallback = CRYP_GCMCMAC_DMAOutCplt;
+ /* Set the DMA error callback */
+ hcryp->hdmaout->XferErrorCallback = CRYP_GCMCMAC_DMAError;
+ }
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE();
+
+ /* Enable the DMA input stream */
+ HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4);
+
+ /* Enable the DMA input request */
+ SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+
+ if (outputaddr != 0)
+ {
+ /* Enable the DMA output stream */
+ HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4);
+
+ /* Enable the DMA output request */
+ SET_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+ }
+}
+
+
+
+/**
+ * @brief Write/read input/output data in polling mode.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input: Pointer to the Input buffer.
+ * @param Ilength: Length of the Input buffer in bytes, must be a multiple of 16.
+ * @param Output: Pointer to the returned buffer.
+ * @param Timeout: Specify Timeout value.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
+{
+ uint32_t index = 0;
+ uint32_t inputaddr = (uint32_t)Input;
+ uint32_t outputaddr = (uint32_t)Output;
+
+
+ for(index=0; (index < Ilength); index += 16)
+ {
+ /* Write the Input block in the Data Input register */
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+ hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
+ inputaddr+=4;
+
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* Read the Output block from the Data Output Register */
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
+ outputaddr+=4;
+
+ /* If the suspension flag has been raised and if the processing is not about
+ to end, suspend processing */
+ if ((hcryp->SuspendRequest == HAL_CRYP_SUSPEND) && ((index+16) < Ilength))
+ {
+ /* Reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+
+ /* Save current reading and writing locations of Input and Output buffers */
+ hcryp->pCrypOutBuffPtr = (uint8_t *)outputaddr;
+ hcryp->pCrypInBuffPtr = (uint8_t *)inputaddr;
+ /* Save the number of bytes that remain to be processed at this point */
+ hcryp->CrypInCount = Ilength - (index+16);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+
+ return HAL_OK;
+ }
+
+
+ }
+ /* Return function status */
+ return HAL_OK;
+
+}
+
+
+
+
+
+/**
+ * @brief Read derivative key in polling mode when CRYP hardware block is set
+ * in key derivation operating mode (mode 2).
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output: Pointer to the returned buffer.
+ * @param Timeout: Specify Timeout value.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_ReadKey(CRYP_HandleTypeDef *hcryp, uint8_t* Output, uint32_t Timeout)
+{
+ uint32_t outputaddr = (uint32_t)Output;
+
+ /* Wait for CCF flag to be raised */
+ if(CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+ return HAL_TIMEOUT;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG( CRYP_CCF_CLEAR);
+
+ /* Read the derivative key from the AES_KEYRx registers */
+ if (hcryp->Init.KeySize == CRYP_KEYSIZE_256B)
+ {
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR7);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR6);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR5);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR4);
+ outputaddr+=4;
+ }
+
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR3);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR2);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR1);
+ outputaddr+=4;
+ *(uint32_t*)(outputaddr) = __REV(hcryp->Instance->KEYR0);
+
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Set the DMA configuration and start the DMA transfer.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param inputaddr: Address of the Input buffer.
+ * @param Size: Size of the Input buffer in bytes, must be a multiple of 16.
+ * @param outputaddr: Address of the Output buffer.
+ * @retval None
+ */
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
+ /* Set the DMA error callback */
+ hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
+
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
+ /* Set the DMA error callback */
+ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
+
+ /* Enable the DMA input stream */
+ HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4);
+
+ /* Enable the DMA output stream */
+ HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4);
+
+ /* Enable In and Out DMA requests */
+ SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE();
+}
+
+
+/**
+ * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart = 0;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if((HAL_GetTick() - tickstart ) > Timeout)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Wait for Busy Flag to be reset during a GCM payload encryption process suspension.
+ * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout: Timeout duration.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnBusyFlagReset(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart = 0;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while(HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY))
+ {
+ /* Check for the Timeout */
+ if(Timeout != HAL_MAX_DELAY)
+ {
+ if((HAL_GetTick() - tickstart ) > Timeout)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+
+/**
+ * @brief DMA CRYP Input Data process complete callback.
+ * @param hdma: DMA handle.
+ * @retval None
+ */
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Disable the DMA transfer for input request */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+ /* Call input data transfer complete callback */
+ HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+ * @brief DMA CRYP Output Data process complete callback.
+ * @param hdma: DMA handle.
+ * @retval None
+ */
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ /* Disable the DMA transfer for output request */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_CCF_CLEAR);
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE();
+
+ /* Change the CRYP state to ready */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Call output data transfer complete callback */
+ HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+ * @brief DMA CRYP communication error callback.
+ * @param hdma: DMA handle.
+ * @retval None
+ */
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
+
+ hcryp->State= HAL_CRYP_STATE_ERROR;
+ hcryp->ErrorCode |= HAL_CRYP_DMA_ERROR;
+ HAL_CRYP_ErrorCallback(hcryp);
+ /* Clear Error Flag */
+ __HAL_CRYP_CLEAR_FLAG(CRYP_ERR_CLEAR);
+}
+
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#endif /* defined(STM32L485xx) || defined(STM32L486xx) */
+
+#endif /* HAL_CRYP_MODULE_ENABLED */
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+
