werkend filter: 50 hz notch 20 hz hoogdoorlaat 80 hz laagdoorlaat geabsoluteerd vermenigvuldigd met 10

Dependencies:   HIDScope mbed-dsp mbed

Fork of Project5-filtering2 by Dominique Clevers

main.cpp

Committer:
Daanmk
Date:
2014-10-16
Revision:
10:1efe8b0cddd0
Parent:
4:c8ec56d87a5b
Child:
11:a598cb27907f

File content as of revision 10:1efe8b0cddd0:

/***************************************/
/*                                     */
/*   BRONCODE GROEP 5, MODULE 9, 2014  */
/*       *****-THE SLAP-******         */
/*                                     */
/* -Dominique Clevers                  */
/* -Rianne van Dommelen                */
/* -Daan de Muinck Keizer              */
/* -David den Houting                  */
/* -Marjolein Thijssen                 */
/***************************************/
#include "mbed.h"
#include "HIDScope.h"
#include "arm_math.h"
 
//Define objects
AnalogIn    emg0(PTB0); //Biceps
AnalogIn    emg1(PTB1); //Triceps
HIDScope scope(5);
 
int const  windowsamples = 300; //aantal samples waaruit het window voor MOVAG bestaat, Met toestemming van Nik HuisintVeld

float       buffer1 [windowsamples];
//float       buffer2 [windowsamples];

arm_biquad_casd_df1_inst_f32 notch;
//constants for 50Hz notch
float notch_const[] = {0.5857841106784856, -1.3007020142696517e-16, 0.5857841106784856, -1.3007020142696517e-16, 0.17156822135697122};
//state values
float notch_states[4];
arm_biquad_casd_df1_inst_f32 highpass;
//constants for 5Hz highpass
float highpass_const[] = {0.8948577513857248, -1.7897155027714495, 0.8948577513857248, 0.8008009266036016};
//state values
float highpass_states[4];
arm_biquad_casd_df1_inst_f32 envelop;
//constants for 5Hz lowpass
float envelop_const[] = {0.005542711916075981, 0.011085423832151962, 0.005542711916075981, -1.7786300789392977, 0.8008009266036016};
//state values
float envelop_states[4];
 
void looper()
{
    int i = 0;
    /*variable to store value in*/    
    uint16_t emg_value;
    float filtered_emg;
    float filtered_emg_notch;
    float filtered_emg_abs;
    float filtered_emg_env;
    float emg_value_f32;
    /*put raw emg value both in red and in emg_value*/
    emg_value = emg0.read_u16(); // read direct ADC result, converted to 16 bit integer (0..2^16 = 0..65536 = 0..3.3V)
    emg_value_f32 = emg0.read();
 
    //process emg
    arm_biquad_cascade_df1_f32(&highpass, &emg_value_f32, &filtered_emg, 1 );
    arm_biquad_cascade_df1_f32(&notch, &filtered_emg, &filtered_emg_notch, 1 );
    filtered_emg_abs = fabs(filtered_emg_notch);
    arm_biquad_cascade_df1_f32(&envelop, &filtered_emg_abs, &filtered_emg_env, 1 );
   
   //buffers
   buffer1[i] = filtered_emg_abs;
   //buffer2[i] = 
   
    i++;
    //Als buffer vol zit, opnieuw vanaf 0 bijvullen
    if (i==windowsamples)
    i=0;
    
    //moving average filter
    float avg1,avg2;
    avg1=avg2=0;
    
        //Inhoud van een buffer (=gefilterd signaal) optellen
    for(int x=0; x<windowsamples; x++) {
        avg1 = avg1 + abs(buffer1[x]);
        //avg2 = avg2 + abs(buffer2[x]);
    }
    //Gemiddelde berekenen en relativeren tov maximum voluntary contraction
    avg1 = avg1/windowsamples;
    avg2 = avg2/windowsamples;
    
    scope.set(0,emg_value);     //uint value
    scope.set(1,filtered_emg);  //processed float
    scope.set(2,filtered_emg_notch); 
    scope.set(3,filtered_emg_abs); 
    scope.set(4,avg1);
    scope.send();
}
 
int main()
{
    Ticker log_timer;
   //set up filters. Use external array for constants
    arm_biquad_cascade_df1_init_f32(&notch,1 , notch_const, notch_states);
    arm_biquad_cascade_df1_init_f32(&highpass,1 ,highpass_const,highpass_states);
    arm_biquad_cascade_df1_init_f32(&envelop,1 ,envelop_const, envelop_states);
    
    log_timer.attach(looper, 0.005);
    while(1) //Loop
    {
      /*Empty!*/
      /*Everything is handled by the interrupt routine now!*/
    }
}