Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of mbed-dev by
targets/TARGET_ARM_SSG/TARGET_CM3DS_MPS2/serial_api.c
- Committer:
- AnnaBridge
- Date:
- 2018-02-16
- Revision:
- 182:57724642e740
- Parent:
- 168:9672193075cf
File content as of revision 182:57724642e740:
/* mbed Microcontroller Library * Copyright (c) 2006-2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // math.h required for floating point operations for baud rate calculation #include <math.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "gpio_api.h" /****************************************************************************** * INITIALIZATION ******************************************************************************/ static const PinMap PinMap_UART_TX[] = { {MCC_TX , UART_0, 0}, {USBTX , UART_1, 0}, {SH0_TX , UART_2, ALTERNATE_FUNC}, {SH1_TX , UART_3, ALTERNATE_FUNC}, {XB_TX , UART_4, ALTERNATE_FUNC}, {NC , NC , 0} }; static const PinMap PinMap_UART_RX[] = { {MCC_RX , UART_0, 0}, {USBRX , UART_1, 0}, {SH0_RX , UART_2, ALTERNATE_FUNC}, {SH1_RX , UART_3, ALTERNATE_FUNC}, {XB_RX , UART_4, ALTERNATE_FUNC}, {NC , NC , 0} }; #define UART_NUM 5 static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; struct serial_global_data_s { uint32_t serial_irq_id; gpio_t sw_rts, sw_cts; uint8_t count, rx_irq_set_flow, rx_irq_set_api; }; static struct serial_global_data_s uart_data[UART_NUM]; void serial_init(serial_t *obj, PinName tx, PinName rx) { uint32_t uart_ctrl = 0; /* Determine the UART to use */ UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); if ((int)uart == NC) { error("Serial pinout mapping failed"); return; } obj->uart = (CMSDK_UART_TypeDef *)uart; if (tx != NC) { uart_ctrl = 0x01; /* TX enable */ } if (rx != NC) { uart_ctrl |= 0x02; /* RX enable */ } switch (uart) { case UART_0: CMSDK_UART0->CTRL = uart_ctrl; obj->index = 0; break; case UART_1: CMSDK_UART1->CTRL = uart_ctrl; obj->index = 1; break; case UART_2: CMSDK_UART2->CTRL = 0; obj->index = 2; pin_function(tx, ALTERNATE_FUNC); pin_function(rx, ALTERNATE_FUNC); CMSDK_UART2->CTRL = uart_ctrl; break; case UART_3: CMSDK_UART3->CTRL = 0; obj->index = 3; pin_function(tx, ALTERNATE_FUNC); pin_function(rx, ALTERNATE_FUNC); CMSDK_UART3->CTRL = uart_ctrl; break; case UART_4: CMSDK_UART4->CTRL = 0; obj->index = 4; pin_function(tx, ALTERNATE_FUNC); pin_function(rx, ALTERNATE_FUNC); CMSDK_UART4->CTRL = uart_ctrl; break; } /* Set default baud rate and format */ serial_baud(obj, 9600); /* * The CMSDK APB UART doesn't have support for flow control. * Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf */ uart_data[obj->index].sw_rts.pin = NC; uart_data[obj->index].sw_cts.pin = NC; if (uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } /* Clear UART */ serial_clear(obj); } void serial_free(serial_t *obj) { uart_data[obj->index].serial_irq_id = 0; } void serial_baud(serial_t *obj, int baudrate) { /* * The MPS2 has a simple divider to control the baud rate. * The formula is: * Baudrate = PCLK / BAUDDIV where PCLK = SystemCoreClock and * BAUDDIV is the desire baudrate * * So, if the desired baud rate is 9600 the calculation will be: * Baudrate = SystemCoreClock / 9600; */ /* Check to see if minimum baud value entered */ int baudrate_div = 0; if (baudrate == 0) { error("Invalid baudrate value"); return; } baudrate_div = SystemCoreClock / baudrate; if (baudrate >= 16) { switch ((int)obj->uart) { case UART_0: CMSDK_UART0->BAUDDIV = baudrate_div; break; case UART_1: CMSDK_UART1->BAUDDIV = baudrate_div; break; case UART_2: CMSDK_UART2->BAUDDIV = baudrate_div; break; case UART_3: CMSDK_UART3->BAUDDIV = baudrate_div; break; case UART_4: CMSDK_UART4->BAUDDIV = baudrate_div; break; default: error("Invalid uart object"); break; } } else { error("Invalid baudrate value"); } } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { /* * The CMSDK APB UART is a simple design that supports 8-bit communication * without parity, and is fixed at one stop bit per configuration. * Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf */ error("serial format function not supported"); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t intstatus, uint32_t index, CMSDK_UART_TypeDef *puart) { SerialIrq irq_type; switch (intstatus) { case 1: irq_type = TxIrq; break; case 2: irq_type = RxIrq; break; default: return; } if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) { gpio_write(&uart_data[index].sw_rts, 1); /* Disable interrupt if it wasn't enabled by the application */ if (!uart_data[index].rx_irq_set_api) { /* Disable Rx interrupt */ puart->CTRL &= ~(CMSDK_UART_CTRL_RXIRQEN_Msk); } } if (uart_data[index].serial_irq_id != 0) { if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) { irq_handler(uart_data[index].serial_irq_id, irq_type); } } if (irq_type == TxIrq) { /* Clear the TX interrupt Flag */ puart->INTCLEAR |= 0x01; } else { /* Clear the Rx interupt Flag */ puart->INTCLEAR |= 0x02; } } void uart0_irq() { uart_irq(CMSDK_UART0->INTSTATUS & 0x3, 0, (CMSDK_UART_TypeDef*)CMSDK_UART0); } void uart1_irq() { uart_irq(CMSDK_UART1->INTSTATUS & 0x3, 1, (CMSDK_UART_TypeDef*)CMSDK_UART1); } void uart2_irq() { uart_irq(CMSDK_UART2->INTSTATUS & 0x3, 2, (CMSDK_UART_TypeDef*)CMSDK_UART2); } void uart3_irq() { uart_irq(CMSDK_UART3->INTSTATUS & 0x3, 3, (CMSDK_UART_TypeDef*)CMSDK_UART3); } void uart4_irq() { uart_irq(CMSDK_UART4->INTSTATUS & 0x3, 4, (CMSDK_UART_TypeDef*)CMSDK_UART4); } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; uart_data[obj->index].serial_irq_id = id; } static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { case UART_0: irq_n = UART0_IRQn; vector = (uint32_t)&uart0_irq; break; case UART_1: irq_n = UART1_IRQn; vector = (uint32_t)&uart1_irq; break; case UART_2: irq_n = UART2_IRQn; vector = (uint32_t)&uart2_irq; break; case UART_3: irq_n = UART3_IRQn; vector = (uint32_t)&uart3_irq; break; case UART_4: irq_n = UART4_IRQn; vector = (uint32_t)&uart4_irq; break; } if (enable) { if (irq == TxIrq) { /* Set TX interrupt enable in CTRL REG */ obj->uart->CTRL |= CMSDK_UART_CTRL_TXIRQEN_Msk; } else { /* Set Rx interrupt on in CTRL REG */ obj->uart->CTRL |= CMSDK_UART_CTRL_RXIRQEN_Msk; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else if ((irq == TxIrq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { /* Disable IRQ */ int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); obj->uart->CTRL &= ~(1 << (irq + 2)); all_disabled = (obj->uart->CTRL & (1 << (other_irq + 2))) == 0; if (all_disabled) { NVIC_DisableIRQ(irq_n); } } } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if (RxIrq == irq) { uart_data[obj->index].rx_irq_set_api = enable; } serial_irq_set_internal(obj, irq, enable); } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { while (serial_readable(obj) == 0) { /* NOP */ } return obj->uart->DATA; } void serial_putc(serial_t *obj, int c) { while (serial_writable(obj)) { /* NOP */ } obj->uart->DATA = c; } int serial_readable(serial_t *obj) { return obj->uart->STATE & 0x2; } int serial_writable(serial_t *obj) { return obj->uart->STATE & 0x1; } void serial_clear(serial_t *obj) { obj->uart->DATA = 0x00; } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { /* * The CMSDK APB UART doesn't support serial break. * Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf */ error("serial_break_set function not supported"); } void serial_break_clear(serial_t *obj) { /* * The CMSDK APB UART doesn't support serial break. * Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf */ error("serial_break_clear function not supported"); } void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { /* * The CMSDK APB UART doesn't have support for flow control. * Ref. DDI0479C_cortex_m_system_design_kit_r1p0_trm.pdf */ error("serial_set_flow_control function not supported"); }