Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FXAS21002 FXOS8700 MbedJSONValue mbed mtsas
Fork of VVV_MultiTech_Dragonfly_ATT_Dallas by
Diff: main.cpp
- Revision:
- 6:7946b5c2376a
- Parent:
- 5:a946ef74a8c4
- Child:
- 7:dd550a829ece
--- a/main.cpp Sat Sep 26 22:07:27 2015 +0000
+++ b/main.cpp Wed Dec 09 21:35:00 2015 +0000
@@ -1,6 +1,6 @@
/*************************************************************************
* Dragonfly Example program for 2015 AT&T Government Solutions Hackathon
- *
+ *
* The following hardware is required to successfully run this program:
* - MultiTech UDK2 (4" square white PCB with Arduino headers, antenna
* connector, micro USB ports, and 40-pin connector for Dragonfly)
@@ -45,10 +45,23 @@
* Go have fun and make something cool!
*
************************************************************************/
-
+/*
+Sample Program Description:
+ This Program will enable to Multi-Tech Dragonfly platform to utilize ROHM's Multi-sensor Shield Board.
+ This program will initialize all sensors on the shield and then read back the sensor data.
+ Data will then be output to the UART Debug Terminal every 1 second.
+
+Sample Program Author:
+ ROHM USDC
+
+Additional Resources:
+ ROHM Sensor Shield GitHub Repository: https://github.com/ROHMUSDC/ROHM_SensorPlatform_Multi-Sensor-Shield
+*/
+
+
+
#include "mbed.h"
#include "mtsas.h"
-#include "x_nucleo_iks01a1.h"
#include "MbedJSONValue.h"
#include "HTTPJson.h"
#include <string>
@@ -85,19 +98,9 @@
std::string url = "http://api-m2x.att.com/v2/devices/" + m2x_device_id + "/update";
-// handle to MEMs board object
-static X_NUCLEO_IKS01A1* mems = X_NUCLEO_IKS01A1::Instance();
-
-// Moisture sensor
-AnalogIn moisture_sensor(A0);
-
-// Button
-InterruptIn button(D8);
-bool button_pressed = false;
// variables for sensor data
float temp_celsius;
-float temp_fahrenheit;
float humidity_percent;
float pressure_mbar;
float moisture_percent;
@@ -108,110 +111,348 @@
// misc variables
static char wall_of_dash[] = "--------------------------------------------------";
bool radio_ok = false;
-static int thpm_interval_ms = 2000;
-static int motion_interval_ms = 250;
-static int print_interval_ms = 10000;
+static int thpm_interval_ms = 5000;
+static int motion_interval_ms = 5000;
+static int print_interval_ms = 5000;
+static int sms_interval_ms = 60000;
static int post_interval_ms = 30000;
int debug_baud = 115200;
+
+
+
+/****************************************************************************************************
+
+ ****************************************************************************************************/
+
+//Macros for checking each of the different Sensor Devices
+#define AnalogTemp //BDE0600
+#define AnalogUV //ML8511
+#define HallSensor //BU52011
+#define RPR0521 //RPR0521
+#define KMX62 //KMX61, Accel/Mag
+#define COLOR //BH1745
+#define KX022 //KX022, Accel Only
+#define Pressure //BM1383
+#define SMS //allow SMS messaging
+#define Web //allow M2X communication
+
+
+//Define Pins for I2C Interface
+I2C i2c(I2C_SDA, I2C_SCL);
+bool RepStart = true;
+bool NoRepStart = false;
+
+//Define Sensor Variables
+#ifdef AnalogTemp
+AnalogIn BDE0600_Temp(PC_4); //Mapped to A2
+uint16_t BDE0600_Temp_value;
+float BDE0600_output;
+#endif
+
+#ifdef AnalogUV
+AnalogIn ML8511_UV(PC_1); //Mapped to A4
+uint16_t ML8511_UV_value;
+float ML8511_output;
+#endif
+
+#ifdef HallSensor
+DigitalIn Hall_GPIO0(PC_8);
+DigitalIn Hall_GPIO1(PB_5);
+int Hall_Return1;
+int Hall_Return0;
+int32_t Hall_Return[2];
+#endif
+
+#ifdef RPR0521
+int RPR0521_addr_w = 0x70; //7bit addr = 0x38, with write bit 0
+int RPR0521_addr_r = 0x71; //7bit addr = 0x38, with read bit 1
+char RPR0521_ModeControl[2] = {0x41, 0xE6};
+char RPR0521_ALSPSControl[2] = {0x42, 0x03};
+char RPR0521_Persist[2] = {0x43, 0x20};
+char RPR0521_Addr_ReadData = 0x44;
+char RPR0521_Content_ReadData[6];
+int RPR0521_PS_RAWOUT = 0; //this is an output
+float RPR0521_PS_OUT = 0;
+int RPR0521_ALS_D0_RAWOUT = 0;
+int RPR0521_ALS_D1_RAWOUT = 0;
+float RPR0521_ALS_DataRatio = 0;
+float RPR0521_ALS_OUT = 0; //this is an output
+float RPR0521_ALS[2]; // is this ok taking an int to the [0] value and float to [1]???????????
+#endif
+
+#ifdef KMX62
+int KMX62_addr_w = 0x1C; //7bit addr = 0x38, with write bit 0
+int KMX62_addr_r = 0x1D; //7bit addr = 0x38, with read bit 1
+char KMX62_CNTL2[2] = {0x3A, 0x5F};
+char KMX62_Addr_Accel_ReadData = 0x0A;
+char KMX62_Content_Accel_ReadData[6];
+char KMX62_Addr_Mag_ReadData = 0x10;
+char KMX62_Content_Mag_ReadData[6];
+short int MEMS_Accel_Xout = 0;
+short int MEMS_Accel_Yout = 0;
+short int MEMS_Accel_Zout = 0;
+double MEMS_Accel_Conv_Xout = 0;
+double MEMS_Accel_Conv_Yout = 0;
+double MEMS_Accel_Conv_Zout = 0;
+
+short int MEMS_Mag_Xout = 0;
+short int MEMS_Mag_Yout = 0;
+short int MEMS_Mag_Zout = 0;
+float MEMS_Mag_Conv_Xout = 0;
+float MEMS_Mag_Conv_Yout = 0;
+float MEMS_Mag_Conv_Zout = 0;
+
+double MEMS_Accel[3];
+float MEMS_Mag[3];
+#endif
+
+#ifdef COLOR
+int BH1745_addr_w = 0x72; //write
+int BH1745_addr_r = 0x73; //read
+char BH1745_persistence[2] = {0x61, 0x03};
+char BH1745_mode1[2] = {0x41, 0x00};
+char BH1745_mode2[2] = {0x42, 0x92};
+char BH1745_mode3[2] = {0x43, 0x02};
+char BH1745_Content_ReadData[6];
+char BH1745_Addr_color_ReadData = 0x50;
+int BH1745_Red;
+int BH1745_Blue;
+int BH1745_Green;
+int32_t BH1745[3]; //Red, Blue Green matrix
+#endif
+
+#ifdef KX022
+int KX022_addr_w = 0x3C; //write
+int KX022_addr_r = 0x3D; //read
+char KX022_Accel_CNTL1[2] = {0x18, 0x41};
+char KX022_Accel_ODCNTL[2] = {0x1B, 0x02};
+char KX022_Accel_CNTL3[2] = {0x1A, 0xD8};
+char KX022_Accel_TILT_TIMER[2] = {0x22, 0x01};
+char KX022_Accel_CNTL2[2] = {0x18, 0xC1};
+char KX022_Content_ReadData[6];
+char KX022_Addr_Accel_ReadData = 0x06;
+float KX022_Accel_X;
+float KX022_Accel_Y;
+float KX022_Accel_Z;
+short int KX022_Accel_X_RawOUT = 0;
+short int KX022_Accel_Y_RawOUT = 0;
+short int KX022_Accel_Z_RawOUT = 0;
+int KX022_Accel_X_LB = 0;
+int KX022_Accel_X_HB = 0;
+int KX022_Accel_Y_LB = 0;
+int KX022_Accel_Y_HB = 0;
+int KX022_Accel_Z_LB = 0;
+int KX022_Accel_Z_HB = 0;
+float KX022_Accel[3];
+#endif
+
+#ifdef Pressure
+int Press_addr_w = 0xBA; //write
+int Press_addr_r = 0xBB; //read
+char PWR_DOWN[2] = {0x12, 0x01};
+char SLEEP[2] = {0x13, 0x01};
+char Mode_Control[2] = {0x14, 0xC4};
+char Press_Content_ReadData[6];
+char Press_Addr_ReadData =0x1A;
+int BM1383_Temp_highByte;
+int BM1383_Temp_lowByte;
+int BM1383_Pres_highByte;
+int BM1383_Pres_lowByte;
+int BM1383_Pres_leastByte;
+short int BM1383_Temp_Out;
+float BM1383_Temp_Conv_Out;
+float BM1383_Pres_Conv_Out;
+float_t BM1383[2]; // Temp is 0 and Pressure is 1
+float BM1383_Var;
+float BM1383_Deci;
+#endif
+
+/****************************************************************************************************
// function prototypes
+ ****************************************************************************************************/
bool init_mtsas();
-void read_temperature();
-void read_humidity();
-void read_pressure();
-void read_moisture();
-void read_magnetometer();
-void read_accelerometer();
-void read_gyroscope();
-void button_irq();
+void ReadAnalogTemp();
+void ReadAnalogUV ();
+void ReadHallSensor ();
+void ReadCOLOR ();
+void ReadRPR0521_ALS ();
+void ReadKMX62_Accel ();
+void ReadKMX62_Mag ();
+void ReadPressure ();
+void ReadKX022();
+/****************************************************************************************************
// main
-int main() {
+ ****************************************************************************************************/
+int main()
+{
mts::MTSLog::setLogLevel(mts::MTSLog::TRACE_LEVEL);
debug.baud(debug_baud);
logInfo("starting...");
-
+
+
+ /****************************************************************************************************
+ Initialize I2C Devices ************
+ ****************************************************************************************************/
+
+#ifdef RPR0521
+ i2c.write(RPR0521_addr_w, &RPR0521_ModeControl[0], 2, false);
+ i2c.write(RPR0521_addr_w, &RPR0521_ALSPSControl[0], 2, false);
+ i2c.write(RPR0521_addr_w, &RPR0521_Persist[0], 2, false);
+#endif
+
+#ifdef KMX62
+ i2c.write(KMX62_addr_w, &KMX62_CNTL2[0], 2, false);
+#endif
+
+#ifdef COLOR
+ i2c.write(BH1745_addr_w, &BH1745_persistence[0], 2, false);
+ i2c.write(BH1745_addr_w, &BH1745_mode1[0], 2, false);
+ i2c.write(BH1745_addr_w, &BH1745_mode2[0], 2, false);
+ i2c.write(BH1745_addr_w, &BH1745_mode3[0], 2, false);
+#endif
+
+#ifdef KX022
+ i2c.write(KX022_addr_w, &KX022_Accel_CNTL1[0], 2, false);
+ i2c.write(KX022_addr_w, &KX022_Accel_ODCNTL[0], 2, false);
+ i2c.write(KX022_addr_w, &KX022_Accel_CNTL3[0], 2, false);
+ i2c.write(KX022_addr_w, &KX022_Accel_TILT_TIMER[0], 2, false);
+ i2c.write(KX022_addr_w, &KX022_Accel_CNTL2[0], 2, false);
+#endif
+
+#ifdef Pressure
+ i2c.write(Press_addr_w, &PWR_DOWN[0], 2, false);
+ i2c.write(Press_addr_w, &SLEEP[0], 2, false);
+ i2c.write(Press_addr_w, &Mode_Control[0], 2, false);
+#endif
+//End I2C Initialization Section **********************************************************
+
+
+// Initialization Radio Section **********************************************************
+
radio_ok = init_mtsas();
if (! radio_ok)
logError("MTSAS init failed");
else
logInfo("MTSAS is ok");
-
- button.fall(&button_irq);
-
+
+//End Radio Initialization Section **********************************************************
+
+// button.fall(&button_irq);
+
+
Timer thpm_timer;
- Timer motion_timer;
+ thpm_timer.start(); // Timer data is set in the Variable seciton see misc variables Timer motion_timer;
Timer print_timer;
+ print_timer.start();
+ Timer motion_timer;
+ motion_timer.start();
+
+#ifdef SMS
+ Timer sms_timer;
+ sms_timer.start();
+#endif
+#ifdef Web
Timer post_timer;
-
- thpm_timer.start();
- motion_timer.start();
- print_timer.start();
post_timer.start();
+#endif
while (true) {
+ if (thpm_timer.read_ms() > thpm_interval_ms) {
+#ifdef AnalogTemp
+ ReadAnalogTemp ();
+#endif
+
+#ifdef AnalogUV
+ ReadAnalogUV ();
+#endif
+
+#ifdef HallSensor
+ ReadHallSensor ();
+#endif
+
+#ifdef COLOR
+ ReadCOLOR ();
+#endif
+
+#ifdef RPR0521 //als digital
+ ReadRPR0521_ALS ();
+#endif
+
+#ifdef Pressure
+ ReadPressure();
+#endif
+ thpm_timer.reset();
+ }
+
if (motion_timer.read_ms() > motion_interval_ms) {
- read_magnetometer();
- read_accelerometer();
- read_gyroscope();
+#ifdef KMX62
+ ReadKMX62_Accel ();
+ ReadKMX62_Mag ();
+#endif
+
+#ifdef KX022
+ ReadKX022 ();
+#endif
motion_timer.reset();
}
-
- if (thpm_timer.read_ms() > thpm_interval_ms) {
- read_temperature();
- read_humidity();
- read_pressure();
- read_moisture();
- thpm_timer.reset();
- }
-
+
if (print_timer.read_ms() > print_interval_ms) {
logDebug("%s", wall_of_dash);
logDebug("SENSOR DATA");
- logDebug("temperature: %f C\t%f F", temp_celsius, temp_fahrenheit);
- logDebug("humidity: %f%%", humidity_percent);
- logDebug("pressure: %f mbar", pressure_mbar);
- logDebug("moisture: %f%%", moisture_percent);
- logDebug("magnetometer:\r\n\tx: %ld\ty: %ld\tz: %ld\tmgauss", mag_mgauss[0], mag_mgauss[1], mag_mgauss[2]);
- logDebug("accelerometer:\r\n\tx: %ld\ty: %ld\tz: %ld\tmg", acc_mg[0], acc_mg[1], acc_mg[2]);
- logDebug("gyroscope:\r\n\tx: %ld\ty: %ld\tz: %ld\tmdps", gyro_mdps[0], gyro_mdps[1], gyro_mdps[2]);
+ logDebug("temperature: %0.2f C", BM1383[0]);
+ logDebug("analog uv: %.1f mW/cm2", ML8511_output);
+ logDebug("ambient Light %0.3f", RPR0521_ALS[0]);
+ logDebug("proximity count %0.3f", RPR0521_ALS[1]);
+ logDebug("hall effect: South %d\t North %d", Hall_Return[0],Hall_Return[1]);
+ logDebug("pressure: %0.2f hPa", BM1383[1]);
+ logDebug("magnetometer:\r\n\tx: %0.3f\ty: %0.3f\tz: %0.3f\tuT", MEMS_Mag[0], MEMS_Mag[1], MEMS_Mag[2]);
+ logDebug("accelerometer:\r\n\tx: %0.3f\ty: %0.3f\tz: %0.3f\tg", MEMS_Accel[0], MEMS_Accel[1], MEMS_Accel[2]);
+ logDebug("color:\r\n\tred: %ld\tgrn: %ld\tblu: %ld\t", BH1745[0], BH1745[1], BH1745[2]);
logDebug("%s", wall_of_dash);
print_timer.reset();
}
-
- if (button_pressed) {
- logInfo("Button was pressed");
- button_pressed = false;
+
+
+
+#ifdef SMS
+ if (sms_timer.read_ms() > sms_interval_ms) {
+ sms_timer.reset();
+ logInfo("SMS Send Routine");
+printf(" In sms routine \r\n");
if (radio_ok) {
MbedJSONValue sms_json;
string sms_str;
-
- sms_json["temp_C"] = temp_celsius;
- sms_json["temp_F"] = temp_fahrenheit;
- sms_json["humidity_percent"] = humidity_percent;
- sms_json["pressure_mbar"] = pressure_mbar;
- sms_json["moisture_percent"] = moisture_percent;
- sms_json["mag_mgauss"]["x"] = mag_mgauss[0];
- sms_json["mag_mgauss"]["y"] = mag_mgauss[1];
- sms_json["mag_mgauss"]["z"] = mag_mgauss[2];
- sms_json["acc_mg"]["x"] = acc_mg[0];
- sms_json["acc_mg"]["y"] = acc_mg[1];
- sms_json["acc_mg"]["z"] = acc_mg[2];
- sms_json["gyro_mdps"]["x"] = gyro_mdps[0];
- sms_json["gyro_mdps"]["y"] = gyro_mdps[1];
- sms_json["gyro_mdps"]["z"] = gyro_mdps[2];
-
+
+// sms_json["temp_C"] = BDE0600_output;
+// sms_json["UV"] = ML8511_output;
+ sms_json["Ambient Light"] = RPR0521_ALS[0];
+ sms_json["Prox"] = RPR0521_ALS[1];
+// sms_json["pressure_hPa"] = BM1383[1];
+// sms_json["mag_mgauss"]["x"] = MEMS_Mag[0];
+// sms_json["mag_mgauss"]["y"] = MEMS_Mag[1];
+// sms_json["mag_mgauss"]["z"] = MEMS_Mag[2];
+// sms_json["acc_mg"]["x"] = MEMS_Accel[0];
+// sms_json["acc_mg"]["y"] = MEMS_Accel[1];
+// sms_json["acc_mg"]["z"] = MEMS_Accel[2];
+// sms_json["Red"] = BH1745[0];
+// sms_json["Green"] = BH1745[1];
+// sms_json["Blue"] = BH1745[2];
+
sms_str = "SENSOR DATA:\n";
sms_str += sms_json.serialize();
-
+
logDebug("sending SMS to %s:\r\n%s", phone_number.c_str(), sms_str.c_str());
Code ret = radio->sendSMS(phone_number, sms_str);
if (ret != MTS_SUCCESS)
logError("sending SMS failed");
}
}
-
+#endif
+#ifdef Web
if (post_timer.read_ms() > post_interval_ms && do_cloud_post) {
+ printf("in web\n\r");
if (radio->connect()) {
logDebug("posting sensor data");
@@ -222,115 +463,300 @@
int ret;
char http_response_buf[256];
HTTPText http_response(http_response_buf, sizeof(http_response_buf));
-
+
// temp_c, temp_f, humidity, pressure, and moisture are all stream IDs for my device in M2X
// modify these to match your streams or give your streams the same name
- http_json_data["values"]["temp_c"] = temp_celsius;
- http_json_data["values"]["temp_f"] = temp_fahrenheit;
- http_json_data["values"]["humidity"] = humidity_percent;
- http_json_data["values"]["pressure"] = pressure_mbar;
- http_json_data["values"]["moisture"] = moisture_percent;
+ http_json_data["values"]["temp_c"] = BDE0600_output;
+ http_json_data["values"]["UV"] = ML8511_output;
+ http_json_data["values"]["Ambient Light"] = RPR0521_ALS[0];
+ http_json_data["values"]["Prox"] = RPR0521_ALS[1];
http_json_str = http_json_data.serialize();
-
+
// add extra header with M2X API key
http.setHeader(m2x_header.c_str());
-
+
HTTPJson http_json((char*) http_json_str.c_str());
ret = http.post(url.c_str(), http_json, &http_response);
if (ret != HTTP_OK)
logError("posting data to cloud failed: [%d][%s]", ret, http_response_buf);
else
logDebug("post result [%d][%s]", http.getHTTPResponseCode(), http_response_buf);
-
+
radio->disconnect();
} else {
logError("establishing PPP link failed");
}
-
+
post_timer.reset();
}
-
+#endif
wait_ms(10);
}
}
// init functions
-bool init_mtsas() {
+bool init_mtsas()
+{
io = new MTSSerialFlowControl(RADIO_TX, RADIO_RX, RADIO_RTS, RADIO_CTS);
if (! io)
return false;
-
+
io->baud(115200);
radio = CellularFactory::create(io);
if (! radio)
return false;
-
+
Code ret = radio->setApn(apn);
if (ret != MTS_SUCCESS)
return false;
-
+
Transport::setTransport(radio);
-
+
return true;
}
+
// Sensor data acquisition functions
-void read_temperature() {
- int ret;
+/************************************************************************************************/
+#ifdef AnalogTemp
+void ReadAnalogTemp ()
+{
+ BDE0600_Temp_value = BDE0600_Temp.read_u16();
+
+ BDE0600_output = (float)BDE0600_Temp_value * (float)0.000050354; //(value * (3.3V/65535))
+ BDE0600_output = (BDE0600_output-(float)1.753)/((float)-0.01068) + (float)30;
+
+// printf("BDE0600 Analog Temp Sensor Data:\r\n");
+// printf(" Temp = %.2f C\r\n", BDE0600_output);
+}
+#endif
+
+#ifdef AnalogUV
+void ReadAnalogUV ()
+{
+ ML8511_UV_value = ML8511_UV.read_u16();
+ ML8511_output = (float)ML8511_UV_value * (float)0.000050354; //(value * (3.3V/65535)) //Note to self: when playing with this, a negative value is seen... Honestly, I think this has to do with my ADC converstion...
+ ML8511_output = (ML8511_output-(float)2.2)/((float)0.129) + 10; // Added +5 to the offset so when inside (aka, no UV, readings show 0)... this is the wrong approach... and the readings don't make sense... Fix this.
+
+// printf("ML8511 Analog UV Sensor Data:\r\n");
+// printf(" UV = %.1f mW/cm2\r\n", ML8511_output);
+
+}
+#endif
+
+
+#ifdef HallSensor
+void ReadHallSensor ()
+{
+
+ Hall_Return[0] = Hall_GPIO0;
+ Hall_Return[1] = Hall_GPIO1;
+
+// printf("BU52011 Hall Switch Sensor Data:\r\n");
+// printf(" South Detect = %d\r\n", Hall_Return[0]);
+// printf(" North Detect = %d\r\n", Hall_Return[1]);
+
- ret = mems->ht_sensor->GetTemperature(&temp_celsius);
- if (ret)
- logError("reading temp (C) failed");
-
- ret = mems->ht_sensor->GetFahrenheit(&temp_fahrenheit);
- if (ret)
- logError("reading temp (F) failed");
}
+#endif
+
+#ifdef COLOR
+void ReadCOLOR ()
+{
+
+ //Read color data from the IC
+ i2c.write(BH1745_addr_w, &BH1745_Addr_color_ReadData, 1, RepStart);
+ i2c.read(BH1745_addr_r, &BH1745_Content_ReadData[0], 6, NoRepStart);
+
+ //separate all data read into colors
+ BH1745[0] = (BH1745_Content_ReadData[1]<<8) | (BH1745_Content_ReadData[0]);
+ BH1745[1] = (BH1745_Content_ReadData[3]<<8) | (BH1745_Content_ReadData[2]);
+ BH1745[2] = (BH1745_Content_ReadData[5]<<8) | (BH1745_Content_ReadData[4]);
-void read_humidity() {
- int ret;
-
- ret = mems->ht_sensor->GetHumidity(&humidity_percent);
- if (ret)
- logError("reading humidity failed");
+ //Output Data into UART
+// printf("BH1745 COLOR Sensor Data:\r\n");
+// printf(" Red = %d ADC Counts\r\n",BH1745[0]);
+// printf(" Green = %d ADC Counts\r\n",BH1745[1]);
+// printf(" Blue = %d ADC Counts\r\n",BH1745[2]);
+
}
+#endif
-void read_pressure() {
- int ret;
-
- ret = mems->pt_sensor->GetPressure(&pressure_mbar);
- if (ret)
- logError("reading pressure failed");
+#ifdef RPR0521 //als digital
+void ReadRPR0521_ALS ()
+{
+ i2c.write(RPR0521_addr_w, &RPR0521_Addr_ReadData, 1, RepStart);
+ i2c.read(RPR0521_addr_r, &RPR0521_Content_ReadData[0], 6, NoRepStart);
+
+ RPR0521_ALS[1] = (RPR0521_Content_ReadData[1]<<8) | (RPR0521_Content_ReadData[0]);
+ RPR0521_ALS_D0_RAWOUT = (RPR0521_Content_ReadData[3]<<8) | (RPR0521_Content_ReadData[2]);
+ RPR0521_ALS_D1_RAWOUT = (RPR0521_Content_ReadData[5]<<8) | (RPR0521_Content_ReadData[4]);
+ RPR0521_ALS_DataRatio = (float)RPR0521_ALS_D1_RAWOUT / (float)RPR0521_ALS_D0_RAWOUT;
+
+ if(RPR0521_ALS_DataRatio < (float)0.595) {
+ RPR0521_ALS[0] = ((float)1.682*(float)RPR0521_ALS_D0_RAWOUT - (float)1.877*(float)RPR0521_ALS_D1_RAWOUT);
+ } else if(RPR0521_ALS_DataRatio < (float)1.015) {
+ RPR0521_ALS[0] = ((float)0.644*(float)RPR0521_ALS_D0_RAWOUT - (float)0.132*(float)RPR0521_ALS_D1_RAWOUT);
+ } else if(RPR0521_ALS_DataRatio < (float)1.352) {
+ RPR0521_ALS[0] = ((float)0.756*(float)RPR0521_ALS_D0_RAWOUT - (float)0.243*(float)RPR0521_ALS_D1_RAWOUT);
+ } else if(RPR0521_ALS_DataRatio < (float)3.053) {
+ RPR0521_ALS[0] = ((float)0.766*(float)RPR0521_ALS_D0_RAWOUT - (float)0.25*(float)RPR0521_ALS_D1_RAWOUT);
+ } else {
+ RPR0521_ALS[0] = 0;
+ }
+// printf("RPR-0521 ALS/PROX Sensor Data:\r\n");
+// printf(" ALS = %0.2f lx\r\n", RPR0521_ALS[0]);
+// printf(" PROX= %0.2f ADC Counts\r\n", RPR0521_ALS[1]); //defined as a float but is an unsigned.
+
+}
+#endif
+
+#ifdef KMX62
+void ReadKMX62_Accel ()
+{
+ //Read Accel Portion from the IC
+ i2c.write(KMX62_addr_w, &KMX62_Addr_Accel_ReadData, 1, RepStart);
+ i2c.read(KMX62_addr_r, &KMX62_Content_Accel_ReadData[0], 6, NoRepStart);
+
+ //Note: The highbyte and low byte return a 14bit value, dropping the two LSB in the Low byte.
+ // However, because we need the signed value, we will adjust the value when converting to "g"
+ MEMS_Accel_Xout = (KMX62_Content_Accel_ReadData[1]<<8) | (KMX62_Content_Accel_ReadData[0]);
+ MEMS_Accel_Yout = (KMX62_Content_Accel_ReadData[3]<<8) | (KMX62_Content_Accel_ReadData[2]);
+ MEMS_Accel_Zout = (KMX62_Content_Accel_ReadData[5]<<8) | (KMX62_Content_Accel_ReadData[4]);
+
+ //Note: Conversion to G is as follows:
+ // Axis_ValueInG = MEMS_Accel_axis / 1024
+ // However, since we did not remove the LSB previously, we need to divide by 4 again
+ // Thus, we will divide the output by 4096 (1024*4) to convert and cancel out the LSB
+ MEMS_Accel[0] = ((float)MEMS_Accel_Xout/4096/2);
+ MEMS_Accel[1] = ((float)MEMS_Accel_Yout/4096/2);
+ MEMS_Accel[2] = ((float)MEMS_Accel_Zout/4096/2);
+
+ // Return Data to UART
+// printf("KMX62 Accel+Mag Sensor Data:\r\n");
+// printf(" AccX= %0.2f g\r\n", MEMS_Accel[0]);
+// printf(" AccY= %0.2f g\r\n", MEMS_Accel[1]);
+// printf(" AccZ= %0.2f g\r\n", MEMS_Accel[2]);
+
}
-void read_moisture() {
- moisture_percent = moisture_sensor * 100.0;
-}
+void ReadKMX62_Mag ()
+{
+
+ //Read Mag portion from the IC
+ i2c.write(KMX62_addr_w, &KMX62_Addr_Mag_ReadData, 1, RepStart);
+ i2c.read(KMX62_addr_r, &KMX62_Content_Mag_ReadData[0], 6, NoRepStart);
+
+ //Note: The highbyte and low byte return a 14bit value, dropping the two LSB in the Low byte.
+ // However, because we need the signed value, we will adjust the value when converting to "g"
+ MEMS_Mag_Xout = (KMX62_Content_Mag_ReadData[1]<<8) | (KMX62_Content_Mag_ReadData[0]);
+ MEMS_Mag_Yout = (KMX62_Content_Mag_ReadData[3]<<8) | (KMX62_Content_Mag_ReadData[2]);
+ MEMS_Mag_Zout = (KMX62_Content_Mag_ReadData[5]<<8) | (KMX62_Content_Mag_ReadData[4]);
-void read_magnetometer() {
- int ret;
-
- ret = mems->magnetometer->Get_M_Axes(mag_mgauss);
- if (ret)
- logError("reading magnetometer failed");
+ //Note: Conversion to G is as follows:
+ // Axis_ValueInG = MEMS_Accel_axis / 1024
+ // However, since we did not remove the LSB previously, we need to divide by 4 again
+ // Thus, we will divide the output by 4095 (1024*4) to convert and cancel out the LSB
+ MEMS_Mag[0] = (float)MEMS_Mag_Xout/4096*(float)0.146;
+ MEMS_Mag[1] = (float)MEMS_Mag_Yout/4096*(float)0.146;
+ MEMS_Mag[2] = (float)MEMS_Mag_Zout/4096*(float)0.146;
+
+ // Return Data to UART
+// printf(" MagX= %0.2f uT\r\n", MEMS_Mag[0]);
+// printf(" MagY= %0.2f uT\r\n", MEMS_Mag[1]);
+// printf(" MagZ= %0.2f uT\r\n", MEMS_Mag[2]);
+
}
+#endif
-void read_accelerometer() {
- int ret;
+#ifdef KX022
+void ReadKX022 ()
+{
- ret = mems->GetAccelerometer()->Get_X_Axes(acc_mg);
- if (ret)
- logError("reading accelerometer failed");
+ //Read KX022 Portion from the IC
+ i2c.write(KX022_addr_w, &KX022_Addr_Accel_ReadData, 1, RepStart);
+ i2c.read(KX022_addr_r, &KX022_Content_ReadData[0], 6, NoRepStart);
+
+ //Format Data
+ KX022_Accel_X_RawOUT = (KX022_Content_ReadData[1]<<8) | (KX022_Content_ReadData[0]);
+ KX022_Accel_Y_RawOUT = (KX022_Content_ReadData[3]<<8) | (KX022_Content_ReadData[2]);
+ KX022_Accel_Z_RawOUT = (KX022_Content_ReadData[5]<<8) | (KX022_Content_ReadData[4]);
+
+ //Scale Data
+ KX022_Accel[0] = (float)KX022_Accel_X_RawOUT / 16384;
+ KX022_Accel[1] = (float)KX022_Accel_Y_RawOUT / 16384;
+ KX022_Accel[2] = (float)KX022_Accel_Z_RawOUT / 16384;
+
+ //Return Data through UART
+// printf("KX022 Accelerometer Sensor Data: \r\n");
+// printf(" AccX= %0.2f g\r\n", KX022_Accel[0]);
+// printf(" AccY= %0.2f g\r\n", KX022_Accel[1]);
+// printf(" AccZ= %0.2f g\r\n", KX022_Accel[2]);
+
}
+#endif
+
+
+#ifdef Pressure
+void ReadPressure ()
+{
+
+ i2c.write(Press_addr_w, &Press_Addr_ReadData, 1, RepStart);
+ i2c.read(Press_addr_r, &Press_Content_ReadData[0], 6, NoRepStart);
+
+ BM1383_Temp_Out = (Press_Content_ReadData[0]<<8) | (Press_Content_ReadData[1]);
+ BM1383[0] = (float)BM1383_Temp_Out/32;
+
+ BM1383_Var = (Press_Content_ReadData[2]<<3) | (Press_Content_ReadData[3] >> 5);
+ BM1383_Deci = ((Press_Content_ReadData[3] & 0x1f) << 6 | ((Press_Content_ReadData[4] >> 2)));
+ BM1383_Deci = (float)BM1383_Deci* (float)0.00048828125; //0.00048828125 = 2^-11
+ BM1383[1] = (BM1383_Var + BM1383_Deci); //question pending here...
+
+// printf("BM1383 Pressure Sensor Data:\r\n");
+// printf(" Temperature= %0.2f C\r\n", BM1383[0]);
+// printf(" Pressure = %0.2f hPa\r\n", BM1383[1]);
-void read_gyroscope() {
- int ret;
-
- ret = mems->GetGyroscope()->Get_G_Axes(gyro_mdps);
- if (ret)
- logError("reading gyroscope failed");
}
+#endif
-void button_irq() {
- button_pressed = true;
-}
+
+/************************************************************************************
+// reference only to remember what the names and fuctions are without finding them above.
+ ************************************************************************************
+ (" Temp = %.2f C\r\n", BDE0600_output);
+ printf(" UV = %.1f mW/cm2\r\n", ML8511_output);
+
+ printf("BH1745 COLOR Sensor Data:\r\n");
+ printf(" Red = %d ADC Counts\r\n",BH1745[0]);
+ printf(" Green = %d ADC Counts\r\n",BH1745[1]);
+ printf(" Blue = %d ADC Counts\r\n",BH1745[2]);
+
+ printf(" ALS = %0.2f lx\r\n", RPR0521_ALS[0]);
+ printf(" PROX= %u ADC Counts\r\n", RPR0521_ALS[1]); //defined as a float but is an unsigned.
+
+ printf("KMX62 Accel+Mag Sensor Data:\r\n");
+ printf(" AccX= %0.2f g\r\n", MEMS_Accel[0]);
+ printf(" AccY= %0.2f g\r\n", MEMS_Accel[1]);
+ printf(" AccZ= %0.2f g\r\n", MEMS_Accel[2]);
+
+ printf(" MagX= %0.2f uT\r\n", MEMS_Mag[0]);
+ printf(" MagY= %0.2f uT\r\n", MEMS_Mag[1]);
+ printf(" MagZ= %0.2f uT\r\n", MEMS_Mag[2]);
+
+ printf("KX022 Accelerometer Sensor Data: \r\n");
+ printf(" AccX= %0.2f g\r\n", KX022_Accel[0]);
+ printf(" AccY= %0.2f g\r\n", KX022_Accel[1]);
+ printf(" AccZ= %0.2f g\r\n", KX022_Accel[2]);
+
+ printf("BM1383 Pressure Sensor Data:\r\n");
+ printf(" Temperature= %0.2f C\r\n", BM1383[0]);
+ printf(" Pressure = %0.2f hPa\r\n", BM1383[1]);
+
+ **********************************************************************************/
+
+
+
+
+
+
+
