SCIboard(TM): mbed base board data logger - Altimeter: MPL3115A2 - Accelerometer: LSM303DLHC - Gyro: L3G4200D - 4 High Current MOSFET switches

Dependencies:   mbed

/media/uploads/AstrodyneSystems/sciboard_top.jpg

/media/uploads/AstrodyneSystems/sciboard_bottom.jpg

Product Description

SCIboard will take your model rocketry, science, or engineering project to new heights with a complete 10-Degree-Of-Freedom (10-DOF) Inertial Measurement Unit (IMU), 4 high current MOSFET switches, PWM interface (RC servos), USB (memory sticks or BlueTooth) and interfaces for GPS and an XBee® RF module. The SCIboard is an mbed base board ideal for use in college and high school science labs, science fair projects, high power model rocketry, model airplanes, and near space balloon projects. SCIboard is also designed for Open Source software so you can customize the application. Example applications include high power model rocketry, near space balloon projects, and R/C airplanes/quadcopters. While SCIboard requires some basic electronics and software knowledge, it combines multiple breakout boards into a single base board which improves reliability, especially in high g environments such as in model rocketry. Available on Amazon. Search on "SCIboard".

  • Dimensions: 1.5 x 3.8 inches (3.8 x 9.7 cm)
  • Weight: 0.8 ounces (24 g)

10-DOF Inertial Measurement Unit

Going beyond just the 6 degrees of freedom afforded by a 3-axis accelerometer and 3-axis gyro, SCIboard includes an additional 3-axis magnetometer, and highly accurate altimeter / atmospheric pressure sensor. Sensors provide digital measurements over an I2C shared bus (p27 and p28).

Precision Altimeter

(Freescale Semiconductor – MPL3115A2) MEMS pressure sensor with 24-bit Analog-to-Digital Converter (ADC) employs temperature compensation resulting in fully compensated 20-bit pressure/altitude measurements (resolution down to 1 foot).

  • Pressure range: 50 – 110 kPa.
  • Pressure reading noise: 1.5 Pa RMS over -10 to +70° C. Conversion rate: up to 100 Hz.
  • 12-bit temperature sensor measurement range: -40 to +85° C.

3-Axis MEMS Accelerometer

(STMicroelectronics – LSM303DLHC) The sensor measures linear acceleration. Pointing any axis to the earth will apply 1 g in that axis when stationary.

  • Selectable full scale range: +/-2 g to +/-16 g.
  • Sensitivity: 1 – 12 mg/LSB depending on full scale range.
  • Zero-g level offset: +/-60 mg.
  • Acceleration noise density: 220 micro-g/sqrt(Hz).
  • Operating temp range: -40 to +85° C.
  • Conversion rate up to 400 Hz.

3-Axis Ultra-Stable MEMS Gyroscope

(STMicroelectronics – L3G4200D) A gyroscope is an angular rate sensor.

  • Selectable full scale ranges: 250/500/2000 degrees per second (DPS).
  • Resolution: 16-bit.
  • Bandwidth: user selectable.
  • Sensitivity: 8.75/17.50/70 milli-degrees per second/LSB.
  • Nonlinearity: 0.2% full scale
  • Rate noise density: 0.03 DPS/sqrt(Hz).
  • Operating temp range: -40 to +85°C.

Digital I/O

4 MOSFET switches are included. They provide 6-amperes momentary current sinking. Example uses include high power strobes, and lights for night launches or buzzers for location. Switches can be activated at apogee or prior to landing for model rocketry. A continuity check through an analog to digital converter allows verification of circuit continuity before launch. A piezoelectric buzzer provides software control for audible alert and low battery voltage measurement.

/media/uploads/AstrodyneSystems/mosfet.jpg

Host USB Type-A with 5.0 Vdc regulator

USB Type-A connector wired as a host controller provides regulated 5 volt power from a battery. A variety of USB devices from memory sticks, Bluetooth, and Wi-Fi can be used with multiple software projects from the mbed web site.

XBee® and XBee-PRO® Modules

The XBee-PRO® interface supports multiple different XBee and XBee-PRO modules such as Wi-Fi, ZigBee, 802.15.4, Bluetooth, and longer range 900 MHz RF Modules. Compatible modules are Roving Networks and Digi-International. SCIboard provides dual 10 pin headers with regulated 3.3 volt power (from p40) and serial UART (Tx=p9/Rx=p10). Alternatively if the headers are not installed, the serial port may be connected to a SMS cell phone evaluation module. Since the 3.3 volt provided to XBee modules is from the mbed regulator, the user is responsible for power calculations. Testing was done with RN-XV and a 9-volt battery but higher battery voltages or higher current XBee modules could overheat the 3.3 volt regulator on the mbed. When using XBee modules, the user may need to perform hard/soft iron calibration if using the magnetometer.

Interface for GPS

SCIboard provides a serial UART interface for GPS receivers. It also provides 3.3 and 5.0 Vdc for power and Vbat (battery not included). PCB has 0.1” holes for soldered cable or header of your choice. This provides flexibility to use a variety of GPS modules.

/media/uploads/AstrodyneSystems/gps.jpg

Interface for Ethernet Cable

PCB has 0.1” interface for an Ethernet cable of your choice of Ethernet magnetics interface with LEDs. For Ethernet direct wire, use RD-, RD+, TD+, and TD-. For magnetics, several 3.3 Vdc and Grounds are provided allowing easy interfacing. For both LEDs a 160 ohm resistor is provided. Both LEDs share the 2 PWMs out.

/media/uploads/AstrodyneSystems/ethernet.jpg

Interface for PWM RC Servos

SCIboard provides a Pulse Width Modulation (PWM) header for RC servo motors. Up to 6 PWM servos can be controlled. Terminal block is provided for separate servo power source if desired. If the user chooses to not install the headers, the PCB has 0.1” spacing thru-holes for 3-pin R/C servos. (Pins 21 – 26)

/media/uploads/AstrodyneSystems/pwm.jpg

Applications

A 10-Degree-Of-Freedom Inertial Measurement Unit (IMU) can be used to measure distance traveled, velocity, acceleration, attitude (yaw, pitch, and roll), and attitude rate. When combined with a GPS, SCIboard will provide a GPS aided inertial navigation solutions. The PWM can be used to control a camera attached to a servo motor. This enables near space projects to point the camera up at the weather balloon, horizontally at the earth’s horizon, and down directly at the earth.

  1. College and high school science labs
  2. Science Fairs
  3. High Power Model Rocketry
  4. Near Space Balloons
  5. Quadcopters
  6. R/C Airplanes
  7. R/C Helicopter

Processor Board Support (Direct Pin-Out compatible)

  • mbed LPC1768
  • mbed LPC11U24
  • Embedded Artists LPCexpresso LPC1769
Committer:
AstrodyneSystems
Date:
Tue Dec 17 05:03:01 2013 +0000
Revision:
1:a54c4a4f3b30
Parent:
0:ab51d784ef36
Child:
2:6698a2433bfd
Added MPL3115A2

Who changed what in which revision?

UserRevisionLine numberNew contents of line
AstrodyneSystems 0:ab51d784ef36 1 /* SCIboard(TM) main.cpp
AstrodyneSystems 0:ab51d784ef36 2 Copyright (c) 2013 K. Andres
AstrodyneSystems 0:ab51d784ef36 3
AstrodyneSystems 0:ab51d784ef36 4 Permission is hereby granted, free of charge, to any person obtaining a copy
AstrodyneSystems 0:ab51d784ef36 5 of this software and associated documentation files (the "Software"), to deal
AstrodyneSystems 0:ab51d784ef36 6 in the Software without restriction, including without limitation the rights
AstrodyneSystems 0:ab51d784ef36 7 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
AstrodyneSystems 0:ab51d784ef36 8 copies of the Software, and to permit persons to whom the Software is
AstrodyneSystems 0:ab51d784ef36 9 furnished to do so, subject to the following conditions:
AstrodyneSystems 0:ab51d784ef36 10
AstrodyneSystems 0:ab51d784ef36 11 The above copyright notice and this permission notice shall be included in
AstrodyneSystems 0:ab51d784ef36 12 all copies or substantial portions of the Software.
AstrodyneSystems 0:ab51d784ef36 13
AstrodyneSystems 0:ab51d784ef36 14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
AstrodyneSystems 0:ab51d784ef36 15 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
AstrodyneSystems 0:ab51d784ef36 16 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AstrodyneSystems 0:ab51d784ef36 17 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
AstrodyneSystems 0:ab51d784ef36 18 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
AstrodyneSystems 0:ab51d784ef36 19 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
AstrodyneSystems 0:ab51d784ef36 20 THE SOFTWARE.
AstrodyneSystems 0:ab51d784ef36 21 */
AstrodyneSystems 0:ab51d784ef36 22
AstrodyneSystems 0:ab51d784ef36 23 /* OVERVIEW
AstrodyneSystems 1:a54c4a4f3b30 24 Displays on USB serial (9600 bps)
AstrodyneSystems 1:a54c4a4f3b30 25 MPL3115A2 ident 0xC4
AstrodyneSystems 1:a54c4a4f3b30 26 LSM303 ident 0x48 0x34 0x33
AstrodyneSystems 0:ab51d784ef36 27 then collects 10 seconds of data from accelerometer and magnetometer
AstrodyneSystems 0:ab51d784ef36 28
AstrodyneSystems 0:ab51d784ef36 29 Filename on Local: OUTxx.csv (csv format allows easy import into spreadsheets)
AstrodyneSystems 0:ab51d784ef36 30 Format: microseconds,record type, variable length data\r\n
AstrodyneSystems 1:a54c4a4f3b30 31 Rec type 1= altimeter data altitude (meters) and semiconductor temperature (deg C)
AstrodyneSystems 0:ab51d784ef36 32 Rec type 2= accelerometer data x, y, and z in g's
AstrodyneSystems 0:ab51d784ef36 33 Rec type 3= magnetometer data x, y, and z
AstrodyneSystems 0:ab51d784ef36 34
AstrodyneSystems 1:a54c4a4f3b30 35 gyro, and MOSFET switch software coming soon (under development)...
AstrodyneSystems 0:ab51d784ef36 36 */
AstrodyneSystems 0:ab51d784ef36 37
AstrodyneSystems 0:ab51d784ef36 38 #include "mbed.h"
AstrodyneSystems 0:ab51d784ef36 39 #include "math.h"
AstrodyneSystems 0:ab51d784ef36 40
AstrodyneSystems 0:ab51d784ef36 41 #include "SCIboard_I2C.h"
AstrodyneSystems 1:a54c4a4f3b30 42 #include "SCIboard_MPL3115A2.h"
AstrodyneSystems 0:ab51d784ef36 43 #include "SCIboard_LSM303DLHC.h"
AstrodyneSystems 0:ab51d784ef36 44 #include "SCIboard_DataLogger.h"
AstrodyneSystems 0:ab51d784ef36 45
AstrodyneSystems 0:ab51d784ef36 46 // LEDs
AstrodyneSystems 0:ab51d784ef36 47 DigitalOut led1(LED1);
AstrodyneSystems 0:ab51d784ef36 48 DigitalOut led2(LED2);
AstrodyneSystems 0:ab51d784ef36 49 DigitalOut led3(LED3);
AstrodyneSystems 0:ab51d784ef36 50 DigitalOut led4(LED4);
AstrodyneSystems 0:ab51d784ef36 51
AstrodyneSystems 0:ab51d784ef36 52 // PWM out
AstrodyneSystems 0:ab51d784ef36 53 PwmOut pwm1(p26);
AstrodyneSystems 0:ab51d784ef36 54 PwmOut pwm2(p25);
AstrodyneSystems 0:ab51d784ef36 55 PwmOut pwm3(p24);
AstrodyneSystems 0:ab51d784ef36 56 PwmOut pwm4(p23);
AstrodyneSystems 0:ab51d784ef36 57 PwmOut pwm5(p22);
AstrodyneSystems 0:ab51d784ef36 58 PwmOut pwm6(p21);
AstrodyneSystems 0:ab51d784ef36 59
AstrodyneSystems 0:ab51d784ef36 60 // Serial gps(p13, p14);
AstrodyneSystems 0:ab51d784ef36 61 // Serial Xbee(p9, p10);
AstrodyneSystems 0:ab51d784ef36 62
AstrodyneSystems 0:ab51d784ef36 63 // Buzzer
AstrodyneSystems 0:ab51d784ef36 64 DigitalOut alert(p29); // CAN_RD
AstrodyneSystems 0:ab51d784ef36 65
AstrodyneSystems 0:ab51d784ef36 66 // MOSFET controls
AstrodyneSystems 0:ab51d784ef36 67 DigitalOut fet_out1(p15); // ADC1
AstrodyneSystems 0:ab51d784ef36 68 DigitalOut fet_out2(p12); // SPI2_MISO
AstrodyneSystems 0:ab51d784ef36 69 DigitalOut fet_out3(p11); // SPI2_MOSI
AstrodyneSystems 0:ab51d784ef36 70 DigitalOut fet_out4(p8); // GPIO8
AstrodyneSystems 0:ab51d784ef36 71
AstrodyneSystems 0:ab51d784ef36 72 // ADC inputs
AstrodyneSystems 0:ab51d784ef36 73 AnalogIn batt_mon(p16); // ADC2
AstrodyneSystems 0:ab51d784ef36 74 AnalogIn fet_mon1(p17); // ADC3
AstrodyneSystems 0:ab51d784ef36 75 AnalogIn fet_mon2(p18); // ADC4
AstrodyneSystems 0:ab51d784ef36 76 AnalogIn fet_mon3(p19); // ADC5
AstrodyneSystems 0:ab51d784ef36 77 AnalogIn fet_mon4(p20); // ADC6
AstrodyneSystems 0:ab51d784ef36 78
AstrodyneSystems 0:ab51d784ef36 79 //
AstrodyneSystems 0:ab51d784ef36 80 Serial pc(USBTX, USBRX); // Default 9600 bps
AstrodyneSystems 0:ab51d784ef36 81
AstrodyneSystems 0:ab51d784ef36 82 // Timers
AstrodyneSystems 0:ab51d784ef36 83 Timer t;
AstrodyneSystems 0:ab51d784ef36 84 int time_ms;
AstrodyneSystems 0:ab51d784ef36 85
AstrodyneSystems 0:ab51d784ef36 86
AstrodyneSystems 0:ab51d784ef36 87 // I2C interface
AstrodyneSystems 0:ab51d784ef36 88 //#define sdaPin p9
AstrodyneSystems 0:ab51d784ef36 89 //#define sdcPin p10
AstrodyneSystems 0:ab51d784ef36 90 #define sdaPin p28
AstrodyneSystems 0:ab51d784ef36 91 #define sdcPin p27
AstrodyneSystems 0:ab51d784ef36 92
AstrodyneSystems 0:ab51d784ef36 93 SCIboard_I2C i2cBus(sdaPin, sdcPin);
AstrodyneSystems 0:ab51d784ef36 94
AstrodyneSystems 1:a54c4a4f3b30 95 // Altimeter
AstrodyneSystems 1:a54c4a4f3b30 96 SCIboard_MPL3115A2 alt(&i2cBus);
AstrodyneSystems 1:a54c4a4f3b30 97 InterruptIn MPL3115A2_INT1(p5);
AstrodyneSystems 1:a54c4a4f3b30 98 void MPL3115A2_INT1_INTERRUPT(void);
AstrodyneSystems 1:a54c4a4f3b30 99 //InterruptIn MPL3115A2_INT2();
AstrodyneSystems 1:a54c4a4f3b30 100
AstrodyneSystems 1:a54c4a4f3b30 101 const int accAltDecimate=5;
AstrodyneSystems 1:a54c4a4f3b30 102 int accCnt=0;
AstrodyneSystems 0:ab51d784ef36 103
AstrodyneSystems 0:ab51d784ef36 104 // Accelerometer and magnetometer
AstrodyneSystems 0:ab51d784ef36 105 SCIboard_LSM303DLHC lsm303(&i2cBus);
AstrodyneSystems 0:ab51d784ef36 106 InterruptIn LSM303DLHC_DRDY(p7);
AstrodyneSystems 0:ab51d784ef36 107 void LSM303DLHC_DRDY_INTERRUPT(void);
AstrodyneSystems 0:ab51d784ef36 108 //InterruptIn LSM303DLHC_INT1(p6);
AstrodyneSystems 0:ab51d784ef36 109 //void LSM303DLHC_INT1_INTERRUPT(void);
AstrodyneSystems 0:ab51d784ef36 110 // INT2 n/c
AstrodyneSystems 0:ab51d784ef36 111
AstrodyneSystems 0:ab51d784ef36 112
AstrodyneSystems 0:ab51d784ef36 113 //---------------------------------------------------------------------
AstrodyneSystems 0:ab51d784ef36 114 int main() {
AstrodyneSystems 0:ab51d784ef36 115 unsigned char data[10];
AstrodyneSystems 0:ab51d784ef36 116 float f[3];
AstrodyneSystems 0:ab51d784ef36 117 char str[132];
AstrodyneSystems 0:ab51d784ef36 118 int currentTime;
AstrodyneSystems 0:ab51d784ef36 119 int lastTime=0;
AstrodyneSystems 0:ab51d784ef36 120
AstrodyneSystems 1:a54c4a4f3b30 121 MPL3115A2_INT1.fall(NULL);
AstrodyneSystems 1:a54c4a4f3b30 122
AstrodyneSystems 0:ab51d784ef36 123 LSM303DLHC_DRDY.fall(NULL);
AstrodyneSystems 0:ab51d784ef36 124 // LSM303DLHC_INT1.rise(NULL);
AstrodyneSystems 0:ab51d784ef36 125
AstrodyneSystems 0:ab51d784ef36 126 // DataLogger
AstrodyneSystems 0:ab51d784ef36 127 nextFilename();
AstrodyneSystems 0:ab51d784ef36 128
AstrodyneSystems 1:a54c4a4f3b30 129 // Get I2C device IDs
AstrodyneSystems 1:a54c4a4f3b30 130 sprintf(str, "MPL3115A2 Ident 0x%X\r\n", alt.getDeviceID());
AstrodyneSystems 1:a54c4a4f3b30 131 pc.printf(str);
AstrodyneSystems 1:a54c4a4f3b30 132 log_write(str);
AstrodyneSystems 1:a54c4a4f3b30 133
AstrodyneSystems 0:ab51d784ef36 134 lsm303.getDeviceID(data);
AstrodyneSystems 0:ab51d784ef36 135 sprintf(str, "LSM303DLHC Ident 0x%X 0x%X 0x%X\r\n", data[0], data[1], data[2]);
AstrodyneSystems 0:ab51d784ef36 136 pc.printf(str);
AstrodyneSystems 0:ab51d784ef36 137 log_write(str);
AstrodyneSystems 0:ab51d784ef36 138
AstrodyneSystems 0:ab51d784ef36 139
AstrodyneSystems 0:ab51d784ef36 140 // Setup accelerometer and magnetometer
AstrodyneSystems 0:ab51d784ef36 141 lsm303.setAccMode(ACC_4G, ACC_50HZ);
AstrodyneSystems 0:ab51d784ef36 142 lsm303.setMagMode(MAG_1p3G, MAG_75HZ);
AstrodyneSystems 0:ab51d784ef36 143
AstrodyneSystems 1:a54c4a4f3b30 144 // Setup altimeter
AstrodyneSystems 1:a54c4a4f3b30 145 alt.setMode(ALT_MODE, OS4);
AstrodyneSystems 1:a54c4a4f3b30 146 alt.OST(); // initiate first conversion
AstrodyneSystems 1:a54c4a4f3b30 147 MPL3115A2_INT1.fall(MPL3115A2_INT1_INTERRUPT);
AstrodyneSystems 1:a54c4a4f3b30 148
AstrodyneSystems 0:ab51d784ef36 149 t.start(); // start timer
AstrodyneSystems 0:ab51d784ef36 150
AstrodyneSystems 0:ab51d784ef36 151 LSM303DLHC_DRDY.fall(LSM303DLHC_DRDY_INTERRUPT); // Magnetometer
AstrodyneSystems 0:ab51d784ef36 152 // LSM303DLHC_INT1.rise(LSM303DLHC_INT1_INTERRUPT); // Accelerometer
AstrodyneSystems 0:ab51d784ef36 153
AstrodyneSystems 0:ab51d784ef36 154
AstrodyneSystems 0:ab51d784ef36 155 // Collect 10 seconds of data then close file system to allow mbed to be visible on USB connected PC for demo app only
AstrodyneSystems 0:ab51d784ef36 156 while(t.read()<10) {
AstrodyneSystems 0:ab51d784ef36 157 time_ms = t.read_ms();
AstrodyneSystems 0:ab51d784ef36 158 currentTime = t.read();
AstrodyneSystems 0:ab51d784ef36 159 if(currentTime!=lastTime) {
AstrodyneSystems 0:ab51d784ef36 160 lastTime = currentTime;
AstrodyneSystems 0:ab51d784ef36 161 led2 = !led2; // slow blink led
AstrodyneSystems 0:ab51d784ef36 162 }
AstrodyneSystems 0:ab51d784ef36 163
AstrodyneSystems 0:ab51d784ef36 164 __disable_irq();
AstrodyneSystems 0:ab51d784ef36 165
AstrodyneSystems 0:ab51d784ef36 166 // Accelerometer
AstrodyneSystems 0:ab51d784ef36 167 if(lsm303.bAccDataAvailable()) {
AstrodyneSystems 0:ab51d784ef36 168 lsm303.getAccData(f);
AstrodyneSystems 0:ab51d784ef36 169 sprintf(str,"%u,2,%.3f,%.3f,%.3f\r\n", time_ms, f[0], f[1], f[2]);
AstrodyneSystems 0:ab51d784ef36 170 log_write(str);
AstrodyneSystems 1:a54c4a4f3b30 171 if(++accCnt >= accAltDecimate) {
AstrodyneSystems 1:a54c4a4f3b30 172 accCnt = 0;
AstrodyneSystems 1:a54c4a4f3b30 173 alt.OST();
AstrodyneSystems 1:a54c4a4f3b30 174 }
AstrodyneSystems 0:ab51d784ef36 175 }
AstrodyneSystems 0:ab51d784ef36 176
AstrodyneSystems 0:ab51d784ef36 177
AstrodyneSystems 0:ab51d784ef36 178 #ifdef NON_DRDY_MAG
AstrodyneSystems 0:ab51d784ef36 179 // Magnetometer
AstrodyneSystems 0:ab51d784ef36 180 data[0] = lsm303.getMagStatus();
AstrodyneSystems 0:ab51d784ef36 181 pc.printf("MagStatus=%X\r\n", data[0]);
AstrodyneSystems 0:ab51d784ef36 182
AstrodyneSystems 0:ab51d784ef36 183 if(lsm303.bMagDataAvailable()) {
AstrodyneSystems 0:ab51d784ef36 184 lsm303.getMagData(f);
AstrodyneSystems 0:ab51d784ef36 185 pc.printf("MAG: %.3f %.3f %.3f %.0f\r\n", f[0], f[1], f[2], atan2(f[1],f[0])*180.0/PI);
AstrodyneSystems 0:ab51d784ef36 186 }
AstrodyneSystems 0:ab51d784ef36 187 #endif
AstrodyneSystems 0:ab51d784ef36 188 __enable_irq();
AstrodyneSystems 0:ab51d784ef36 189
AstrodyneSystems 0:ab51d784ef36 190 }
AstrodyneSystems 0:ab51d784ef36 191
AstrodyneSystems 1:a54c4a4f3b30 192 MPL3115A2_INT1.fall(NULL);
AstrodyneSystems 0:ab51d784ef36 193 LSM303DLHC_DRDY.fall(NULL);
AstrodyneSystems 0:ab51d784ef36 194 // LSM303DLHC_INT1.rise(NULL);
AstrodyneSystems 0:ab51d784ef36 195 wait(.1);
AstrodyneSystems 0:ab51d784ef36 196 log_close();
AstrodyneSystems 0:ab51d784ef36 197 pc.printf("Done.\r\n");
AstrodyneSystems 0:ab51d784ef36 198 led2=0;
AstrodyneSystems 0:ab51d784ef36 199
AstrodyneSystems 0:ab51d784ef36 200 // Signal program done
AstrodyneSystems 0:ab51d784ef36 201 while(1) {
AstrodyneSystems 0:ab51d784ef36 202 led1 = 1;
AstrodyneSystems 0:ab51d784ef36 203 wait(0.2);
AstrodyneSystems 0:ab51d784ef36 204 led1 = 0;
AstrodyneSystems 0:ab51d784ef36 205 wait(0.2);
AstrodyneSystems 0:ab51d784ef36 206 }
AstrodyneSystems 0:ab51d784ef36 207 }
AstrodyneSystems 0:ab51d784ef36 208
AstrodyneSystems 0:ab51d784ef36 209
AstrodyneSystems 1:a54c4a4f3b30 210 // Altimeter interrupt service ----------------------------------------
AstrodyneSystems 1:a54c4a4f3b30 211 void MPL3115A2_INT1_INTERRUPT(void)
AstrodyneSystems 1:a54c4a4f3b30 212 {
AstrodyneSystems 1:a54c4a4f3b30 213 float f[3];
AstrodyneSystems 1:a54c4a4f3b30 214 char str[80];
AstrodyneSystems 1:a54c4a4f3b30 215
AstrodyneSystems 1:a54c4a4f3b30 216 __disable_irq();
AstrodyneSystems 1:a54c4a4f3b30 217
AstrodyneSystems 1:a54c4a4f3b30 218 alt.getData(f);
AstrodyneSystems 1:a54c4a4f3b30 219 sprintf(str, "%u,1,%.1f,%.1f\r\n", time_ms, f[0], f[1]);
AstrodyneSystems 1:a54c4a4f3b30 220 log_write(str);
AstrodyneSystems 1:a54c4a4f3b30 221
AstrodyneSystems 1:a54c4a4f3b30 222 __enable_irq();
AstrodyneSystems 1:a54c4a4f3b30 223 }
AstrodyneSystems 1:a54c4a4f3b30 224
AstrodyneSystems 0:ab51d784ef36 225
AstrodyneSystems 0:ab51d784ef36 226 // Magnetometer interrupt service -------------------------------------
AstrodyneSystems 0:ab51d784ef36 227 void LSM303DLHC_DRDY_INTERRUPT(void)
AstrodyneSystems 0:ab51d784ef36 228 {
AstrodyneSystems 0:ab51d784ef36 229 float f[3];
AstrodyneSystems 0:ab51d784ef36 230 char str[80];
AstrodyneSystems 0:ab51d784ef36 231
AstrodyneSystems 0:ab51d784ef36 232 __disable_irq();
AstrodyneSystems 0:ab51d784ef36 233 lsm303.getMagData(f);
AstrodyneSystems 0:ab51d784ef36 234 sprintf(str, "%u,3,%.3f,%.3f,%.3f\r\n", time_ms, f[0], f[1], f[2]);
AstrodyneSystems 0:ab51d784ef36 235 log_write(str);
AstrodyneSystems 0:ab51d784ef36 236 __enable_irq();
AstrodyneSystems 0:ab51d784ef36 237 }
AstrodyneSystems 0:ab51d784ef36 238
AstrodyneSystems 0:ab51d784ef36 239
AstrodyneSystems 0:ab51d784ef36 240 // Accelerometer interrupt service ------------------------------------
AstrodyneSystems 0:ab51d784ef36 241 /*void LSM303DLHC_INT1_INTERRUPT(void)
AstrodyneSystems 0:ab51d784ef36 242 {
AstrodyneSystems 0:ab51d784ef36 243 float f[3];
AstrodyneSystems 0:ab51d784ef36 244 unsigned char src;
AstrodyneSystems 0:ab51d784ef36 245 char str[80];
AstrodyneSystems 0:ab51d784ef36 246
AstrodyneSystems 0:ab51d784ef36 247 __disable_irq();
AstrodyneSystems 0:ab51d784ef36 248
AstrodyneSystems 0:ab51d784ef36 249 src = lsm303.getInt1Src();
AstrodyneSystems 0:ab51d784ef36 250 if(lsm303.bAccDataAvailable()) {
AstrodyneSystems 0:ab51d784ef36 251 lsm303.getAccData(f);
AstrodyneSystems 0:ab51d784ef36 252 sprintf(str,"%u,2,%.3f,%.3f,%.3f,%x\r\n", time_ms, f[0], f[1], f[2], src);
AstrodyneSystems 0:ab51d784ef36 253 log_write(str);
AstrodyneSystems 0:ab51d784ef36 254 if(++accCnt >= accAltDecimate) {
AstrodyneSystems 0:ab51d784ef36 255 accCnt = 0;
AstrodyneSystems 0:ab51d784ef36 256 alt.OST();
AstrodyneSystems 0:ab51d784ef36 257 }
AstrodyneSystems 0:ab51d784ef36 258 }
AstrodyneSystems 0:ab51d784ef36 259
AstrodyneSystems 0:ab51d784ef36 260 __enable_irq();
AstrodyneSystems 0:ab51d784ef36 261 }
AstrodyneSystems 0:ab51d784ef36 262 */