Akira Heya
/
MPU9250_I2C_test_EKF
Comparison with attitude estimation filter IMU : MPU9250
Revision 3:dc4292a7c440, committed 2019-01-14
- Comitter:
- AkiraHeya
- Date:
- Mon Jan 14 18:58:46 2019 +0000
- Parent:
- 2:4e59a37182df
- Commit message:
- Comparison with the attitude estimation filter
Changed in this revision
diff -r 4e59a37182df -r dc4292a7c440 EKF.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/EKF.h Mon Jan 14 18:58:46 2019 +0000 @@ -0,0 +1,115 @@ +//------------------------------------------------------------------------------ +// Extended Kalman Filter for a sensor fusion (Gyroscope and accelataion sensor) +//------------------------------------------------------------------------------ +#ifndef EKF_H +#define EKF_H + +#include "mbed.h" +#include "math.h" +#include "Eigen/Core.h" +#include "Eigen/Geometry.h" +using namespace Eigen; + +//----Variables +float wx, wy, wz; +float s_pre_a, s_pre_b, c_pre_a, c_pre_b; +float preEst_a, preEst_b; +float s2_pre_a, c2_pre_a; +float af1_a, af1_b, af2_a, af2_b; +float pre_a = 0.0; +float pre_b = 0.0; +float estAlpha, estBeta; +float b = 1.0f; +//--For check +float xhat0, xhat1; +float af00, af01, af10, af11; +float P00, P01, P10, P11; +float KG00, KG01, KG10, KG11; +float eye00, eye01, eye10, eye11; + +//----Vector +Vector2f y; +Vector2f h; +Vector2f xhat; +Vector2f xhat_new; + +//----Matrix +Matrix2f eye = Matrix2f::Identity(); +Matrix2f af; +Matrix2f ah = eye; +Matrix2f P = 1*eye; +Matrix2f pre_P = 1*eye; +Matrix2f P_new; +Matrix2f KG_den; // denominator of kalman gain +Matrix2f KalmanGain; +Matrix2f Q = 0.001*eye; // Covariance matrix +Matrix2f R = 0.001*eye; + +class EKF +{ + protected: + + public: + void ExtendedKalmanFilterUpdate(float th_ax, float th_ay, float pre_wx, float pre_wy, float pre_wz) + { + //----Prediction step + //--Previous estimated state + s_pre_a = sin(pre_a); + c_pre_a = cos(pre_a); + s_pre_b = sin(pre_b); + c_pre_b = cos(pre_b); + + // PreEst alpha, beta + xhat(0) = pre_a + delt_t*(pre_wx*(c_pre_a*c_pre_a*c_pre_b + s_pre_a*s_pre_a*s_pre_b) + pre_wy*(s_pre_a*s_pre_b) - pre_wz*(c_pre_a*c_pre_b)); + xhat0 = xhat(0); + xhat(1) = pre_b + delt_t*(pre_wy*c_pre_a*c_pre_b + pre_wz*s_pre_a*s_pre_b); + xhat1 = xhat(1); + + //--Linearized system + s2_pre_a = sin(2.0f*pre_a); + c2_pre_a = cos(2.0f*pre_a); + // af1_a, af1_b, af2_a, af2_b + af(0,0) = 1.0f + delt_t*(pre_wx*(-s2_pre_a*c_pre_b + s2_pre_a*s_pre_b) + pre_wy*c_pre_a*s_pre_b); + af(0,1) = delt_t*(-pre_wx*(c_pre_a*c_pre_a*s_pre_b + s_pre_b*s_pre_a*c_pre_b) + pre_wy*s_pre_a*c_pre_b); + af(1,0) = delt_t*(-pre_wy*s_pre_a*c_pre_b + pre_wz*c_pre_a*s_pre_b); + af(1,1) = 1.0f + delt_t*(-pre_wy*(c_pre_a*s_pre_b) + pre_wz*(s_pre_a*c_pre_b)); + + //--Previous error covariance matrix + P = af*pre_P*af.transpose() + b*Q*b; + + //----Filtering step + //--Kalman gain calulation + KG_den = ah.transpose()*P*ah + R; + KalmanGain = (P*ah)*KG_den.inverse(); + + /* + KG00 = KalmanGain(0,0); + KG01 = KalmanGain(0,1); + KG10 = KalmanGain(1,0); + KG11 = KalmanGain(1,1); + */ + + //--New Estimated state + h(0) = xhat0; + h(1) = xhat1; + y(0) = th_ax; + y(1) = th_ay; + xhat_new = xhat + KalmanGain*(y - h); + estAlpha = xhat_new(0); + estBeta = xhat_new(1); + + //--New covariance matrix + P_new = (eye - KalmanGain*ah.transpose())*P; + + //--Set the current value as previous value + pre_wx = wx; + pre_wy = wy; + pre_wz = wz; + pre_th_ax = th_ax; + pre_th_ay = th_ay; + pre_P = P_new; + pre_a = estAlpha; + pre_b = estBeta; + } +}; +#endif
diff -r 4e59a37182df -r dc4292a7c440 Eigen.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Eigen.lib Mon Jan 14 18:58:46 2019 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/users/ykuroda/code/Eigen/#13a5d365ba16
diff -r 4e59a37182df -r dc4292a7c440 MPU9250.h --- a/MPU9250.h Tue Aug 05 01:37:23 2014 +0000 +++ b/MPU9250.h Mon Jan 14 18:58:46 2019 +0000 @@ -1,12 +1,12 @@ +//------------------------------------------------------------------------------ +// Attitude measurement using IMU(MPU-9250) +//------------------------------------------------------------------------------ #ifndef MPU9250_H #define MPU9250_H - + #include "mbed.h" #include "math.h" - -// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in -// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map -// + //Magnetometer Registers #define AK8963_ADDRESS 0x0C<<1 #define WHO_AM_I_AK8963 0x00 // should return 0x48 @@ -26,11 +26,12 @@ #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value -#define SELF_TEST_X_GYRO 0x00 -#define SELF_TEST_Y_GYRO 0x01 +#define SELF_TEST_X_GYRO 0x00 +#define SELF_TEST_Y_GYRO 0x01 #define SELF_TEST_Z_GYRO 0x02 -/*#define X_FINE_GAIN 0x03 // [7:0] fine gain +/* +#define X_FINE_GAIN 0x03 // [7:0] fine gain #define Y_FINE_GAIN 0x04 #define Z_FINE_GAIN 0x05 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer @@ -38,10 +39,11 @@ #define YA_OFFSET_H 0x08 #define YA_OFFSET_L_TC 0x09 #define ZA_OFFSET_H 0x0A -#define ZA_OFFSET_L_TC 0x0B */ +#define ZA_OFFSET_L_TC 0x0B +*/ #define SELF_TEST_X_ACCEL 0x0D -#define SELF_TEST_Y_ACCEL 0x0E +#define SELF_TEST_Y_ACCEL 0x0E #define SELF_TEST_Z_ACCEL 0x0F #define SELF_TEST_A 0x10 @@ -57,15 +59,15 @@ #define GYRO_CONFIG 0x1B #define ACCEL_CONFIG 0x1C #define ACCEL_CONFIG2 0x1D -#define LP_ACCEL_ODR 0x1E -#define WOM_THR 0x1F +#define LP_ACCEL_ODR 0x1E +#define WOM_THR 0x1F #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms #define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 +#define I2C_MST_CTRL 0x24 #define I2C_SLV0_ADDR 0x25 #define I2C_SLV0_REG 0x26 #define I2C_SLV0_CTRL 0x27 @@ -141,7 +143,7 @@ #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank #define DMP_REG 0x6F // Register in DMP from which to read or to which to write #define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 +#define DMP_REG_2 0x71 #define FIFO_COUNTH 0x72 #define FIFO_COUNTL 0x73 #define FIFO_R_W 0x74 @@ -153,7 +155,6 @@ #define ZA_OFFSET_H 0x7D #define ZA_OFFSET_L 0x7E -// Using the MSENSR-9250 breakout board, ADO is set to 0 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one! #define ADO 0 @@ -161,7 +162,7 @@ #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 #else #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 -#endif +#endif // Set initial input parameters enum Ascale { @@ -186,29 +187,32 @@ uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution -uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR +uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR float aRes, gRes, mRes; // scale resolutions per LSB for the sensors //Set up I2C, (SDA,SCL) -I2C i2c(I2C_SDA, I2C_SCL); +I2C i2c(p9, p10); -DigitalOut myled(LED1); - // Pin definitions -int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins - int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer -float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values +float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values +float th_ax, th_ay, th_az; +float th_ax_LPF, th_ay_LPF, th_az_LPF; +float pre_th_ax, pre_th_ay, pre_th_az; +float th_gx, th_gy, th_gz; +float pre_gx, pre_gy, pre_gz; +float th_x, th_y, th_z, th_x_d, th_y_d, th_z_d; int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius float temperature; float SelfTest[6]; -int delt_t = 0; // used to control display output rate -int count = 0; // used to control display output rate +float delt_t = 0.0f; // used to display output rate +float sum_dt = 0.0f; // +float dt0_ekf, dt1_ekf, dt0_mwf, dt1_mwf; // parameters for 6 DoF sensor fusion calculations float PI = 3.14159265358979323846f; @@ -220,15 +224,19 @@ #define Ki 0.0f float pitch, yaw, roll; -float deltat = 0.0f; // integration interval for both filter schemes -int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval +float pre_pitch, pre_roll; +float lastUpdate = 0.0f, firstUpdate = 0.0f, Now = 0.0f; // used to calculate integration interval // used to calculate integration interval float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion +float q1 = 1.0f; +float q2 = 0.0f; +float q3 = 0.0f; +float q4 = 0.0f; float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method class MPU9250 { - + protected: - + public: //=================================================================================================================== //====== Set of useful function to access acceleratio, gyroscope, and temperature data @@ -244,26 +252,25 @@ char readByte(uint8_t address, uint8_t subAddress) { - char data[1]; // `data` will store the register data + char data[1]; // `data` will store the register data char data_write[1]; data_write[0] = subAddress; i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, 1, 0); - return data[0]; + i2c.read(address, data, 1, 0); + return data[0]; } void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) -{ +{ char data[14]; char data_write[1]; data_write[0] = subAddress; i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, count, 0); + i2c.read(address, data, count, 0); for(int ii = 0; ii < count; ii++) { dest[ii] = data[ii]; } -} - +} void getMres() { switch (Mscale) @@ -279,12 +286,11 @@ } } - void getGres() { switch (Gscale) { // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case GFS_250DPS: gRes = 250.0/32768.0; @@ -301,12 +307,11 @@ } } - void getAres() { switch (Ascale) { // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: case AFS_2G: aRes = 2.0/32768.0; @@ -329,8 +334,8 @@ uint8_t rawData[6]; // x/y/z accel register data stored here readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; } void readGyroData(int16_t * destination) @@ -338,8 +343,8 @@ uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; } void readMagData(int16_t * destination) @@ -348,41 +353,43 @@ if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array uint8_t c = rawData[6]; // End data read by reading ST2 register - if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data + if(!(c & 0x08)) + { // Check if magnetic sensor overflow set, if not then report data destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian - destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; - } + destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; + } } } int16_t readTempData() { uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value } -void resetMPU9250() { +void resetMPU9250() +{ // reset device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device wait(0.1); - } - +} + void initAK8963(float * destination) { // First extract the factory calibration for each magnetometer axis uint8_t rawData[3]; // x/y/z gyro calibration data stored here - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer wait(0.01); writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode wait(0.01); readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. - destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; - destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer + destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; + destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer wait(0.01); // Configure the magnetometer for continuous read and highest resolution // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, @@ -393,72 +400,72 @@ void initMPU9250() -{ +{ // Initialize MPU9250 device // wake up device - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt // get stable time source writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 // Configure Gyro and Accelerometer - // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate - writeByte(MPU9250_ADDRESS, CONFIG, 0x03); - + writeByte(MPU9250_ADDRESS, CONFIG, 0x03); + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above - + // Set gyroscope full scale range // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro - + // Set accelerometer configuration c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer // Set accelerometer sample rate configuration // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz - // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, + // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting // Configure Interrupts and Bypass Enable - // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt } // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. void calibrateMPU9250(float * dest1, float * dest2) -{ +{ uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data uint16_t ii, packet_count, fifo_count; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; - + // reset device, reset all registers, clear gyro and accelerometer bias registers writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - + wait(0.1); + // get stable time source // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); - writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); + writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); wait(0.2); - + // Configure device for bias calculation writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO @@ -467,18 +474,18 @@ writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP wait(0.015); - + // Configure MPU9250 gyro and accelerometer for bias calculation writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec uint16_t accelsensitivity = 16384; // = 16384 LSB/g // Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes @@ -488,41 +495,42 @@ fifo_count = ((uint16_t)data[0] << 8) | data[1]; packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging - for (ii = 0; ii < packet_count; ii++) { + for (ii = 0; ii < packet_count; ii++) + { int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; - accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; - + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[1] += (int32_t) accel_temp[1]; accel_bias[2] += (int32_t) accel_temp[2]; gyro_bias[0] += (int32_t) gyro_temp[0]; gyro_bias[1] += (int32_t) gyro_temp[1]; gyro_bias[2] += (int32_t) gyro_temp[2]; - -} + } + accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases accel_bias[1] /= (int32_t) packet_count; accel_bias[2] /= (int32_t) packet_count; gyro_bias[0] /= (int32_t) packet_count; gyro_bias[1] /= (int32_t) packet_count; gyro_bias[2] /= (int32_t) packet_count; - - if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation - else {accel_bias[2] += (int32_t) accelsensitivity;} - -// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1]/4) & 0xFF; - data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2]/4) & 0xFF; + + if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation + else {accel_bias[2] += (int32_t) accelsensitivity;} + + // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; /// Push gyro biases to hardware registers /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); @@ -532,9 +540,9 @@ writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); */ - dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction - dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; - dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction + dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold @@ -542,35 +550,36 @@ // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that // the accelerometer biases calculated above must be divided by 8. - int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases - readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values - accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); - accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); - accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - - uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers - uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - - for(ii = 0; ii < 3; ii++) { - if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit - } + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - // Construct total accelerometer bias, including calculated average accelerometer bias from above - accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) - accel_bias_reg[1] -= (accel_bias[1]/8); - accel_bias_reg[2] -= (accel_bias[2]/8); - - data[0] = (accel_bias_reg[0] >> 8) & 0xFF; - data[1] = (accel_bias_reg[0]) & 0xFF; - data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[2] = (accel_bias_reg[1] >> 8) & 0xFF; - data[3] = (accel_bias_reg[1]) & 0xFF; - data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[4] = (accel_bias_reg[2] >> 8) & 0xFF; - data[5] = (accel_bias_reg[2]) & 0xFF; - data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + for(ii = 0; ii < 3; ii++) + { + if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + } + + // Construct total accelerometer bias, including calculated average accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers // Apparently this is not working for the acceleration biases in the MPU-9250 // Are we handling the temperature correction bit properly? @@ -582,204 +591,180 @@ writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); */ -// Output scaled accelerometer biases for manual subtraction in the main program - dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; - dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; - dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; -} + // Output scaled accelerometer biases for manual subtraction in the main program + dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; + dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; + dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; + } -// Accelerometer and gyroscope self test; check calibration wrt factory settings -void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass -{ - uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; - uint8_t selfTest[6]; - int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; - float factoryTrim[6]; - uint8_t FS = 0; - - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz - writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g + // Accelerometer and gyroscope self test; check calibration wrt factory settings + void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass + { + uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; + uint8_t selfTest[6]; + int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; + float factoryTrim[6]; + uint8_t FS = 0; + + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g + + for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer + + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + for (int ii =0; ii < 3; ii++) + { + // Get average of 200 values and store as average current readings + aAvg[ii] /= 200; + gAvg[ii] /= 200; + } - for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer - - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - + // Configure the accelerometer for self-test + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + //delay(25); // Delay a while to let the device stabilize + + for( int ii = 0; ii < 200; ii++) + { + // get average self-test values of gyro and acclerometer + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - } - - for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings - aAvg[ii] /= 200; - gAvg[ii] /= 200; - } - -// Configure the accelerometer for self-test - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - delay(25); // Delay a while to let the device stabilize + gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + for (int ii =0; ii < 3; ii++) + { + // Get average of 200 values and store as average self-test readings + aSTAvg[ii] /= 200; + gSTAvg[ii] /= 200; + } + + // Configure the gyro and accelerometer for normal operation + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); + //delay(25); // Delay a while to let the device stabilize + + // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg + selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results + selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results + selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results + selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results + selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results + selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results - for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer - - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - - readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - } - - for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings - aSTAvg[ii] /= 200; - gSTAvg[ii] /= 200; + // Retrieve factory self-test value from self-test code reads + factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation + factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation + factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation + factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation + factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation + factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation + + // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response + // To get percent, must multiply by 100 + for (int i = 0; i < 3; i++) + { + destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences + destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences + } + } - - // Configure the gyro and accelerometer for normal operation - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); - delay(25); // Delay a while to let the device stabilize - - // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg - selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results - selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results - selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results - selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results - selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results - selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results + + void MadgwickFilterUpdate_6axis(float ax, float ay, float az, float wx, float wy, float wz) + { + // Local system variables + float norm; // vector norm + float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion derrivative from gyroscopes elements + float f_1, f_2, f_3; // objective function elements + float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements + float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error + + // Axulirary variables to avoid reapeated calcualtions + float halfSEq_1 = 0.5f * q1; + float halfSEq_2 = 0.5f * q2; + float halfSEq_3 = 0.5f * q3; + float halfSEq_4 = 0.5f * q4; + float twoSEq_1 = 2.0f * q1; + float twoSEq_2 = 2.0f * q2; + float twoSEq_3 = 2.0f * q3; + + // Normalise the accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + ax /= norm; + ay /= norm; + az /= norm; - // Retrieve factory self-test value from self-test code reads - factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation - factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation - factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation - factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation - factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation - factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation - - // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response - // To get percent, must multiply by 100 - for (int i = 0; i < 3; i++) { - destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences - destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences - } - -} + // Compute the objective function and Jacobian + f_1 = twoSEq_2 * q4 - twoSEq_1 * q3 - ax; + f_2 = twoSEq_1 * q2 + twoSEq_3 * q4 - ay; + f_3 = 1.0f - twoSEq_2 * q2 - twoSEq_3 * q3 - az; + J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication + J_12or23 = 2.0f * q4; + J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication + J_14or21 = twoSEq_2; + J_32 = 2.0f * J_14or21; // negated in matrix multiplication + J_33 = 2.0f * J_11or24; // negated in matrix multiplication + + // Compute the gradient (matrix multiplication) + SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1; + SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3; + SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1; + SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2; + + // Normalise the gradient + norm = sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); + SEqHatDot_1 /= norm; + SEqHatDot_2 /= norm; + SEqHatDot_3 /= norm; + SEqHatDot_4 /= norm; + + // Compute the quaternion derrivative measured by gyroscopes + SEqDot_omega_1 = -halfSEq_2 * wx - halfSEq_3 * wy - halfSEq_4 * wz; + SEqDot_omega_2 = halfSEq_1 * wx + halfSEq_3 * wz - halfSEq_4 * wy; + SEqDot_omega_3 = halfSEq_1 * wy - halfSEq_2 * wz + halfSEq_4 * wx; + SEqDot_omega_4 = halfSEq_1 * wz + halfSEq_2 * wy - halfSEq_3 * wx; + + // Compute then integrate the estimated quaternion derrivative + q1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * delt_t; + q2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * delt_t; + q3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * delt_t; + q4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * delt_t; + + // Normalise quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); + q1 /= norm; + q2 /= norm; + q3 /= norm; + q4 /= norm; + + } -// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" -// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) -// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute -// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. -// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms -// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! - void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) - { - float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability - float norm; - float hx, hy, _2bx, _2bz; - float s1, s2, s3, s4; - float qDot1, qDot2, qDot3, qDot4; - - // Auxiliary variables to avoid repeated arithmetic - float _2q1mx; - float _2q1my; - float _2q1mz; - float _2q2mx; - float _4bx; - float _4bz; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; - float _2q1q3 = 2.0f * q1 * q3; - float _2q3q4 = 2.0f * q3 * q4; - float q1q1 = q1 * q1; - float q1q2 = q1 * q2; - float q1q3 = q1 * q3; - float q1q4 = q1 * q4; - float q2q2 = q2 * q2; - float q2q3 = q2 * q3; - float q2q4 = q2 * q4; - float q3q3 = q3 * q3; - float q3q4 = q3 * q4; - float q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - _2q1mx = 2.0f * q1 * mx; - _2q1my = 2.0f * q1 * my; - _2q1mz = 2.0f * q1 * mz; - _2q2mx = 2.0f * q2 * mx; - hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; - hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; - _2bx = sqrt(hx * hx + hy * hy); - _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; - _4bx = 2.0f * _2bx; - _4bz = 2.0f * _2bz; - - // Gradient decent algorithm corrective step - s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude - norm = 1.0f/norm; - s1 *= norm; - s2 *= norm; - s3 *= norm; - s4 *= norm; - - // Compute rate of change of quaternion - qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; - qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; - qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; - qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; - - // Integrate to yield quaternion - q1 += qDot1 * deltat; - q2 += qDot2 * deltat; - q3 += qDot3 * deltat; - q4 += qDot4 * deltat; - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - - } - - - // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and - // measured ones. - void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) + // measured ones. + /* + void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability float norm; @@ -798,7 +783,7 @@ float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; - float q4q4 = q4 * q4; + float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrt(ax * ax + ay * ay + az * az); @@ -828,7 +813,7 @@ vz = q1q1 - q2q2 - q3q3 + q4q4; wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); - wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); + wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); // Error is cross product between estimated direction and measured direction of gravity ex = (ay * vz - az * vy) + (my * wz - mz * wy); @@ -856,10 +841,10 @@ pa = q2; pb = q3; pc = q4; - q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); - q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); - q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); - q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); + q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * delt_t); + q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * delt_t); + q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * delt_t); + q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * delt_t); // Normalise quaternion norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); @@ -868,7 +853,8 @@ q[1] = q2 * norm; q[2] = q3 * norm; q[3] = q4 * norm; - + } + */ }; -#endif \ No newline at end of file +#endif
diff -r 4e59a37182df -r dc4292a7c440 N5110.lib --- a/N5110.lib Tue Aug 05 01:37:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/onehorse/code/Adfs/#28c629d0b0d0
diff -r 4e59a37182df -r dc4292a7c440 ST_401_84MHZ.lib --- a/ST_401_84MHZ.lib Tue Aug 05 01:37:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/dreschpe/code/ST_401_84MHZ/#b9343c8b85ec
diff -r 4e59a37182df -r dc4292a7c440 main.cpp --- a/main.cpp Tue Aug 05 01:37:23 2014 +0000 +++ b/main.cpp Mon Jan 14 18:58:46 2019 +0000 @@ -1,254 +1,148 @@ -/* MPU9250 Basic Example Code - by: Kris Winer - date: April 1, 2014 - license: Beerware - Use this code however you'd like. If you - find it useful you can buy me a beer some time. - - Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, - getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to - allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and - Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. - - SDA and SCL should have external pull-up resistors (to 3.3V). - 10k resistors are on the EMSENSR-9250 breakout board. - - Hardware setup: - MPU9250 Breakout --------- Arduino - VDD ---------------------- 3.3V - VDDI --------------------- 3.3V - SDA ----------------------- A4 - SCL ----------------------- A5 - GND ---------------------- GND - - Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. - Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. - We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. - We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. - */ - -//#include "ST_F401_84MHZ.h" -//F401_init84 myinit(0); +//--------------------------------------------------------------------------- +// Attitude measurement using some attitude estimation filter +// Filter : Complementary filter / Extended Kalman filter / Madgewick filter +// IMU : MPU-9250 +// Written by Akira Heya +// DATE : 2018/12/05 +//--------------------------------------------------------------------------- + +//----include #include "mbed.h" #include "MPU9250.h" -#include "N5110.h" +#include "EKF.h" +#include "math.h" -// Using NOKIA 5110 monochrome 84 x 48 pixel display -// pin 9 - Serial clock out (SCLK) -// pin 8 - Serial data out (DIN) -// pin 7 - Data/Command select (D/C) -// pin 5 - LCD chip select (CS) -// pin 6 - LCD reset (RST) -//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); - -float sum = 0; -uint32_t sumCount = 0; +//----variable char buffer[14]; - - MPU9250 mpu9250; - - Timer t; +//----Instance +MPU9250 mpu9250; +EKF ekf; +Timer t; +Serial pc(USBTX, USBRX); - Serial pc(USBTX, USBRX); // tx, rx - - // VCC, SCE, RST, D/C, MOSI,S CLK, LED - N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); - - - +//****MAIN**** int main() { - pc.baud(9600); - - //Set up I2C - i2c.frequency(400000); // use fast (400 kHz) I2C - - pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); - - t.start(); - - lcd.init(); -// lcd.setBrightness(0.05); - - + //----Serial baud rate + pc.baud(921600); + //----I2C clock rate + i2c.frequency(400000); + //----System clock + //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + //----Timer start + t.start(); // Read the WHO_AM_I register, this is a good test of communication - uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 - pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); - - if (whoami == 0x71) // WHO_AM_I should always be 0x68 - { - pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); - pc.printf("MPU9250 is online...\n\r"); - lcd.clear(); - lcd.printString("MPU9250 is", 0, 0); - sprintf(buffer, "0x%x", whoami); - lcd.printString(buffer, 0, 1); - lcd.printString("shoud be 0x71", 0, 2); - wait(1); - - mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration - mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values - pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); - pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); - pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); - pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); - pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); - pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); - mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers - pc.printf("x gyro bias = %f\n\r", gyroBias[0]); - pc.printf("y gyro bias = %f\n\r", gyroBias[1]); - pc.printf("z gyro bias = %f\n\r", gyroBias[2]); - pc.printf("x accel bias = %f\n\r", accelBias[0]); - pc.printf("y accel bias = %f\n\r", accelBias[1]); - pc.printf("z accel bias = %f\n\r", accelBias[2]); - wait(2); - mpu9250.initMPU9250(); - pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - mpu9250.initAK8963(magCalibration); - pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer - pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); - pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); - if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); - if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); - if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); - if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); - wait(1); - } - else - { - pc.printf("Could not connect to MPU9250: \n\r"); - pc.printf("%#x \n", whoami); - - lcd.clear(); - lcd.printString("MPU9250", 0, 0); - lcd.printString("no connection", 0, 1); - sprintf(buffer, "WHO_AM_I 0x%x", whoami); - lcd.printString(buffer, 0, 2); - - while(1) ; // Loop forever if communication doesn't happen + uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); + pc.printf("I2C check : 0x%x\n\r", whoami); + //----Self check + if (whoami == 0x71) + { + pc.printf("MPU9250 is online\n\r"); + sprintf(buffer, "0x%x", whoami); + wait(1); + //----Reset registers to default in preparation for device calibration + mpu9250.resetMPU9250(); + //----Start by performing self test and reporting values + mpu9250.MPU9250SelfTest(SelfTest); + pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); + pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); + pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); + pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); + pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); + pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); + // Calibrate gyro and accelerometers, load biases in bias registers + mpu9250.calibrateMPU9250(gyroBias, accelBias); + pc.printf("x gyro bias = %f\n\r", gyroBias[0]); + pc.printf("y gyro bias = %f\n\r", gyroBias[1]); + pc.printf("z gyro bias = %f\n\r", gyroBias[2]); + pc.printf("x accel bias = %f\n\r", accelBias[0]); + pc.printf("y accel bias = %f\n\r", accelBias[1]); + pc.printf("z accel bias = %f\n\r", accelBias[2]); + wait(1); + //----Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initMPU9250(); + pc.printf("MPU9250 initialized for active data mode....\n\r"); + pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); + pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + wait(1); } - - mpu9250.getAres(); // Get accelerometer sensitivity - mpu9250.getGres(); // Get gyro sensitivity - mpu9250.getMres(); // Get magnetometer sensitivity + else + { + pc.printf("Could not connect to MPU9250: \n\r"); + pc.printf("%#x \n", whoami); + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + //----Loop forever if communication doesn't happen + while(1) ; + } + //----Get accelerometer sensitivity + mpu9250.getAres(); + //----Get gyro sensitivity + mpu9250.getGres(); pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); - pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); - magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated - magbias[1] = +120.; // User environmental x-axis correction in milliGauss - magbias[2] = +125.; // User environmental x-axis correction in milliGauss - - while(1) { - - // If intPin goes high, all data registers have new data - if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + wait(1); + //****LOOP**** + while(1) + { + //----Time interval + Now = t.read_us(); + delt_t = (Now - lastUpdate)/1000000.0f; + lastUpdate = Now; + + //----Acceleration sensor + mpu9250.readAccelData(accelCount); + // Calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + th_ax = atan2(ay,sqrt(ax*ax+az*az))*(180.0f/PI); + th_ay = -1*atan2(ax,az)*(180.0f/PI); - mpu9250.readAccelData(accelCount); // Read the x/y/z adc values - // Now we'll calculate the accleration value into actual g's - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; - - mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values - // Calculate the gyro value into actual degrees per second - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; - - mpu9250.readMagData(magCount); // Read the x/y/z adc values - // Calculate the magnetometer values in milliGauss - // Include factory calibration per data sheet and user environmental corrections - mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set - my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; - mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; - } - - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - - sum += deltat; - sumCount++; - -// if(lastUpdate - firstUpdate > 10000000.0f) { -// beta = 0.04; // decrease filter gain after stabilized -// zeta = 0.015; // increasey bias drift gain after stabilized - // } - - // Pass gyro rate as rad/s -// mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); - mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + //----Gyroscope + mpu9250.readGyroData(gyroCount); + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; - // Serial print and/or display at 0.5 s rate independent of data rates - delt_t = t.read_ms() - count; - if (delt_t > 500) { // update LCD once per half-second independent of read rate - - pc.printf("ax = %f", 1000*ax); - pc.printf(" ay = %f", 1000*ay); - pc.printf(" az = %f mg\n\r", 1000*az); + th_gx += (pre_gx + gx) * delt_t/2.0f; + th_gy += (pre_gy + gy) * delt_t/2.0f; + th_gz += (pre_gz + gz) * delt_t/2.0f; + pre_gx = gx; + pre_gy = gy; + pre_gz = gz; - pc.printf("gx = %f", gx); - pc.printf(" gy = %f", gy); - pc.printf(" gz = %f deg/s\n\r", gz); - - pc.printf("gx = %f", mx); - pc.printf(" gy = %f", my); - pc.printf(" gz = %f mG\n\r", mz); - - tempCount = mpu9250.readTempData(); // Read the adc values - temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade - pc.printf(" temperature = %f C\n\r", temperature); - - pc.printf("q0 = %f\n\r", q[0]); - pc.printf("q1 = %f\n\r", q[1]); - pc.printf("q2 = %f\n\r", q[2]); - pc.printf("q3 = %f\n\r", q[3]); - -/* lcd.clear(); - lcd.printString("MPU9250", 0, 0); - lcd.printString("x y z", 0, 1); - sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az)); - lcd.printString(buffer, 0, 2); - sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz); - lcd.printString(buffer, 0, 3); - sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz); - lcd.printString(buffer, 0, 4); - */ - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; - - pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - pc.printf("average rate = %f\n\r", (float) sumCount/sum); -// sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); -// lcd.printString(buffer, 0, 4); -// sprintf(buffer, "rate = %f", (float) sumCount/sum); -// lcd.printString(buffer, 0, 5); - - myled= !myled; - count = t.read_ms(); - - if(count > 1<<21) { - t.start(); // start the timer over again if ~30 minutes has passed - count = 0; - deltat= 0; - lastUpdate = t.read_us(); + //----Complementary filter + th_x = 0.95*(th_x + (pre_gx + gx) * delt_t/2.0f) + 0.05*th_ax; + th_y = 0.95*(th_y + (pre_gy + gy) * delt_t/2.0f) + 0.05*th_ay; + + //----Extended Kalman filter + dt0_ekf = t.read_us(); + ekf.ExtendedKalmanFilterUpdate(th_ax, th_ay, pre_gx, pre_gy, pre_gz); + dt1_ekf = t.read_us() - dt0_ekf; + + //----Madgwick filter + dt0_mwf = t.read_us(); + mpu9250.MadgwickFilterUpdate_6axis(ax, ay, az, gx, gy, gz); + roll = atan2(2.0f * (q1 * q2 + q3 * q4), q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4); + roll *= 180.0f / PI; + //roll = 0.995f*pre_roll + 0.005f*roll; + + pitch = -asin(2.0f * (q2 * q4 - q1 * q3)); + pitch *= 180.0f / PI; + //pitch = 0.995f*pre_pitch + 0.005f*pitch; + dt1_mwf = t.read_us() - dt0_mwf; + + pre_roll = roll; + pre_pitch = pitch; + + //----Serial print + sum_dt += delt_t; + if (sum_dt > 0.0050f) + { + //pc.printf("%f, %f\n", dt1_ekf, dt1_mwf); + pc.printf("%8.3f , %8.3f , %8.3f ,%8.3f\n", t.read(), th_x, th_y, estAlpha, estBeta); + sum_dt = 0.0f; + } } - sum = 0; - sumCount = 0; } -} - - } \ No newline at end of file