Akira Heya / Mbed 2 deprecated MPU9250_I2C_test

Dependencies:   mbed

Files at this revision

API Documentation at this revision

Comitter:
AkiraHeya
Date:
Mon Jul 25 05:54:41 2022 +0000
Parent:
2:4e59a37182df
Commit message:
IMU-MPU9250-TestCode

Changed in this revision

EKF.h Show annotated file Show diff for this revision Revisions of this file
MPU9250.h Show annotated file Show diff for this revision Revisions of this file
N5110.lib Show diff for this revision Revisions of this file
ST_401_84MHZ.lib Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/EKF.h	Mon Jul 25 05:54:41 2022 +0000
@@ -0,0 +1,115 @@
+//------------------------------------------------------------------------------
+// Extended Kalman Filter for a sensor fusion (Gyroscope and accelataion sensor)
+//------------------------------------------------------------------------------
+#ifndef EKF_H
+#define EKF_H
+
+#include "mbed.h"
+#include "math.h"
+#include "Eigen/Core.h"
+#include "Eigen/Geometry.h"
+using namespace Eigen;
+
+//----Variables
+float wx, wy, wz;
+float s_pre_a, s_pre_b, c_pre_a, c_pre_b;
+float preEst_a, preEst_b;
+float s2_pre_a, c2_pre_a;
+float af1_a, af1_b, af2_a, af2_b;
+float pre_a = 0.0;
+float pre_b = 0.0;
+float estAlpha, estBeta;
+float b = 1.0f;
+//--For check
+float xhat0, xhat1;
+float af00, af01, af10, af11;
+float P00, P01, P10, P11;
+float KG00, KG01, KG10, KG11;
+float eye00, eye01, eye10, eye11;
+
+//----Vector
+Vector2f y;
+Vector2f h;
+Vector2f xhat;
+Vector2f xhat_new;
+
+//----Matrix
+Matrix2f eye = Matrix2f::Identity();
+Matrix2f af;
+Matrix2f ah = eye;
+Matrix2f P = 1*eye;
+Matrix2f pre_P = 1*eye;
+Matrix2f P_new;
+Matrix2f KG_den;    // denominator of kalman gain
+Matrix2f KalmanGain;
+Matrix2f Q = 0.001*eye; // Covariance matrix
+Matrix2f R = 0.001*eye;
+
+class EKF
+{
+  protected:
+    
+  public:
+  void ExtendedKalmanFilterUpdate(float th_ax, float th_ay, float pre_wx, float pre_wy, float pre_wz)
+  {
+    //----Prediction step
+    //--Previous estimated state
+    s_pre_a = sin(pre_a);
+    c_pre_a = cos(pre_a);
+    s_pre_b = sin(pre_b);
+    c_pre_b = cos(pre_b);
+    
+    // PreEst alpha, beta
+    xhat(0) = pre_a + delt_t*(pre_wx*(c_pre_a*c_pre_a*c_pre_b + s_pre_a*s_pre_a*s_pre_b) + pre_wy*(s_pre_a*s_pre_b) - pre_wz*(c_pre_a*c_pre_b));
+    xhat0 = xhat(0);
+    xhat(1) = pre_b + delt_t*(pre_wy*c_pre_a*c_pre_b + pre_wz*s_pre_a*s_pre_b);
+    xhat1 = xhat(1);
+    
+    //--Linearized system
+    s2_pre_a = sin(2.0f*pre_a);
+    c2_pre_a = cos(2.0f*pre_a);
+    // af1_a, af1_b, af2_a, af2_b
+    af(0,0) = 1.0f + delt_t*(pre_wx*(-s2_pre_a*c_pre_b + s2_pre_a*s_pre_b) + pre_wy*c_pre_a*s_pre_b);
+    af(0,1) = delt_t*(-pre_wx*(c_pre_a*c_pre_a*s_pre_b + s_pre_b*s_pre_a*c_pre_b) + pre_wy*s_pre_a*c_pre_b);
+    af(1,0) = delt_t*(-pre_wy*s_pre_a*c_pre_b + pre_wz*c_pre_a*s_pre_b);
+    af(1,1) = 1.0f + delt_t*(-pre_wy*(c_pre_a*s_pre_b) + pre_wz*(s_pre_a*c_pre_b));
+    
+    //--Previous error covariance matrix
+    P = af*pre_P*af.transpose() + b*Q*b;
+    
+    //----Filtering step
+    //--Kalman gain calulation
+    KG_den = ah.transpose()*P*ah + R;
+    KalmanGain = (P*ah)*KG_den.inverse();
+    
+    /*
+    KG00 = KalmanGain(0,0);
+    KG01 = KalmanGain(0,1);
+    KG10 = KalmanGain(1,0);
+    KG11 = KalmanGain(1,1);
+    */
+    
+    //--New Estimated state
+    h(0) = xhat0;
+    h(1) = xhat1;
+    y(0) = th_ax;
+    y(1) = th_ay;
+    xhat_new = xhat + KalmanGain*(y - h);
+    estAlpha = xhat_new(0);
+    estBeta = xhat_new(1);
+    
+    //--New covariance matrix
+    P_new = (eye - KalmanGain*ah.transpose())*P;
+    
+    //--Set the current value as previous value
+    pre_wx = wx;
+    pre_wy = wy;
+    pre_wz = wz;
+    pre_th_ax = th_ax;
+    pre_th_ay = th_ay;
+    pre_P = P_new;
+    pre_a = estAlpha;
+    pre_b = estBeta;    
+  }
+};
+#endif
--- a/MPU9250.h	Tue Aug 05 01:37:23 2014 +0000
+++ b/MPU9250.h	Mon Jul 25 05:54:41 2022 +0000
@@ -1,12 +1,12 @@
+//------------------------------------------------------------------------------
+// Attitude measurement using IMU(MPU-9250)
+//------------------------------------------------------------------------------
 #ifndef MPU9250_H
 #define MPU9250_H
  
 #include "mbed.h"
 #include "math.h"
- 
-// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in 
-// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
-//
+
 //Magnetometer Registers
 #define AK8963_ADDRESS   0x0C<<1
 #define WHO_AM_I_AK8963  0x00 // should return 0x48
@@ -30,7 +30,8 @@
 #define SELF_TEST_Y_GYRO 0x01                                                                          
 #define SELF_TEST_Z_GYRO 0x02
 
-/*#define X_FINE_GAIN      0x03 // [7:0] fine gain
+/*
+#define X_FINE_GAIN      0x03 // [7:0] fine gain
 #define Y_FINE_GAIN      0x04
 #define Z_FINE_GAIN      0x05
 #define XA_OFFSET_H      0x06 // User-defined trim values for accelerometer
@@ -38,7 +39,8 @@
 #define YA_OFFSET_H      0x08
 #define YA_OFFSET_L_TC   0x09
 #define ZA_OFFSET_H      0x0A
-#define ZA_OFFSET_L_TC   0x0B */
+#define ZA_OFFSET_L_TC   0x0B 
+*/
 
 #define SELF_TEST_X_ACCEL 0x0D
 #define SELF_TEST_Y_ACCEL 0x0E    
@@ -153,7 +155,6 @@
 #define ZA_OFFSET_H      0x7D
 #define ZA_OFFSET_L      0x7E
 
-// Using the MSENSR-9250 breakout board, ADO is set to 0 
 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
 #define ADO 0
@@ -190,25 +191,27 @@
 float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
 
 //Set up I2C, (SDA,SCL)
-I2C i2c(I2C_SDA, I2C_SCL);
+I2C i2c(p9, p10);
 
-DigitalOut myled(LED1);
-    
 // Pin definitions
-int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
-
 int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
 int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
 int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0};  // Factory mag calibration and mag bias
 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
-float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
+float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
+float th_ax, th_ay, th_az;
+float th_ax_LPF, th_ay_LPF, th_az_LPF;
+float pre_th_ax, pre_th_ay, pre_th_az;
+float th_gx, th_gy, th_gz;
+float pre_gx, pre_gy, pre_gz;
+float th_x, th_y, th_z, th_x_d, th_y_d, th_z_d;
 int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
 float temperature;
 float SelfTest[6];
 
-int delt_t = 0; // used to control display output rate
-int count = 0;  // used to control display output rate
+float delt_t = 0.0f; // used to display output rate
+float sum_dt = 0.0f; // 
 
 // parameters for 6 DoF sensor fusion calculations
 float PI = 3.14159265358979323846f;
@@ -221,7 +224,7 @@
 
 float pitch, yaw, roll;
 float deltat = 0.0f;                             // integration interval for both filter schemes
-int lastUpdate = 0, firstUpdate = 0, Now = 0;    // used to calculate integration interval                               // used to calculate integration interval
+float lastUpdate = 0.0f, firstUpdate = 0.0f, Now = 0.0f;  // used to calculate integration interval                               // used to calculate integration interval
 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};           // vector to hold quaternion
 float eInt[3] = {0.0f, 0.0f, 0.0f};              // vector to hold integral error for Mahony method
 
@@ -263,7 +266,6 @@
      dest[ii] = data[ii];
     }
 } 
- 
 
 void getMres() {
   switch (Mscale)
@@ -279,7 +281,6 @@
   }
 }
 
-
 void getGres() {
   switch (Gscale)
   {
@@ -301,7 +302,6 @@
   }
 }
 
-
 void getAres() {
   switch (Ascale)
   {
@@ -348,11 +348,12 @@
   if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
   readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
   uint8_t c = rawData[6]; // End data read by reading ST2 register
-    if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
+    if(!(c & 0x08)) 
+    { // Check if magnetic sensor overflow set, if not then report data
     destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
     destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
     destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
-   }
+    }
   }
 }
 
@@ -364,11 +365,12 @@
 }
 
 
-void resetMPU9250() {
+void resetMPU9250()
+{
   // reset device
   writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
   wait(0.1);
-  }
+}
   
   void initAK8963(float * destination)
 {
@@ -428,7 +430,7 @@
  // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
  // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
   c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
+  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
 
  // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
@@ -488,7 +490,8 @@
   fifo_count = ((uint16_t)data[0] << 8) | data[1];
   packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
 
-  for (ii = 0; ii < packet_count; ii++) {
+  for (ii = 0; ii < packet_count; ii++)
+  {
     int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
     readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
     accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
@@ -503,9 +506,9 @@
     accel_bias[2] += (int32_t) accel_temp[2];
     gyro_bias[0]  += (int32_t) gyro_temp[0];
     gyro_bias[1]  += (int32_t) gyro_temp[1];
-    gyro_bias[2]  += (int32_t) gyro_temp[2];
-            
-}
+    gyro_bias[2]  += (int32_t) gyro_temp[2];        
+    }
+    
     accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
     accel_bias[1] /= (int32_t) packet_count;
     accel_bias[2] /= (int32_t) packet_count;
@@ -513,16 +516,16 @@
     gyro_bias[1]  /= (int32_t) packet_count;
     gyro_bias[2]  /= (int32_t) packet_count;
     
-  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
-  else {accel_bias[2] += (int32_t) accelsensitivity;}
+    if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
+    else {accel_bias[2] += (int32_t) accelsensitivity;}
  
-// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
-  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
-  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
-  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
-  data[3] = (-gyro_bias[1]/4)       & 0xFF;
-  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
-  data[5] = (-gyro_bias[2]/4)       & 0xFF;
+    // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+    data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+    data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+    data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+    data[3] = (-gyro_bias[1]/4)       & 0xFF;
+    data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+    data[5] = (-gyro_bias[2]/4)       & 0xFF;
 
 /// Push gyro biases to hardware registers
 /*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
@@ -532,9 +535,9 @@
   writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
   writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
 */
-  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
-  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
-  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+    dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+    dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+    dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
 
 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
@@ -542,35 +545,35 @@
 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
 // the accelerometer biases calculated above must be divided by 8.
 
-  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
-  readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
-  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+    readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+    accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+    readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+    accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
   
-  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
-  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+    uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+    uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
   
-  for(ii = 0; ii < 3; ii++) {
-    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
-  }
+    for(ii = 0; ii < 3; ii++) {
+        if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+    }
 
-  // Construct total accelerometer bias, including calculated average accelerometer bias from above
-  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
-  accel_bias_reg[1] -= (accel_bias[1]/8);
-  accel_bias_reg[2] -= (accel_bias[2]/8);
+    // Construct total accelerometer bias, including calculated average accelerometer bias from above
+    accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+    accel_bias_reg[1] -= (accel_bias[1]/8);
+    accel_bias_reg[2] -= (accel_bias[2]/8);
  
-  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
-  data[1] = (accel_bias_reg[0])      & 0xFF;
-  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
-  data[3] = (accel_bias_reg[1])      & 0xFF;
-  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
-  data[5] = (accel_bias_reg[2])      & 0xFF;
-  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+    data[1] = (accel_bias_reg[0])      & 0xFF;
+    data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+    data[3] = (accel_bias_reg[1])      & 0xFF;
+    data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+    data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+    data[5] = (accel_bias_reg[2])      & 0xFF;
+    data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
 
 // Apparently this is not working for the acceleration biases in the MPU-9250
 // Are we handling the temperature correction bit properly?
@@ -617,7 +620,9 @@
   gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
   }
   
-  for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
+  for (int ii =0; ii < 3; ii++)
+  {
+  // Get average of 200 values and store as average current readings
   aAvg[ii] /= 200;
   gAvg[ii] /= 200;
   }
@@ -625,22 +630,25 @@
 // Configure the accelerometer for self-test
    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
-   delay(25); // Delay a while to let the device stabilize
+   //delay(25); // Delay a while to let the device stabilize
 
-  for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
-  
+  for( int ii = 0; ii < 200; ii++)
+  {
+  // get average self-test values of gyro and acclerometer
   readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
   aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
   aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
   aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
   
-    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+  readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
   gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
   gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
   gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
   }
   
-  for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
+  for (int ii =0; ii < 3; ii++)
+  {
+  // Get average of 200 values and store as average self-test readings
   aSTAvg[ii] /= 200;
   gSTAvg[ii] /= 200;
   }
@@ -648,7 +656,7 @@
  // Configure the gyro and accelerometer for normal operation
    writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
    writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
-   delay(25); // Delay a while to let the device stabilize
+   //delay(25); // Delay a while to let the device stabilize
    
    // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
    selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
@@ -668,7 +676,8 @@
  
  // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
  // To get percent, must multiply by 100
-   for (int i = 0; i < 3; i++) {
+   for (int i = 0; i < 3; i++)
+   {
      destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
      destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
    }
--- a/N5110.lib	Tue Aug 05 01:37:23 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-http://mbed.org/users/onehorse/code/Adfs/#28c629d0b0d0
--- a/ST_401_84MHZ.lib	Tue Aug 05 01:37:23 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-http://mbed.org/users/dreschpe/code/ST_401_84MHZ/#b9343c8b85ec
--- a/main.cpp	Tue Aug 05 01:37:23 2014 +0000
+++ b/main.cpp	Mon Jul 25 05:54:41 2022 +0000
@@ -1,254 +1,129 @@
-/* MPU9250 Basic Example Code
- by: Kris Winer
- date: April 1, 2014
- license: Beerware - Use this code however you'd like. If you 
- find it useful you can buy me a beer some time.
- 
- Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, 
- getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to 
- allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and 
- Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
- 
- SDA and SCL should have external pull-up resistors (to 3.3V).
- 10k resistors are on the EMSENSR-9250 breakout board.
- 
- Hardware setup:
- MPU9250 Breakout --------- Arduino
- VDD ---------------------- 3.3V
- VDDI --------------------- 3.3V
- SDA ----------------------- A4
- SCL ----------------------- A5
- GND ---------------------- GND
- 
- Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. 
- Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
- We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
- We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
- */
- 
-//#include "ST_F401_84MHZ.h" 
-//F401_init84 myinit(0);
+//------------------------------------------------------------------------------
+// Attitude measurement using IMU(MPU-9250)
+//------------------------------------------------------------------------------
+//----include
 #include "mbed.h"
 #include "MPU9250.h"
-#include "N5110.h"
-
-// Using NOKIA 5110 monochrome 84 x 48 pixel display
-// pin 9 - Serial clock out (SCLK)
-// pin 8 - Serial data out (DIN)
-// pin 7 - Data/Command select (D/C)
-// pin 5 - LCD chip select (CS)
-// pin 6 - LCD reset (RST)
-//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
-
-float sum = 0;
-uint32_t sumCount = 0;
+//#include "EKF.h"
+//----variable
 char buffer[14];
-
-   MPU9250 mpu9250;
-   
-   Timer t;
-
-   Serial pc(USBTX, USBRX); // tx, rx
-
-   //        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
-   N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
-   
-
-        
+//----Instance
+MPU9250 mpu9250;
+Timer t;
+Serial pc(USBTX, USBRX);
+//****MAIN****
 int main()
 {
-  pc.baud(9600);  
-
-  //Set up I2C
-  i2c.frequency(400000);  // use fast (400 kHz) I2C  
-  
-  pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
-  
-  t.start();        
-  
-  lcd.init();
-//  lcd.setBrightness(0.05);
-  
-    
+  //----Serial baud rate
+  pc.baud(921600);
+  //----I2C clock rate
+  i2c.frequency(400000);
+  //----System clock
+  //pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
+  //----Timer start
+  t.start();
   // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
-  
-  if (whoami == 0x71) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-    pc.printf("MPU9250 is online...\n\r");
-    lcd.clear();
-    lcd.printString("MPU9250 is", 0, 0);
-    sprintf(buffer, "0x%x", whoami);
-    lcd.printString(buffer, 0, 1);
-    lcd.printString("shoud be 0x71", 0, 2);  
-    wait(1);
-    
-    mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-    mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
-    pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
-    pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
-    pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
-    pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
-    pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
-    pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
-    mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-    pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-    pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-    pc.printf("x accel bias = %f\n\r", accelBias[0]);
-    pc.printf("y accel bias = %f\n\r", accelBias[1]);
-    pc.printf("z accel bias = %f\n\r", accelBias[2]);
-    wait(2);
-    mpu9250.initMPU9250(); 
-    pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-    mpu9250.initAK8963(magCalibration);
-    pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
-    pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-    pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-    if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-    if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-    if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-    if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-    wait(1);
-   }
-   else
-   {
-    pc.printf("Could not connect to MPU9250: \n\r");
-    pc.printf("%#x \n",  whoami);
- 
-    lcd.clear();
-    lcd.printString("MPU9250", 0, 0);
-    lcd.printString("no connection", 0, 1);
-    sprintf(buffer, "WHO_AM_I 0x%x", whoami);
-    lcd.printString(buffer, 0, 2); 
- 
-    while(1) ; // Loop forever if communication doesn't happen
+  uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
+  pc.printf("I2C check : 0x%x\n\r", whoami);
+  //----Self check
+    if (whoami == 0x71)
+    {
+        pc.printf("MPU9250 is online\n\r");
+        sprintf(buffer, "0x%x", whoami);
+        wait(3);
+        //----Reset registers to default in preparation for device calibration
+        mpu9250.resetMPU9250();
+        //----Start by performing self test and reporting values
+        mpu9250.MPU9250SelfTest(SelfTest);
+        pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
+        pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
+        pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
+        pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
+        pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
+        pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
+        // Calibrate gyro and accelerometers, load biases in bias registers
+        mpu9250.calibrateMPU9250(gyroBias, accelBias);
+        pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
+        pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
+        pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
+        pc.printf("x accel bias = %f\n\r", accelBias[0]);
+        pc.printf("y accel bias = %f\n\r", accelBias[1]);
+        pc.printf("z accel bias = %f\n\r", accelBias[2]);
+        wait(3);
+        //----Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        mpu9250.initMPU9250();
+        pc.printf("MPU9250 initialized for active data mode....\n\r");
+        pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
+        pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
+        wait(3);
     }
-
-    mpu9250.getAres(); // Get accelerometer sensitivity
-    mpu9250.getGres(); // Get gyro sensitivity
-    mpu9250.getMres(); // Get magnetometer sensitivity
+    else
+    {
+        pc.printf("Could not connect to MPU9250: \n\r");
+        pc.printf("%#x \n",  whoami);
+        sprintf(buffer, "WHO_AM_I 0x%x", whoami);
+        //----Loop forever if communication doesn't happen
+        while(1) ;
+    }
+    //----Get accelerometer sensitivity
+    mpu9250.getAres();
+    //----Get gyro sensitivity
+    mpu9250.getGres();
     pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
     pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
-    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
-
- while(1) {
-  
-  // If intPin goes high, all data registers have new data
-  if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
-
-    mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
-    // Now we'll calculate the accleration value into actual g's
-    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-    ay = (float)accelCount[1]*aRes - accelBias[1];   
-    az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-    mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-    // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
-  
-    mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
-    // Calculate the magnetometer values in milliGauss
-    // Include factory calibration per data sheet and user environmental corrections
-    mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-    my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
-    mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
-  }
-   
-    Now = t.read_us();
-    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-    lastUpdate = Now;
     
-    sum += deltat;
-    sumCount++;
-    
-//    if(lastUpdate - firstUpdate > 10000000.0f) {
-//     beta = 0.04;  // decrease filter gain after stabilized
-//     zeta = 0.015; // increasey bias drift gain after stabilized
- //   }
-    
-   // Pass gyro rate as rad/s
-//  mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-  mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
-
-    // Serial print and/or display at 0.5 s rate independent of data rates
-    delt_t = t.read_ms() - count;
-    if (delt_t > 500) { // update LCD once per half-second independent of read rate
-
-    pc.printf("ax = %f", 1000*ax); 
-    pc.printf(" ay = %f", 1000*ay); 
-    pc.printf(" az = %f  mg\n\r", 1000*az); 
+    //****LOOP****
+    while(1)
+    {
+        //----Time interval
+        Now = t.read_us();
+        delt_t = (Now - lastUpdate)/1000000.0f;
+        lastUpdate = Now;
+        // Read the x/y/z adc values
+        mpu9250.readAccelData(accelCount);
+        // Calculate the accleration value into actual g's
+        ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+        ay = (float)accelCount[1]*aRes - accelBias[1];
+        az = (float)accelCount[2]*aRes - accelBias[2];
+        th_ax = atan2(ay,sqrt(ax*ax+az*az))*(180.0f/PI);
+        th_ay = -1*atan2(ax,az)*(180.0f/PI);
+        // th_az = atan2(az,sqrt(ax*ax+ay*ay))*(180.0f/PI);
+        
+        /*
+        th_ax_LPF = 0.95*pre_th_ax + 0.05*th_ax;
+        th_ay_LPF = 0.95*pre_th_ay + 0.05*th_ay;
+        // th_az_LPF = 0.95*pre_th_az + 0.05*th_az;
+        pre_th_ax = th_ax;
+        pre_th_ay = th_ay;
+        // pre_th_az = th_az;
+        */
 
-    pc.printf("gx = %f", gx); 
-    pc.printf(" gy = %f", gy); 
-    pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-    pc.printf("gx = %f", mx); 
-    pc.printf(" gy = %f", my); 
-    pc.printf(" gz = %f  mG\n\r", mz); 
-    
-    tempCount = mpu9250.readTempData();  // Read the adc values
-    temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-    pc.printf(" temperature = %f  C\n\r", temperature); 
-    
-    pc.printf("q0 = %f\n\r", q[0]);
-    pc.printf("q1 = %f\n\r", q[1]);
-    pc.printf("q2 = %f\n\r", q[2]);
-    pc.printf("q3 = %f\n\r", q[3]);      
-    
-/*    lcd.clear();
-    lcd.printString("MPU9250", 0, 0);
-    lcd.printString("x   y   z", 0, 1);
-    sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
-    lcd.printString(buffer, 0, 2);
-    sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
-    lcd.printString(buffer, 0, 3);
-    sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
-    lcd.printString(buffer, 0, 4); 
- */  
-  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-  // In this coordinate system, the positive z-axis is down toward Earth. 
-  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-    pitch *= 180.0f / PI;
-    yaw   *= 180.0f / PI; 
-    yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-    roll  *= 180.0f / PI;
-
-    pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-    pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-//    sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
-//    lcd.printString(buffer, 0, 4);
-//    sprintf(buffer, "rate = %f", (float) sumCount/sum);
-//    lcd.printString(buffer, 0, 5);
-    
-    myled= !myled;
-    count = t.read_ms(); 
-
-    if(count > 1<<21) {
-        t.start(); // start the timer over again if ~30 minutes has passed
-        count = 0;
-        deltat= 0;
-        lastUpdate = t.read_us();
+        // Read the x/y/z adc values
+        mpu9250.readGyroData(gyroCount);
+        // Calculate the gyro value into actual degrees per second
+        gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+        gy = (float)gyroCount[1]*gRes - gyroBias[1];
+        gz = (float)gyroCount[2]*gRes - gyroBias[2];
+        
+        th_gx += (pre_gx + gx) * delt_t/2.0f;
+        th_gy += (pre_gy + gy) * delt_t/2.0f;
+        th_gz += (pre_gz + gz) * delt_t/2.0f;
+        pre_gx = gx;
+        pre_gy = gy;
+        pre_gz = gz;
+        
+        //----Complementary filter
+        th_x = 0.95*(th_x + (pre_gx + gx) * delt_t/2.0f) + 0.05*th_ax;
+        th_y = 0.95*(th_y + (pre_gy + gy) * delt_t/2.0f) + 0.05*th_ay;
+        
+        //----Serial print
+        sum_dt += delt_t;
+        if (sum_dt > 0.0050f)
+        {
+            //--Angle from gyroscope and accel sensor [deg.]
+            pc.printf("%8.3f , %8.3f , %8.3f\n", t.read(), th_gx, th_gy);
+            //pc.printf("%8.3f , %8.3f , %8.3f ,%8.3f , %8.3f , %8.3f , %8.3f , %8.3f , %8.3f\n", t.read(), th_ax, th_ay, th_gx, th_gy, th_x, th_y, th_x_d, th_y_d);
+            sum_dt = 0.0f;
+        }
     }
-    sum = 0;
-    sumCount = 0; 
 }
-}
- 
- }
\ No newline at end of file