LSM6DS3 Library
Dependents: LSM6DS3_Demo BLE_LoopbackUART_with_LSM6DS3 I2C_LSM6DS3 angle_test ... more
Revision 0:46630122dec9, committed 2016-06-16
- Comitter:
- 5hel2l2y
- Date:
- Thu Jun 16 20:07:13 2016 +0000
- Child:
- 1:924c7dea286e
- Commit message:
- modified to work LSM6DS3
Changed in this revision
LSM6DS3.cpp | Show annotated file Show diff for this revision Revisions of this file |
LSM6DS3.h | Show annotated file Show diff for this revision Revisions of this file |
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM6DS3.cpp Thu Jun 16 20:07:13 2016 +0000 @@ -0,0 +1,315 @@ +#include "LSM6DS3.h" + +LSM6DS3::LSM6DS3(PinName sda, PinName scl, uint8_t xgAddr) : i2c(sda, scl) +{ + // xgAddress will store the 7-bit I2C address, if using I2C. + xgAddress = xgAddr; +} + +uint16_t LSM6DS3::begin(gyro_scale gScl, accel_scale aScl, + gyro_odr gODR, accel_odr aODR) +{ + // Store the given scales in class variables. These scale variables + // are used throughout to calculate the actual g's, DPS,and Gs's. + gScale = gScl; + aScale = aScl; + + // Once we have the scale values, we can calculate the resolution + // of each sensor. That's what these functions are for. One for each sensor + calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable + calcaRes(); // Calculate g / ADC tick, stored in aRes variable + + + // To verify communication, we can read from the WHO_AM_I register of + // each device. Store those in a variable so we can return them. + // The start of the addresses we want to read from + char cmd[2] = { + WHO_AM_I_REG, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I + + // Gyro initialization stuff: + initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. + setGyroODR(gODR); // Set the gyro output data rate and bandwidth. + setGyroScale(gScale); // Set the gyro range + + // Accelerometer initialization stuff: + initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. + setAccelODR(aODR); // Set the accel data rate. + setAccelScale(aScale); // Set the accel range. + + // Once everything is initialized, return the WHO_AM_I registers we read: + return xgTest; +} + +void LSM6DS3::initGyro() +{ + char cmd[4] = { + CTRL2_G, + gScale | G_ODR_119_BW_14, + 0, // Default data out and int out + 0 // Default power mode and high pass settings + }; + + // Write the data to the gyro control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM6DS3::initAccel() +{ + char cmd[4] = { + CTRL1_XL, + 0x38, // Enable all axis and don't decimate data in out Registers + (A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW + 0 // Default resolution mode and filtering settings + }; + + // Write the data to the accel control registers + i2c.write(xgAddress, cmd, 4); +} + +void LSM6DS3::readAccel() +{ + // The data we are going to read from the accel + char data[6]; + + // Set addresses + char subAddressXL = OUTX_L_XL; + char subAddressXH = OUTX_H_XL; + char subAddressYL = OUTY_L_XL; + char subAddressYH = OUTY_H_XL; + char subAddressZL = OUTZ_L_XL; + char subAddressZH = OUTZ_H_XL; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddressXL, 1, true); + // Read in register containing the axes data and alocated to the correct index + i2c.read(xgAddress, data, 1); + + i2c.write(xgAddress, &subAddressXH, 1, true); + i2c.read(xgAddress, (data + 1), 1); + i2c.write(xgAddress, &subAddressYL, 1, true); + i2c.read(xgAddress, (data + 2), 1); + i2c.write(xgAddress, &subAddressYH, 1, true); + i2c.read(xgAddress, (data + 3), 1); + i2c.write(xgAddress, &subAddressZL, 1, true); + i2c.read(xgAddress, (data + 4), 1); + i2c.write(xgAddress, &subAddressZH, 1, true); + i2c.read(xgAddress, (data + 5), 1); + + // Reassemble the data and convert to g + ax_raw = data[0] | (data[1] << 8); + ay_raw = data[2] | (data[3] << 8); + az_raw = data[4] | (data[5] << 8); + ax = ax_raw * aRes; + ay = ay_raw * aRes; + az = az_raw * aRes; +} + +void LSM6DS3::readTemp() +{ + // The data we are going to read from the temp + char data[2]; + + // Set addresses + char subAddressL = OUT_TEMP_L; + char subAddressH = OUT_TEMP_H; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddressL, 1, true); + // Read in register containing the temperature data and alocated to the correct index + i2c.read(xgAddress, data, 1); + + i2c.write(xgAddress, &subAddressH, 1, true); + i2c.read(xgAddress, (data + 1), 1); + + // Temperature is a 12-bit signed integer + temperature_raw = data[0] | (data[1] << 8); + + temperature_c = (float)temperature_raw / 16.0 + 25.0; + temperature_f = temperature_c * 1.8 + 32.0; +} + + +void LSM6DS3::readGyro() +{ + // The data we are going to read from the gyro + char data[6]; + + // Set addresses + char subAddressXL = OUTX_L_G; + char subAddressXH = OUTX_H_G; + char subAddressYL = OUTY_L_G; + char subAddressYH = OUTY_H_G; + char subAddressZL = OUTZ_L_G; + char subAddressZH = OUTZ_H_G; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, &subAddressXL, 1, true); + // Read in register containing the axes data and alocated to the correct index + i2c.read(xgAddress, data, 1); + + i2c.write(xgAddress, &subAddressXH, 1, true); + i2c.read(xgAddress, (data + 1), 1); + i2c.write(xgAddress, &subAddressYL, 1, true); + i2c.read(xgAddress, (data + 2), 1); + i2c.write(xgAddress, &subAddressYH, 1, true); + i2c.read(xgAddress, (data + 3), 1); + i2c.write(xgAddress, &subAddressZL, 1, true); + i2c.read(xgAddress, (data + 4), 1); + i2c.write(xgAddress, &subAddressZH, 1, true); + i2c.read(xgAddress, (data + 5), 1); + + // Reassemble the data and convert to degrees/sec + gx_raw = data[0] | (data[1] << 8); + gy_raw = data[2] | (data[3] << 8); + gz_raw = data[4] | (data[5] << 8); + gx = gx_raw * gRes; + gy = gy_raw * gRes; + gz = gz_raw * gRes; +} + +void LSM6DS3::setGyroScale(gyro_scale gScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL2_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= gScl << 3; + + // Write the gyroscale out to the gyro + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update gScale: + gScale = gScl; + // Then calculate a new gRes, which relies on gScale being set correctly: + calcgRes(); +} + +void LSM6DS3::setAccelScale(accel_scale aScl) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL1_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel scale bits: + cmd[1] &= 0xFF^(0x3 << 3); + // Then shift in our new scale bits: + cmd[1] |= aScl << 3; + + // Write the accelscale out to the accel + i2c.write(xgAddress, cmd, 2); + + // We've updated the sensor, but we also need to update our class variables + // First update aScale: + aScale = aScl; + // Then calculate a new aRes, which relies on aScale being set correctly: + calcaRes(); +} + +void LSM6DS3::setGyroODR(gyro_odr gRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL2_G, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the gyro odr bits: + cmd[1] &= (0x3 << 3); + // Then shift in our new odr bits: + cmd[1] |= gRate; + + // Write the gyroodr out to the gyro + i2c.write(xgAddress, cmd, 2); +} + +void LSM6DS3::setAccelODR(accel_odr aRate) +{ + // The start of the addresses we want to read from + char cmd[2] = { + CTRL1_XL, + 0 + }; + + // Write the address we are going to read from and don't end the transaction + i2c.write(xgAddress, cmd, 1, true); + // Read in all the 8 bits of data + i2c.read(xgAddress, cmd+1, 1); + + // Then mask out the accel odr bits: + cmd[1] &= 0xFF^(0x7 << 5); + // Then shift in our new odr bits: + cmd[1] |= aRate << 5; + + // Write the accelodr out to the accel + i2c.write(xgAddress, cmd, 2); +} + +void LSM6DS3::calcgRes() +{ + // Possible gyro scales (and their register bit settings) are: + // 245 DPS (00), 500 DPS (01), 2000 DPS (10). + switch (gScale) + { + case G_SCALE_245DPS: + gRes = 245.0 / 32768.0; + break; + case G_SCALE_500DPS: + gRes = 500.0 / 32768.0; + break; + case G_SCALE_2000DPS: + gRes = 2000.0 / 32768.0; + break; + } +} + +void LSM6DS3::calcaRes() +{ + // Possible accelerometer scales (and their register bit settings) are: + // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). + switch (aScale) + { + case A_SCALE_2G: + aRes = 2.0 / 32768.0; + break; + case A_SCALE_4G: + aRes = 4.0 / 32768.0; + break; + case A_SCALE_8G: + aRes = 8.0 / 32768.0; + break; + case A_SCALE_16G: + aRes = 16.0 / 32768.0; + break; + } +} \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LSM6DS3.h Thu Jun 16 20:07:13 2016 +0000 @@ -0,0 +1,300 @@ +// Based on Eugene Gonzalez's version of LSM9DS1_Demo +// Modified by Sherry Yang for LSM6DS3 sensor +#ifndef _LSM6DS3_H__ +#define _LSM6DS3_H__ + +#include "mbed.h" + +///////////////////////////////////////// +// LSM6DS3 Accel/Gyro (XL/G) Registers // +///////////////////////////////////////// +#define RAM_ACCESS 0x01 +#define SENSOR_SYNC_TIME 0x04 +#define SENSOR_SYNC_EN 0x05 +#define FIFO_CTRL1 0x06 +#define FIFO_CTRL2 0x07 +#define FIFO_CTRL3 0x08 +#define FIFO_CTRL4 0x09 +#define FIFO_CTRL5 0x0A +#define ORIENT_CFG_G 0x0B +#define REFERENCE_G 0x0C +#define INT1_CTRL 0x0D +#define INT2_CTRL 0x0E +#define WHO_AM_I_REG 0X0F +#define CTRL1_XL 0x10 +#define CTRL2_G 0x11 +#define CTRL3_C 0x12 +#define CTRL4_C 0x13 +#define CTRL5_C 0x14 +#define CTRL6_G 0x15 +#define CTRL7_G 0x16 +#define CTRL8_XL 0x17 +#define CTRL9_XL 0x18 +#define CTRL10_C 0x19 +#define MASTER_CONFIG 0x1A +#define WAKE_UP_SRC 0x1B +#define TAP_SRC 0x1C +#define D6D_SRC 0x1D +#define STATUS_REG 0x1E +#define OUT_TEMP_L 0x20 +#define OUT_TEMP_H 0x21 +#define OUTX_L_G 0x22 +#define OUTX_H_G 0x23 +#define OUTY_L_G 0x24 +#define OUTY_H_G 0x25 +#define OUTZ_L_G 0x26 +#define OUTZ_H_G 0x27 +#define OUTX_L_XL 0x28 +#define OUTX_H_XL 0x29 +#define OUTY_L_XL 0x2A +#define OUTY_H_XL 0x2B +#define OUTZ_L_XL 0x2C +#define OUTZ_H_XL 0x2D +#define SENSORHUB1_REG 0x2E +#define SENSORHUB2_REG 0x2F +#define SENSORHUB3_REG 0x30 +#define SENSORHUB4_REG 0x31 +#define SENSORHUB5_REG 0x32 +#define SENSORHUB6_REG 0x33 +#define SENSORHUB7_REG 0x34 +#define SENSORHUB8_REG 0x35 +#define SENSORHUB9_REG 0x36 +#define SENSORHUB10_REG 0x37 +#define SENSORHUB11_REG 0x38 +#define SENSORHUB12_REG 0x39 +#define FIFO_STATUS1 0x3A +#define FIFO_STATUS2 0x3B +#define FIFO_STATUS3 0x3C +#define FIFO_STATUS4 0x3D +#define FIFO_DATA_OUT_L 0x3E +#define FIFO_DATA_OUT_H 0x3F +#define TIMESTAMP0_REG 0x40 +#define TIMESTAMP1_REG 0x41 +#define TIMESTAMP2_REG 0x42 +#define STEP_COUNTER_L 0x4B +#define STEP_COUNTER_H 0x4C +#define FUNC_SR 0x53 +#define TAP_CFG 0x58 +#define TAP_THS_6D 0x59 +#define INT_DUR2 0x5A +#define WAKE_UP_THS 0x5B +#define WAKE_UP_DUR 0x5C +#define FREE_FALL 0x5D +#define MD1_CFG 0x5E +#define MD2_CFG 0x5F + +// Possible I2C addresses for the accel/gyro +#define LSM6DS3_AG_I2C_ADDR(sa0) ((sa0) ? 0xD6 : 0xD4) + +/** + * LSM6DS3 Class - driver for the 9 DoF IMU + */ +class LSM6DS3 +{ +public: + + /// gyro_scale defines the possible full-scale ranges of the gyroscope: + enum gyro_scale + { + G_SCALE_245DPS = 0x0 << 3, // 00 << 3: +/- 245 degrees per second + G_SCALE_500DPS = 0x1 << 3, // 01 << 3: +/- 500 dps + G_SCALE_2000DPS = 0x3 << 3 // 11 << 3: +/- 2000 dps + }; + + /// gyro_odr defines all possible data rate/bandwidth combos of the gyro: + enum gyro_odr + { // ODR (Hz) --- Cutoff + G_POWER_DOWN = 0x00, // 0 0 + G_ODR_15_BW_0 = 0x20, // 14.9 0 + G_ODR_60_BW_16 = 0x40, // 59.5 16 + G_ODR_119_BW_14 = 0x60, // 119 14 + G_ODR_119_BW_31 = 0x61, // 119 31 + G_ODR_238_BW_14 = 0x80, // 238 14 + G_ODR_238_BW_29 = 0x81, // 238 29 + G_ODR_238_BW_63 = 0x82, // 238 63 + G_ODR_238_BW_78 = 0x83, // 238 78 + G_ODR_476_BW_21 = 0xA0, // 476 21 + G_ODR_476_BW_28 = 0xA1, // 476 28 + G_ODR_476_BW_57 = 0xA2, // 476 57 + G_ODR_476_BW_100 = 0xA3, // 476 100 + G_ODR_952_BW_33 = 0xC0, // 952 33 + G_ODR_952_BW_40 = 0xC1, // 952 40 + G_ODR_952_BW_58 = 0xC2, // 952 58 + G_ODR_952_BW_100 = 0xC3 // 952 100 + }; + + /// accel_scale defines all possible FSR's of the accelerometer: + enum accel_scale + { + A_SCALE_2G, // 00: +/- 2g + A_SCALE_16G,// 01: +/- 16g + A_SCALE_4G, // 10: +/- 4g + A_SCALE_8G // 11: +/- 8g + }; + + /// accel_oder defines all possible output data rates of the accelerometer: + enum accel_odr + { + A_POWER_DOWN, // Power-down mode (0x0) + A_ODR_10, // 10 Hz (0x1) + A_ODR_50, // 50 Hz (0x2) + A_ODR_119, // 119 Hz (0x3) + A_ODR_238, // 238 Hz (0x4) + A_ODR_476, // 476 Hz (0x5) + A_ODR_952 // 952 Hz (0x6) + }; + + // accel_bw defines all possible bandwiths for low-pass filter of the accelerometer: + enum accel_bw + { + A_BW_AUTO_SCALE = 0x0, // Automatic BW scaling (0x0) + A_BW_408 = 0x4, // 408 Hz (0x4) + A_BW_211 = 0x5, // 211 Hz (0x5) + A_BW_105 = 0x6, // 105 Hz (0x6) + A_BW_50 = 0x7 // 50 Hz (0x7) + }; + + // We'll store the gyro, and accel, readings in a series of + // public class variables. Each sensor gets three variables -- one for each + // axis. Call readGyro(), and readAccel() first, before using + // these variables! + // These values are the RAW signed 16-bit readings from the sensors. + int16_t gx_raw, gy_raw, gz_raw; // x, y, and z axis readings of the gyroscope + int16_t ax_raw, ay_raw, az_raw; // x, y, and z axis readings of the accelerometer + int16_t temperature_raw; + + // floating-point values of scaled data in real-world units + float gx, gy, gz; + float ax, ay, az; + float temperature_c, temperature_f; // temperature in celcius and fahrenheit + + + /** LSM6DS3 -- LSM6DS3 class constructor + * The constructor will set up a handful of private variables, and set the + * communication mode as well. + * Input: + * - interface = Either MODE_SPI or MODE_I2C, whichever you're using + * to talk to the IC. + * - xgAddr = If MODE_I2C, this is the I2C address of the accel/gyro. + * If MODE_SPI, this is the chip select pin of the accel/gyro (CS_A/G) + */ + LSM6DS3(PinName sda, PinName scl, uint8_t xgAddr = LSM6DS3_AG_I2C_ADDR(1)); + + /** begin() -- Initialize the gyro, and accelerometer. + * This will set up the scale and output rate of each sensor. It'll also + * "turn on" every sensor and every axis of every sensor. + * Input: + * - gScl = The scale of the gyroscope. This should be a gyro_scale value. + * - aScl = The scale of the accelerometer. Should be a accel_scale value. + * - gODR = Output data rate of the gyroscope. gyro_odr value. + * - aODR = Output data rate of the accelerometer. accel_odr value. + * Output: The function will return an unsigned 16-bit value. The most-sig + * bytes of the output are the WHO_AM_I reading of the accel/gyro. + * All parameters have a defaulted value, so you can call just "begin()". + * Default values are FSR's of: +/- 245DPS, 4g, 2Gs; ODRs of 119 Hz for + * gyro, 119 Hz for accelerometer. + * Use the return value of this function to verify communication. + */ + uint16_t begin(gyro_scale gScl = G_SCALE_245DPS, + accel_scale aScl = A_SCALE_2G, gyro_odr gODR = G_ODR_119_BW_14, + accel_odr aODR = A_ODR_119); + + /** readGyro() -- Read the gyroscope output registers. + * This function will read all six gyroscope output registers. + * The readings are stored in the class' gx_raw, gy_raw, and gz_raw variables. Read + * those _after_ calling readGyro(). + */ + void readGyro(); + + /** readAccel() -- Read the accelerometer output registers. + * This function will read all six accelerometer output registers. + * The readings are stored in the class' ax_raw, ay_raw, and az_raw variables. Read + * those _after_ calling readAccel(). + */ + void readAccel(); + + /** readTemp() -- Read the temperature output register. + * This function will read two temperature output registers. + * The combined readings are stored in the class' temperature variables. Read + * those _after_ calling readTemp(). + */ + void readTemp(); + + /** setGyroScale() -- Set the full-scale range of the gyroscope. + * This function can be called to set the scale of the gyroscope to + * 245, 500, or 2000 degrees per second. + * Input: + * - gScl = The desired gyroscope scale. Must be one of three possible + * values from the gyro_scale enum. + */ + void setGyroScale(gyro_scale gScl); + + /** setAccelScale() -- Set the full-scale range of the accelerometer. + * This function can be called to set the scale of the accelerometer to + * 2, 4, 8, or 16 g's. + * Input: + * - aScl = The desired accelerometer scale. Must be one of five possible + * values from the accel_scale enum. + */ + void setAccelScale(accel_scale aScl); + + /** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope + * Input: + * - gRate = The desired output rate and cutoff frequency of the gyro. + * Must be a value from the gyro_odr enum (check above). + */ + void setGyroODR(gyro_odr gRate); + + /** setAccelODR() -- Set the output data rate of the accelerometer + * Input: + * - aRate = The desired output rate of the accel. + * Must be a value from the accel_odr enum (check above). + */ + void setAccelODR(accel_odr aRate); + + +private: + /** xgAddress store the I2C address + * for each sensor. + */ + uint8_t xgAddress; + + // I2C bus + I2C i2c; + + /** gScale, and aScale store the current scale range for each + * sensor. Should be updated whenever that value changes. + */ + gyro_scale gScale; + accel_scale aScale; + + /** gRes, and aRes store the current resolution for each sensor. + * Units of these values would be DPS (or g's or Gs's) per ADC tick. + * This value is calculated as (sensor scale) / (2^15). + */ + float gRes, aRes; + + /** initGyro() -- Sets up the gyroscope to begin reading. + * This function steps through all three gyroscope control registers. + */ + void initGyro(); + + /** initAccel() -- Sets up the accelerometer to begin reading. + * This function steps through all accelerometer related control registers. + */ + void initAccel(); + + /** calcgRes() -- Calculate the resolution of the gyroscope. + * This function will set the value of the gRes variable. gScale must + * be set prior to calling this function. + */ + void calcgRes(); + + /** calcaRes() -- Calculate the resolution of the accelerometer. + * This function will set the value of the aRes variable. aScale must + * be set prior to calling this function. + */ + void calcaRes(); +}; + +#endif // _LSM6DS3_H //