CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_sin_cos_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_sin_cos_f32.c 00009 * 00010 * Description: Sine and Cosine calculation for floating-point values. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupController 00045 */ 00046 00047 /** 00048 * @defgroup SinCos Sine Cosine 00049 * 00050 * Computes the trigonometric sine and cosine values using a combination of table lookup 00051 * and linear interpolation. 00052 * There are separate functions for Q31 and floating-point data types. 00053 * The input to the floating-point version is in degrees while the 00054 * fixed-point Q31 have a scaled input with the range 00055 * [-1 0.9999] mapping to [-180 179] degrees. 00056 * 00057 * The implementation is based on table lookup using 360 values together with linear interpolation. 00058 * The steps used are: 00059 * -# Calculation of the nearest integer table index. 00060 * -# Compute the fractional portion (fract) of the input. 00061 * -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1. 00062 * -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>. 00063 * -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1. 00064 * -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>. 00065 */ 00066 00067 /** 00068 * @addtogroup SinCos 00069 * @{ 00070 */ 00071 00072 00073 /** 00074 * \par 00075 * Cosine Table is generated from following loop 00076 * <pre>for(i = 0; i < 360; i++) 00077 * { 00078 * cosTable[i]= cos((i-180) * PI/180.0); 00079 * } </pre> 00080 */ 00081 00082 static const float32_t cosTable [360] = { 00083 -0.999847695156391270f, -0.999390827019095760f, -0.998629534754573830f, 00084 -0.997564050259824200f, -0.996194698091745550f, -0.994521895368273290f, 00085 -0.992546151641321980f, -0.990268068741570250f, 00086 -0.987688340595137660f, -0.984807753012208020f, -0.981627183447663980f, 00087 -0.978147600733805690f, -0.974370064785235250f, -0.970295726275996470f, 00088 -0.965925826289068200f, -0.961261695938318670f, 00089 -0.956304755963035440f, -0.951056516295153530f, -0.945518575599316740f, 00090 -0.939692620785908320f, -0.933580426497201740f, -0.927183854566787310f, 00091 -0.920504853452440150f, -0.913545457642600760f, 00092 -0.906307787036649940f, -0.898794046299167040f, -0.891006524188367790f, 00093 -0.882947592858926770f, -0.874619707139395740f, -0.866025403784438710f, 00094 -0.857167300702112220f, -0.848048096156425960f, 00095 -0.838670567945424160f, -0.829037572555041620f, -0.819152044288991580f, 00096 -0.809016994374947340f, -0.798635510047292940f, -0.788010753606721900f, 00097 -0.777145961456970680f, -0.766044443118977900f, 00098 -0.754709580222772010f, -0.743144825477394130f, -0.731353701619170460f, 00099 -0.719339800338651300f, -0.707106781186547460f, -0.694658370458997030f, 00100 -0.681998360062498370f, -0.669130606358858240f, 00101 -0.656059028990507500f, -0.642787609686539360f, -0.629320391049837280f, 00102 -0.615661475325658290f, -0.601815023152048380f, -0.587785252292473030f, 00103 -0.573576436351045830f, -0.559192903470746680f, 00104 -0.544639035015027080f, -0.529919264233204790f, -0.515038074910054270f, 00105 -0.499999999999999780f, -0.484809620246337000f, -0.469471562785890530f, 00106 -0.453990499739546750f, -0.438371146789077510f, 00107 -0.422618261740699330f, -0.406736643075800100f, -0.390731128489273600f, 00108 -0.374606593415912070f, -0.358367949545300270f, -0.342020143325668710f, 00109 -0.325568154457156420f, -0.309016994374947340f, 00110 -0.292371704722736660f, -0.275637355816999050f, -0.258819045102520850f, 00111 -0.241921895599667790f, -0.224951054343864810f, -0.207911690817759120f, 00112 -0.190808995376544800f, -0.173648177666930300f, 00113 -0.156434465040231040f, -0.139173100960065350f, -0.121869343405147370f, 00114 -0.104528463267653330f, -0.087155742747658235f, -0.069756473744125330f, 00115 -0.052335956242943620f, -0.034899496702500733f, 00116 -0.017452406437283477f, 0.000000000000000061f, 0.017452406437283376f, 00117 0.034899496702501080f, 0.052335956242943966f, 0.069756473744125455f, 00118 0.087155742747658138f, 0.104528463267653460f, 00119 0.121869343405147490f, 0.139173100960065690f, 0.156434465040230920f, 00120 0.173648177666930410f, 0.190808995376544920f, 0.207911690817759450f, 00121 0.224951054343864920f, 0.241921895599667900f, 00122 0.258819045102520740f, 0.275637355816999160f, 0.292371704722736770f, 00123 0.309016994374947450f, 0.325568154457156760f, 0.342020143325668820f, 00124 0.358367949545300380f, 0.374606593415911960f, 00125 0.390731128489273940f, 0.406736643075800210f, 0.422618261740699440f, 00126 0.438371146789077460f, 0.453990499739546860f, 0.469471562785890860f, 00127 0.484809620246337110f, 0.500000000000000110f, 00128 0.515038074910054380f, 0.529919264233204900f, 0.544639035015027200f, 00129 0.559192903470746790f, 0.573576436351046050f, 0.587785252292473140f, 00130 0.601815023152048270f, 0.615661475325658290f, 00131 0.629320391049837500f, 0.642787609686539360f, 0.656059028990507280f, 00132 0.669130606358858240f, 0.681998360062498480f, 0.694658370458997370f, 00133 0.707106781186547570f, 0.719339800338651190f, 00134 0.731353701619170570f, 0.743144825477394240f, 0.754709580222772010f, 00135 0.766044443118978010f, 0.777145961456970900f, 0.788010753606722010f, 00136 0.798635510047292830f, 0.809016994374947450f, 00137 0.819152044288991800f, 0.829037572555041620f, 0.838670567945424050f, 00138 0.848048096156425960f, 0.857167300702112330f, 0.866025403784438710f, 00139 0.874619707139395740f, 0.882947592858926990f, 00140 0.891006524188367900f, 0.898794046299167040f, 0.906307787036649940f, 00141 0.913545457642600870f, 0.920504853452440370f, 0.927183854566787420f, 00142 0.933580426497201740f, 0.939692620785908430f, 00143 0.945518575599316850f, 0.951056516295153530f, 0.956304755963035440f, 00144 0.961261695938318890f, 0.965925826289068310f, 0.970295726275996470f, 00145 0.974370064785235250f, 0.978147600733805690f, 00146 0.981627183447663980f, 0.984807753012208020f, 0.987688340595137770f, 00147 0.990268068741570360f, 0.992546151641321980f, 0.994521895368273290f, 00148 0.996194698091745550f, 0.997564050259824200f, 00149 0.998629534754573830f, 0.999390827019095760f, 0.999847695156391270f, 00150 1.000000000000000000f, 0.999847695156391270f, 0.999390827019095760f, 00151 0.998629534754573830f, 0.997564050259824200f, 00152 0.996194698091745550f, 0.994521895368273290f, 0.992546151641321980f, 00153 0.990268068741570360f, 0.987688340595137770f, 0.984807753012208020f, 00154 0.981627183447663980f, 0.978147600733805690f, 00155 0.974370064785235250f, 0.970295726275996470f, 0.965925826289068310f, 00156 0.961261695938318890f, 0.956304755963035440f, 0.951056516295153530f, 00157 0.945518575599316850f, 0.939692620785908430f, 00158 0.933580426497201740f, 0.927183854566787420f, 0.920504853452440370f, 00159 0.913545457642600870f, 0.906307787036649940f, 0.898794046299167040f, 00160 0.891006524188367900f, 0.882947592858926990f, 00161 0.874619707139395740f, 0.866025403784438710f, 0.857167300702112330f, 00162 0.848048096156425960f, 0.838670567945424050f, 0.829037572555041620f, 00163 0.819152044288991800f, 0.809016994374947450f, 00164 0.798635510047292830f, 0.788010753606722010f, 0.777145961456970900f, 00165 0.766044443118978010f, 0.754709580222772010f, 0.743144825477394240f, 00166 0.731353701619170570f, 0.719339800338651190f, 00167 0.707106781186547570f, 0.694658370458997370f, 0.681998360062498480f, 00168 0.669130606358858240f, 0.656059028990507280f, 0.642787609686539360f, 00169 0.629320391049837500f, 0.615661475325658290f, 00170 0.601815023152048270f, 0.587785252292473140f, 0.573576436351046050f, 00171 0.559192903470746790f, 0.544639035015027200f, 0.529919264233204900f, 00172 0.515038074910054380f, 0.500000000000000110f, 00173 0.484809620246337110f, 0.469471562785890860f, 0.453990499739546860f, 00174 0.438371146789077460f, 0.422618261740699440f, 0.406736643075800210f, 00175 0.390731128489273940f, 0.374606593415911960f, 00176 0.358367949545300380f, 0.342020143325668820f, 0.325568154457156760f, 00177 0.309016994374947450f, 0.292371704722736770f, 0.275637355816999160f, 00178 0.258819045102520740f, 0.241921895599667900f, 00179 0.224951054343864920f, 0.207911690817759450f, 0.190808995376544920f, 00180 0.173648177666930410f, 0.156434465040230920f, 0.139173100960065690f, 00181 0.121869343405147490f, 0.104528463267653460f, 00182 0.087155742747658138f, 0.069756473744125455f, 0.052335956242943966f, 00183 0.034899496702501080f, 0.017452406437283376f, 0.000000000000000061f, 00184 -0.017452406437283477f, -0.034899496702500733f, 00185 -0.052335956242943620f, -0.069756473744125330f, -0.087155742747658235f, 00186 -0.104528463267653330f, -0.121869343405147370f, -0.139173100960065350f, 00187 -0.156434465040231040f, -0.173648177666930300f, 00188 -0.190808995376544800f, -0.207911690817759120f, -0.224951054343864810f, 00189 -0.241921895599667790f, -0.258819045102520850f, -0.275637355816999050f, 00190 -0.292371704722736660f, -0.309016994374947340f, 00191 -0.325568154457156420f, -0.342020143325668710f, -0.358367949545300270f, 00192 -0.374606593415912070f, -0.390731128489273600f, -0.406736643075800100f, 00193 -0.422618261740699330f, -0.438371146789077510f, 00194 -0.453990499739546750f, -0.469471562785890530f, -0.484809620246337000f, 00195 -0.499999999999999780f, -0.515038074910054270f, -0.529919264233204790f, 00196 -0.544639035015027080f, -0.559192903470746680f, 00197 -0.573576436351045830f, -0.587785252292473030f, -0.601815023152048380f, 00198 -0.615661475325658290f, -0.629320391049837280f, -0.642787609686539360f, 00199 -0.656059028990507500f, -0.669130606358858240f, 00200 -0.681998360062498370f, -0.694658370458997030f, -0.707106781186547460f, 00201 -0.719339800338651300f, -0.731353701619170460f, -0.743144825477394130f, 00202 -0.754709580222772010f, -0.766044443118977900f, 00203 -0.777145961456970680f, -0.788010753606721900f, -0.798635510047292940f, 00204 -0.809016994374947340f, -0.819152044288991580f, -0.829037572555041620f, 00205 -0.838670567945424160f, -0.848048096156425960f, 00206 -0.857167300702112220f, -0.866025403784438710f, -0.874619707139395740f, 00207 -0.882947592858926770f, -0.891006524188367790f, -0.898794046299167040f, 00208 -0.906307787036649940f, -0.913545457642600760f, 00209 -0.920504853452440150f, -0.927183854566787310f, -0.933580426497201740f, 00210 -0.939692620785908320f, -0.945518575599316740f, -0.951056516295153530f, 00211 -0.956304755963035440f, -0.961261695938318670f, 00212 -0.965925826289068200f, -0.970295726275996470f, -0.974370064785235250f, 00213 -0.978147600733805690f, -0.981627183447663980f, -0.984807753012208020f, 00214 -0.987688340595137660f, -0.990268068741570250f, 00215 -0.992546151641321980f, -0.994521895368273290f, -0.996194698091745550f, 00216 -0.997564050259824200f, -0.998629534754573830f, -0.999390827019095760f, 00217 -0.999847695156391270f, -1.000000000000000000f 00218 }; 00219 00220 /** 00221 * \par 00222 * Sine Table is generated from following loop 00223 * <pre>for(i = 0; i < 360; i++) 00224 * { 00225 * sinTable[i]= sin((i-180) * PI/180.0); 00226 * } </pre> 00227 */ 00228 00229 00230 static const float32_t sinTable [360] = { 00231 -0.017452406437283439f, -0.034899496702500699f, -0.052335956242943807f, 00232 -0.069756473744125524f, -0.087155742747658638f, -0.104528463267653730f, 00233 -0.121869343405147550f, -0.139173100960065740f, 00234 -0.156434465040230980f, -0.173648177666930280f, -0.190808995376544970f, 00235 -0.207911690817759310f, -0.224951054343864780f, -0.241921895599667730f, 00236 -0.258819045102521020f, -0.275637355816999660f, 00237 -0.292371704722737050f, -0.309016994374947510f, -0.325568154457156980f, 00238 -0.342020143325668880f, -0.358367949545300210f, -0.374606593415912240f, 00239 -0.390731128489274160f, -0.406736643075800430f, 00240 -0.422618261740699500f, -0.438371146789077290f, -0.453990499739546860f, 00241 -0.469471562785891080f, -0.484809620246337170f, -0.499999999999999940f, 00242 -0.515038074910054380f, -0.529919264233204900f, 00243 -0.544639035015026860f, -0.559192903470746900f, -0.573576436351046380f, 00244 -0.587785252292473250f, -0.601815023152048160f, -0.615661475325658400f, 00245 -0.629320391049837720f, -0.642787609686539470f, 00246 -0.656059028990507280f, -0.669130606358858350f, -0.681998360062498590f, 00247 -0.694658370458997140f, -0.707106781186547570f, -0.719339800338651410f, 00248 -0.731353701619170570f, -0.743144825477394240f, 00249 -0.754709580222771790f, -0.766044443118978010f, -0.777145961456971010f, 00250 -0.788010753606722010f, -0.798635510047292720f, -0.809016994374947450f, 00251 -0.819152044288992020f, -0.829037572555041740f, 00252 -0.838670567945424050f, -0.848048096156426070f, -0.857167300702112330f, 00253 -0.866025403784438710f, -0.874619707139395850f, -0.882947592858927100f, 00254 -0.891006524188367900f, -0.898794046299166930f, 00255 -0.906307787036650050f, -0.913545457642600980f, -0.920504853452440370f, 00256 -0.927183854566787420f, -0.933580426497201740f, -0.939692620785908430f, 00257 -0.945518575599316850f, -0.951056516295153640f, 00258 -0.956304755963035550f, -0.961261695938318890f, -0.965925826289068310f, 00259 -0.970295726275996470f, -0.974370064785235250f, -0.978147600733805690f, 00260 -0.981627183447663980f, -0.984807753012208020f, 00261 -0.987688340595137660f, -0.990268068741570360f, -0.992546151641322090f, 00262 -0.994521895368273400f, -0.996194698091745550f, -0.997564050259824200f, 00263 -0.998629534754573830f, -0.999390827019095760f, 00264 -0.999847695156391270f, -1.000000000000000000f, -0.999847695156391270f, 00265 -0.999390827019095760f, -0.998629534754573830f, -0.997564050259824200f, 00266 -0.996194698091745550f, -0.994521895368273290f, 00267 -0.992546151641321980f, -0.990268068741570250f, -0.987688340595137770f, 00268 -0.984807753012208020f, -0.981627183447663980f, -0.978147600733805580f, 00269 -0.974370064785235250f, -0.970295726275996470f, 00270 -0.965925826289068310f, -0.961261695938318890f, -0.956304755963035440f, 00271 -0.951056516295153530f, -0.945518575599316740f, -0.939692620785908320f, 00272 -0.933580426497201740f, -0.927183854566787420f, 00273 -0.920504853452440260f, -0.913545457642600870f, -0.906307787036649940f, 00274 -0.898794046299167040f, -0.891006524188367790f, -0.882947592858926880f, 00275 -0.874619707139395740f, -0.866025403784438600f, 00276 -0.857167300702112220f, -0.848048096156426070f, -0.838670567945423940f, 00277 -0.829037572555041740f, -0.819152044288991800f, -0.809016994374947450f, 00278 -0.798635510047292830f, -0.788010753606722010f, 00279 -0.777145961456970790f, -0.766044443118978010f, -0.754709580222772010f, 00280 -0.743144825477394240f, -0.731353701619170460f, -0.719339800338651080f, 00281 -0.707106781186547460f, -0.694658370458997250f, 00282 -0.681998360062498480f, -0.669130606358858240f, -0.656059028990507160f, 00283 -0.642787609686539250f, -0.629320391049837390f, -0.615661475325658180f, 00284 -0.601815023152048270f, -0.587785252292473140f, 00285 -0.573576436351046050f, -0.559192903470746900f, -0.544639035015027080f, 00286 -0.529919264233204900f, -0.515038074910054160f, -0.499999999999999940f, 00287 -0.484809620246337060f, -0.469471562785890810f, 00288 -0.453990499739546750f, -0.438371146789077400f, -0.422618261740699440f, 00289 -0.406736643075800150f, -0.390731128489273720f, -0.374606593415912010f, 00290 -0.358367949545300270f, -0.342020143325668710f, 00291 -0.325568154457156640f, -0.309016994374947400f, -0.292371704722736770f, 00292 -0.275637355816999160f, -0.258819045102520740f, -0.241921895599667730f, 00293 -0.224951054343865000f, -0.207911690817759310f, 00294 -0.190808995376544800f, -0.173648177666930330f, -0.156434465040230870f, 00295 -0.139173100960065440f, -0.121869343405147480f, -0.104528463267653460f, 00296 -0.087155742747658166f, -0.069756473744125302f, 00297 -0.052335956242943828f, -0.034899496702500969f, -0.017452406437283512f, 00298 0.000000000000000000f, 0.017452406437283512f, 0.034899496702500969f, 00299 0.052335956242943828f, 0.069756473744125302f, 00300 0.087155742747658166f, 0.104528463267653460f, 0.121869343405147480f, 00301 0.139173100960065440f, 0.156434465040230870f, 0.173648177666930330f, 00302 0.190808995376544800f, 0.207911690817759310f, 00303 0.224951054343865000f, 0.241921895599667730f, 0.258819045102520740f, 00304 0.275637355816999160f, 0.292371704722736770f, 0.309016994374947400f, 00305 0.325568154457156640f, 0.342020143325668710f, 00306 0.358367949545300270f, 0.374606593415912010f, 0.390731128489273720f, 00307 0.406736643075800150f, 0.422618261740699440f, 0.438371146789077400f, 00308 0.453990499739546750f, 0.469471562785890810f, 00309 0.484809620246337060f, 0.499999999999999940f, 0.515038074910054160f, 00310 0.529919264233204900f, 0.544639035015027080f, 0.559192903470746900f, 00311 0.573576436351046050f, 0.587785252292473140f, 00312 0.601815023152048270f, 0.615661475325658180f, 0.629320391049837390f, 00313 0.642787609686539250f, 0.656059028990507160f, 0.669130606358858240f, 00314 0.681998360062498480f, 0.694658370458997250f, 00315 0.707106781186547460f, 0.719339800338651080f, 0.731353701619170460f, 00316 0.743144825477394240f, 0.754709580222772010f, 0.766044443118978010f, 00317 0.777145961456970790f, 0.788010753606722010f, 00318 0.798635510047292830f, 0.809016994374947450f, 0.819152044288991800f, 00319 0.829037572555041740f, 0.838670567945423940f, 0.848048096156426070f, 00320 0.857167300702112220f, 0.866025403784438600f, 00321 0.874619707139395740f, 0.882947592858926880f, 0.891006524188367790f, 00322 0.898794046299167040f, 0.906307787036649940f, 0.913545457642600870f, 00323 0.920504853452440260f, 0.927183854566787420f, 00324 0.933580426497201740f, 0.939692620785908320f, 0.945518575599316740f, 00325 0.951056516295153530f, 0.956304755963035440f, 0.961261695938318890f, 00326 0.965925826289068310f, 0.970295726275996470f, 00327 0.974370064785235250f, 0.978147600733805580f, 0.981627183447663980f, 00328 0.984807753012208020f, 0.987688340595137770f, 0.990268068741570250f, 00329 0.992546151641321980f, 0.994521895368273290f, 00330 0.996194698091745550f, 0.997564050259824200f, 0.998629534754573830f, 00331 0.999390827019095760f, 0.999847695156391270f, 1.000000000000000000f, 00332 0.999847695156391270f, 0.999390827019095760f, 00333 0.998629534754573830f, 0.997564050259824200f, 0.996194698091745550f, 00334 0.994521895368273400f, 0.992546151641322090f, 0.990268068741570360f, 00335 0.987688340595137660f, 0.984807753012208020f, 00336 0.981627183447663980f, 0.978147600733805690f, 0.974370064785235250f, 00337 0.970295726275996470f, 0.965925826289068310f, 0.961261695938318890f, 00338 0.956304755963035550f, 0.951056516295153640f, 00339 0.945518575599316850f, 0.939692620785908430f, 0.933580426497201740f, 00340 0.927183854566787420f, 0.920504853452440370f, 0.913545457642600980f, 00341 0.906307787036650050f, 0.898794046299166930f, 00342 0.891006524188367900f, 0.882947592858927100f, 0.874619707139395850f, 00343 0.866025403784438710f, 0.857167300702112330f, 0.848048096156426070f, 00344 0.838670567945424050f, 0.829037572555041740f, 00345 0.819152044288992020f, 0.809016994374947450f, 0.798635510047292720f, 00346 0.788010753606722010f, 0.777145961456971010f, 0.766044443118978010f, 00347 0.754709580222771790f, 0.743144825477394240f, 00348 0.731353701619170570f, 0.719339800338651410f, 0.707106781186547570f, 00349 0.694658370458997140f, 0.681998360062498590f, 0.669130606358858350f, 00350 0.656059028990507280f, 0.642787609686539470f, 00351 0.629320391049837720f, 0.615661475325658400f, 0.601815023152048160f, 00352 0.587785252292473250f, 0.573576436351046380f, 0.559192903470746900f, 00353 0.544639035015026860f, 0.529919264233204900f, 00354 0.515038074910054380f, 0.499999999999999940f, 0.484809620246337170f, 00355 0.469471562785891080f, 0.453990499739546860f, 0.438371146789077290f, 00356 0.422618261740699500f, 0.406736643075800430f, 00357 0.390731128489274160f, 0.374606593415912240f, 0.358367949545300210f, 00358 0.342020143325668880f, 0.325568154457156980f, 0.309016994374947510f, 00359 0.292371704722737050f, 0.275637355816999660f, 00360 0.258819045102521020f, 0.241921895599667730f, 0.224951054343864780f, 00361 0.207911690817759310f, 0.190808995376544970f, 0.173648177666930280f, 00362 0.156434465040230980f, 0.139173100960065740f, 00363 0.121869343405147550f, 0.104528463267653730f, 0.087155742747658638f, 00364 0.069756473744125524f, 0.052335956242943807f, 0.034899496702500699f, 00365 0.017452406437283439f, 0.000000000000000122f 00366 }; 00367 00368 00369 /** 00370 * @brief Floating-point sin_cos function. 00371 * @param[in] theta input value in degrees 00372 * @param[out] *pSinVal points to the processed sine output. 00373 * @param[out] *pCosVal points to the processed cos output. 00374 * @return none. 00375 */ 00376 00377 00378 void arm_sin_cos_f32( 00379 float32_t theta, 00380 float32_t * pSinVal, 00381 float32_t * pCosVal) 00382 { 00383 int32_t i; /* Index for reading nearwst output values */ 00384 float32_t x1 = -179.0f; /* Initial input value */ 00385 float32_t y0, y1; /* nearest output values */ 00386 float32_t y2, y3; 00387 float32_t fract; /* fractional part of input */ 00388 00389 /* Calculation of fractional part */ 00390 if(theta > 0.0f) 00391 { 00392 fract = theta - (float32_t) ((int32_t) theta); 00393 } 00394 else 00395 { 00396 fract = (theta - (float32_t) ((int32_t) theta)) + 1.0f; 00397 } 00398 00399 /* index calculation for reading nearest output values */ 00400 i = (uint32_t) (theta - x1); 00401 00402 /* Checking min and max index of table */ 00403 if(i < 0) 00404 { 00405 i = 0; 00406 } 00407 else if(i >= 359) 00408 { 00409 i = 358; 00410 } 00411 00412 /* reading nearest sine output values */ 00413 y0 = sinTable [i]; 00414 y1 = sinTable [i + 1u]; 00415 00416 /* reading nearest cosine output values */ 00417 y2 = cosTable [i]; 00418 y3 = cosTable [i + 1u]; 00419 00420 y1 = y1 - y0; 00421 y3 = y3 - y2; 00422 00423 y1 = fract * y1; 00424 y3 = fract * y3; 00425 00426 /* Calculation of sine value */ 00427 *pSinVal = y0 + y1; 00428 00429 /* Calculation of cosine value */ 00430 *pCosVal = y2 + y3; 00431 00432 } 00433 00434 /** 00435 * @} end of SinCos group 00436 */
Generated on Tue Jul 12 2022 12:36:57 by 1.7.2