CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_rfft_fast_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_rfft_f32.c 00009 * 00010 * Description: RFFT & RIFFT Floating point process function 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 void stage_rfft_f32( 00044 arm_rfft_fast_instance_f32 * S, 00045 float32_t * p, float32_t * pOut) 00046 { 00047 uint32_t k; /* Loop Counter */ 00048 float32_t twR, twI; /* RFFT Twiddle coefficients */ 00049 float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ 00050 float32_t *pA = p; /* increasing pointer */ 00051 float32_t *pB = p; /* decreasing pointer */ 00052 float32_t xAR, xAI, xBR, xBI; /* temporary variables */ 00053 float32_t t1a, t1b; /* temporary variables */ 00054 float32_t p0, p1, p2, p3; /* temporary variables */ 00055 00056 00057 k = (S->Sint).fftLen - 1; 00058 00059 /* Pack first and last sample of the frequency domain together */ 00060 00061 xBR = pB[0]; 00062 xBI = pB[1]; 00063 xAR = pA[0]; 00064 xAI = pA[1]; 00065 00066 twR = *pCoeff++ ; 00067 twI = *pCoeff++ ; 00068 00069 // U1 = XA(1) + XB(1); % It is real 00070 t1a = xBR + xAR ; 00071 00072 // U2 = XB(1) - XA(1); % It is imaginary 00073 t1b = xBI + xAI ; 00074 00075 // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); 00076 // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); 00077 *pOut++ = 0.5f * ( t1a + t1b ); 00078 *pOut++ = 0.5f * ( t1a - t1b ); 00079 00080 // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); 00081 pB = p + 2*k; 00082 pA += 2; 00083 00084 do 00085 { 00086 /* 00087 function X = my_split_rfft(X, ifftFlag) 00088 % X is a series of real numbers 00089 L = length(X); 00090 XC = X(1:2:end) +i*X(2:2:end); 00091 XA = fft(XC); 00092 XB = conj(XA([1 end:-1:2])); 00093 TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; 00094 for l = 2:L/2 00095 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); 00096 end 00097 XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); 00098 X = XA; 00099 */ 00100 00101 xBI = pB[1]; 00102 xBR = pB[0]; 00103 xAR = pA[0]; 00104 xAI = pA[1]; 00105 00106 twR = *pCoeff++; 00107 twI = *pCoeff++; 00108 00109 t1a = xBR - xAR ; 00110 t1b = xBI + xAI ; 00111 00112 // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); 00113 // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); 00114 p0 = twR * t1a; 00115 p1 = twI * t1a; 00116 p2 = twR * t1b; 00117 p3 = twI * t1b; 00118 00119 *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR 00120 *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI 00121 00122 pA += 2; 00123 pB -= 2; 00124 k--; 00125 } while(k > 0u); 00126 } 00127 00128 /* Prepares data for inverse cfft */ 00129 void merge_rfft_f32( 00130 arm_rfft_fast_instance_f32 * S, 00131 float32_t * p, float32_t * pOut) 00132 { 00133 uint32_t k; /* Loop Counter */ 00134 float32_t twR, twI; /* RFFT Twiddle coefficients */ 00135 float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ 00136 float32_t *pA = p; /* increasing pointer */ 00137 float32_t *pB = p; /* decreasing pointer */ 00138 float32_t xAR, xAI, xBR, xBI; /* temporary variables */ 00139 float32_t t1a, t1b, r, s, t, u; /* temporary variables */ 00140 00141 k = (S->Sint).fftLen - 1; 00142 00143 xAR = pA[0]; 00144 xAI = pA[1]; 00145 00146 pCoeff += 2 ; 00147 00148 *pOut++ = 0.5f * ( xAR + xAI ); 00149 *pOut++ = 0.5f * ( xAR - xAI ); 00150 00151 pB = p + 2*k ; 00152 pA += 2 ; 00153 00154 while(k > 0u) 00155 { 00156 /* G is half of the frequency complex spectrum */ 00157 //for k = 2:N 00158 // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); 00159 xBI = pB[1] ; 00160 xBR = pB[0] ; 00161 xAR = pA[0]; 00162 xAI = pA[1]; 00163 00164 twR = *pCoeff++; 00165 twI = *pCoeff++; 00166 00167 t1a = xAR - xBR ; 00168 t1b = xAI + xBI ; 00169 00170 r = twR * t1a; 00171 s = twI * t1b; 00172 t = twI * t1a; 00173 u = twR * t1b; 00174 00175 // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); 00176 // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); 00177 *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR 00178 *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI 00179 00180 pA += 2; 00181 pB -= 2; 00182 k--; 00183 } 00184 00185 } 00186 00187 /** 00188 * @ingroup groupTransforms 00189 */ 00190 00191 /** 00192 * @defgroup Fast Real FFT Functions 00193 * 00194 * \par 00195 * The CMSIS DSP library includes specialized algorithms for computing the 00196 * FFT of real data sequences. The FFT is defined over complex data but 00197 * in many applications the input is real. Real FFT algorithms take advantage 00198 * of the symmetry properties of the FFT and have a speed advantage over complex 00199 * algorithms of the same length. 00200 * \par 00201 * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage. 00202 * \par 00203 * The real length N forward FFT of a sequence is computed using the steps shown below. 00204 * \par 00205 * \image html RFFT.gif "Real Fast Fourier Transform" 00206 * \par 00207 * The real sequence is initially treated as if it were complex to perform a CFFT. 00208 * Later, a processing stage reshapes the data to obtain half of the frequency spectrum 00209 * in complex format. Except the first complex number that contains the two real numbers 00210 * X[0] and X[N/2] all the data is complex. In other words, the first complex sample 00211 * contains two real values packed. 00212 * \par 00213 * The input for the inverse RFFT should keep the same format as the output of the 00214 * forward RFFT. A first processing stage pre-process the data to later perform an 00215 * inverse CFFT. 00216 * \par 00217 * \image html RIFFT.gif "Real Inverse Fast Fourier Transform" 00218 * \par 00219 * The algorithms for floating-point, Q15, and Q31 data are slightly different 00220 * and we describe each algorithm in turn. 00221 * \par Floating-point 00222 * The main functions are <code>arm_rfft_fast_f32()</code> 00223 * and <code>arm_rfft_fast_init_f32()</code>. The older functions 00224 * <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been 00225 * deprecated but are still documented. 00226 * \par 00227 * The FFT of a real N-point sequence has even symmetry in the frequency 00228 * domain. The second half of the data equals the conjugate of the first half 00229 * flipped in frequency: 00230 * <pre> 00231 *X[0] - real data 00232 *X[1] - complex data 00233 *X[2] - complex data 00234 *... 00235 *X[fftLen/2-1] - complex data 00236 *X[fftLen/2] - real data 00237 *X[fftLen/2+1] - conjugate of X[fftLen/2-1] 00238 *X[fftLen/2+2] - conjugate of X[fftLen/2-2] 00239 *... 00240 *X[fftLen-1] - conjugate of X[1] 00241 * </pre> 00242 * Looking at the data, we see that we can uniquely represent the FFT using only 00243 * <pre> 00244 *N/2+1 samples: 00245 *X[0] - real data 00246 *X[1] - complex data 00247 *X[2] - complex data 00248 *... 00249 *X[fftLen/2-1] - complex data 00250 *X[fftLen/2] - real data 00251 * </pre> 00252 * Looking more closely we see that the first and last samples are real valued. 00253 * They can be packed together and we can thus represent the FFT of an N-point 00254 * real sequence by N/2 complex values: 00255 * <pre> 00256 *X[0],X[N/2] - packed real data: X[0] + jX[N/2] 00257 *X[1] - complex data 00258 *X[2] - complex data 00259 *... 00260 *X[fftLen/2-1] - complex data 00261 * </pre> 00262 * The real FFT functions pack the frequency domain data in this fashion. The 00263 * forward transform outputs the data in this form and the inverse transform 00264 * expects input data in this form. The function always performs the needed 00265 * bitreversal so that the input and output data is always in normal order. The 00266 * functions support lengths of [32, 64, 128, ..., 4096] samples. 00267 * \par 00268 * The forward and inverse real FFT functions apply the standard FFT scaling; no 00269 * scaling on the forward transform and 1/fftLen scaling on the inverse 00270 * transform. 00271 * \par Q15 and Q31 00272 * The real algorithms are defined in a similar manner and utilize N/2 complex 00273 * transforms behind the scenes. In the case of fixed-point data, a radix-4 00274 * complex transform is performed and this limits the allows sequence lengths to 00275 * 128, 512, and 2048 samples. 00276 * \par 00277 * TBD. We need to document input and output order of data. 00278 * \par 00279 * The complex transforms used internally include scaling to prevent fixed-point 00280 * overflows. The overall scaling equals 1/(fftLen/2). 00281 * \par 00282 * A separate instance structure must be defined for each transform used but 00283 * twiddle factor and bit reversal tables can be reused. 00284 * \par 00285 * There is also an associated initialization function for each data type. 00286 * The initialization function performs the following operations: 00287 * - Sets the values of the internal structure fields. 00288 * - Initializes twiddle factor table and bit reversal table pointers. 00289 * - Initializes the internal complex FFT data structure. 00290 * \par 00291 * Use of the initialization function is optional. 00292 * However, if the initialization function is used, then the instance structure 00293 * cannot be placed into a const data section. To place an instance structure 00294 * into a const data section, the instance structure should be manually 00295 * initialized as follows: 00296 * <pre> 00297 *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; 00298 *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; 00299 * </pre> 00300 * where <code>fftLenReal</code> is the length of the real transform; 00301 * <code>fftLenBy2</code> length of the internal complex transform. 00302 * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform. 00303 * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order 00304 * output (=1). 00305 * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table. 00306 * The value is based on the FFT length; 00307 * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients; 00308 * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients; 00309 * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure 00310 * must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding 00311 * static initialization of the complex FFT instance structure. 00312 */ 00313 00314 /** 00315 * @addtogroup RealFFT 00316 * @{ 00317 */ 00318 00319 /** 00320 * @brief Processing function for the floating-point real FFT. 00321 * @param[in] *S points to an arm_rfft_fast_instance_f32 structure. 00322 * @param[in] *p points to the input buffer. 00323 * @param[in] *pOut points to an arm_rfft_fast_instance_f32 structure. 00324 * @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1 00325 * @return none. 00326 */ 00327 00328 void arm_rfft_fast_f32( 00329 arm_rfft_fast_instance_f32 * S, 00330 float32_t * p, float32_t * pOut, 00331 uint8_t ifftFlag) 00332 { 00333 arm_cfft_instance_f32 * Sint = &(S->Sint); 00334 Sint->fftLen = S->fftLenRFFT / 2; 00335 00336 /* Calculation of Real FFT */ 00337 if(ifftFlag) 00338 { 00339 /* Real FFT comression */ 00340 merge_rfft_f32(S, p, pOut); 00341 00342 /* Complex radix-4 IFFT process */ 00343 arm_cfft_f32( Sint, pOut, ifftFlag, 1); 00344 } 00345 else 00346 { 00347 /* Calculation of RFFT of input */ 00348 arm_cfft_f32( Sint, p, ifftFlag, 1); 00349 00350 /* Real FFT extraction */ 00351 stage_rfft_f32(S, p, pOut); 00352 } 00353 } 00354
Generated on Tue Jul 12 2022 12:36:57 by 1.7.2