CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_mat_mult_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_mult_q31.c 00009 * 00010 * Description: Q31 matrix multiplication. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupMatrix 00045 */ 00046 00047 /** 00048 * @addtogroup MatrixMult 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Q31 matrix multiplication 00054 * @param[in] *pSrcA points to the first input matrix structure 00055 * @param[in] *pSrcB points to the second input matrix structure 00056 * @param[out] *pDst points to output matrix structure 00057 * @return The function returns either 00058 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. 00059 * 00060 * @details 00061 * <b>Scaling and Overflow Behavior:</b> 00062 * 00063 * \par 00064 * The function is implemented using an internal 64-bit accumulator. 00065 * The accumulator has a 2.62 format and maintains full precision of the intermediate 00066 * multiplication results but provides only a single guard bit. There is no saturation 00067 * on intermediate additions. Thus, if the accumulator overflows it wraps around and 00068 * distorts the result. The input signals should be scaled down to avoid intermediate 00069 * overflows. The input is thus scaled down by log2(numColsA) bits 00070 * to avoid overflows, as a total of numColsA additions are performed internally. 00071 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. 00072 * 00073 * \par 00074 * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. 00075 * 00076 */ 00077 00078 arm_status arm_mat_mult_q31( 00079 const arm_matrix_instance_q31 * pSrcA, 00080 const arm_matrix_instance_q31 * pSrcB, 00081 arm_matrix_instance_q31 * pDst) 00082 { 00083 q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ 00084 q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ 00085 q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ 00086 q31_t *pOut = pDst->pData; /* output data matrix pointer */ 00087 q31_t *px; /* Temporary output data matrix pointer */ 00088 q63_t sum; /* Accumulator */ 00089 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00090 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00091 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00092 00093 #ifndef ARM_MATH_CM0_FAMILY 00094 00095 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00096 00097 uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ 00098 arm_status status; /* status of matrix multiplication */ 00099 q31_t a0, a1, a2, a3, b0, b1, b2, b3; 00100 00101 #ifdef ARM_MATH_MATRIX_CHECK 00102 00103 00104 /* Check for matrix mismatch condition */ 00105 if((pSrcA->numCols != pSrcB->numRows) || 00106 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00107 { 00108 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00109 status = ARM_MATH_SIZE_MISMATCH; 00110 } 00111 else 00112 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00113 00114 { 00115 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00116 /* row loop */ 00117 do 00118 { 00119 /* Output pointer is set to starting address of the row being processed */ 00120 px = pOut + i; 00121 00122 /* For every row wise process, the column loop counter is to be initiated */ 00123 col = numColsB; 00124 00125 /* For every row wise process, the pIn2 pointer is set 00126 ** to the starting address of the pSrcB data */ 00127 pIn2 = pSrcB->pData; 00128 00129 j = 0u; 00130 00131 /* column loop */ 00132 do 00133 { 00134 /* Set the variable sum, that acts as accumulator, to zero */ 00135 sum = 0; 00136 00137 /* Initiate the pointer pIn1 to point to the starting address of pInA */ 00138 pIn1 = pInA; 00139 00140 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00141 colCnt = numColsA >> 2; 00142 00143 00144 /* matrix multiplication */ 00145 while(colCnt > 0u) 00146 { 00147 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00148 /* Perform the multiply-accumulates */ 00149 b0 = *pIn2; 00150 pIn2 += numColsB; 00151 00152 a0 = *pIn1++; 00153 a1 = *pIn1++; 00154 00155 b1 = *pIn2; 00156 pIn2 += numColsB; 00157 b2 = *pIn2; 00158 pIn2 += numColsB; 00159 00160 sum += (q63_t) a0 *b0; 00161 sum += (q63_t) a1 *b1; 00162 00163 a2 = *pIn1++; 00164 a3 = *pIn1++; 00165 00166 b3 = *pIn2; 00167 pIn2 += numColsB; 00168 00169 sum += (q63_t) a2 *b2; 00170 sum += (q63_t) a3 *b3; 00171 00172 /* Decrement the loop counter */ 00173 colCnt--; 00174 } 00175 00176 /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. 00177 ** No loop unrolling is used. */ 00178 colCnt = numColsA % 0x4u; 00179 00180 while(colCnt > 0u) 00181 { 00182 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00183 /* Perform the multiply-accumulates */ 00184 sum += (q63_t) * pIn1++ * *pIn2; 00185 pIn2 += numColsB; 00186 00187 /* Decrement the loop counter */ 00188 colCnt--; 00189 } 00190 00191 /* Convert the result from 2.62 to 1.31 format and store in destination buffer */ 00192 *px++ = (q31_t) (sum >> 31); 00193 00194 /* Update the pointer pIn2 to point to the starting address of the next column */ 00195 j++; 00196 pIn2 = (pSrcB->pData) + j; 00197 00198 /* Decrement the column loop counter */ 00199 col--; 00200 00201 } while(col > 0u); 00202 00203 #else 00204 00205 /* Run the below code for Cortex-M0 */ 00206 00207 q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ 00208 uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */ 00209 arm_status status; /* status of matrix multiplication */ 00210 00211 00212 #ifdef ARM_MATH_MATRIX_CHECK 00213 00214 /* Check for matrix mismatch condition */ 00215 if((pSrcA->numCols != pSrcB->numRows) || 00216 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00217 { 00218 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00219 status = ARM_MATH_SIZE_MISMATCH; 00220 } 00221 else 00222 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00223 00224 { 00225 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00226 /* row loop */ 00227 do 00228 { 00229 /* Output pointer is set to starting address of the row being processed */ 00230 px = pOut + i; 00231 00232 /* For every row wise process, the column loop counter is to be initiated */ 00233 col = numColsB; 00234 00235 /* For every row wise process, the pIn2 pointer is set 00236 ** to the starting address of the pSrcB data */ 00237 pIn2 = pSrcB->pData; 00238 00239 /* column loop */ 00240 do 00241 { 00242 /* Set the variable sum, that acts as accumulator, to zero */ 00243 sum = 0; 00244 00245 /* Initiate the pointer pIn1 to point to the starting address of pInA */ 00246 pIn1 = pInA; 00247 00248 /* Matrix A columns number of MAC operations are to be performed */ 00249 colCnt = numColsA; 00250 00251 /* matrix multiplication */ 00252 while(colCnt > 0u) 00253 { 00254 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00255 /* Perform the multiply-accumulates */ 00256 sum += (q63_t) * pIn1++ * *pIn2; 00257 pIn2 += numColsB; 00258 00259 /* Decrement the loop counter */ 00260 colCnt--; 00261 } 00262 00263 /* Convert the result from 2.62 to 1.31 format and store in destination buffer */ 00264 *px++ = (q31_t) (sum >> 31); 00265 00266 /* Decrement the column loop counter */ 00267 col--; 00268 00269 /* Update the pointer pIn2 to point to the starting address of the next column */ 00270 pIn2 = pInB + (numColsB - col); 00271 00272 } while(col > 0u); 00273 00274 #endif 00275 00276 /* Update the pointer pInA to point to the starting address of the next row */ 00277 i = i + numColsB; 00278 pInA = pInA + numColsA; 00279 00280 /* Decrement the row loop counter */ 00281 row--; 00282 00283 } while(row > 0u); 00284 00285 /* set status as ARM_MATH_SUCCESS */ 00286 status = ARM_MATH_SUCCESS; 00287 } 00288 /* Return to application */ 00289 return (status); 00290 } 00291 00292 /** 00293 * @} end of MatrixMult group 00294 */
Generated on Tue Jul 12 2022 12:36:56 by 1.7.2