CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_mat_mult_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_mult_q15.c 00009 * 00010 * Description: Q15 matrix multiplication. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupMatrix 00045 */ 00046 00047 /** 00048 * @addtogroup MatrixMult 00049 * @{ 00050 */ 00051 00052 00053 /** 00054 * @brief Q15 matrix multiplication 00055 * @param[in] *pSrcA points to the first input matrix structure 00056 * @param[in] *pSrcB points to the second input matrix structure 00057 * @param[out] *pDst points to output matrix structure 00058 * @param[in] *pState points to the array for storing intermediate results 00059 * @return The function returns either 00060 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. 00061 * 00062 * @details 00063 * <b>Scaling and Overflow Behavior:</b> 00064 * 00065 * \par 00066 * The function is implemented using a 64-bit internal accumulator. The inputs to the 00067 * multiplications are in 1.15 format and multiplications yield a 2.30 result. 00068 * The 2.30 intermediate 00069 * results are accumulated in a 64-bit accumulator in 34.30 format. This approach 00070 * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then 00071 * truncated to 34.15 format by discarding the low 15 bits and then saturated to 00072 * 1.15 format. 00073 * 00074 * \par 00075 * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. 00076 * 00077 */ 00078 00079 arm_status arm_mat_mult_q15( 00080 const arm_matrix_instance_q15 * pSrcA, 00081 const arm_matrix_instance_q15 * pSrcB, 00082 arm_matrix_instance_q15 * pDst, 00083 q15_t * pState CMSIS_UNUSED) 00084 { 00085 q63_t sum; /* accumulator */ 00086 00087 #ifndef ARM_MATH_CM0_FAMILY 00088 00089 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00090 00091 q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */ 00092 q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */ 00093 q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */ 00094 q15_t *px; /* Temporary output data matrix pointer */ 00095 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00096 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00097 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00098 uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */ 00099 uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */ 00100 arm_status status; /* status of matrix multiplication */ 00101 00102 #ifndef UNALIGNED_SUPPORT_DISABLE 00103 00104 q31_t in; /* Temporary variable to hold the input value */ 00105 q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2; 00106 00107 #else 00108 00109 q15_t in; /* Temporary variable to hold the input value */ 00110 q15_t inA1, inB1, inA2, inB2; 00111 00112 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00113 00114 #ifdef ARM_MATH_MATRIX_CHECK 00115 /* Check for matrix mismatch condition */ 00116 if((pSrcA->numCols != pSrcB->numRows) || 00117 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00118 { 00119 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00120 status = ARM_MATH_SIZE_MISMATCH; 00121 } 00122 else 00123 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00124 { 00125 /* Matrix transpose */ 00126 do 00127 { 00128 /* Apply loop unrolling and exchange the columns with row elements */ 00129 col = numColsB >> 2; 00130 00131 /* The pointer px is set to starting address of the column being processed */ 00132 px = pSrcBT + i; 00133 00134 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00135 ** a second loop below computes the remaining 1 to 3 samples. */ 00136 while(col > 0u) 00137 { 00138 #ifndef UNALIGNED_SUPPORT_DISABLE 00139 00140 /* Read two elements from the row */ 00141 in = *__SIMD32(pInB)++; 00142 00143 /* Unpack and store one element in the destination */ 00144 #ifndef ARM_MATH_BIG_ENDIAN 00145 00146 *px = (q15_t) in; 00147 00148 #else 00149 00150 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00151 00152 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00153 00154 /* Update the pointer px to point to the next row of the transposed matrix */ 00155 px += numRowsB; 00156 00157 /* Unpack and store the second element in the destination */ 00158 #ifndef ARM_MATH_BIG_ENDIAN 00159 00160 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00161 00162 #else 00163 00164 *px = (q15_t) in; 00165 00166 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00167 00168 /* Update the pointer px to point to the next row of the transposed matrix */ 00169 px += numRowsB; 00170 00171 /* Read two elements from the row */ 00172 in = *__SIMD32(pInB)++; 00173 00174 /* Unpack and store one element in the destination */ 00175 #ifndef ARM_MATH_BIG_ENDIAN 00176 00177 *px = (q15_t) in; 00178 00179 #else 00180 00181 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00182 00183 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00184 00185 /* Update the pointer px to point to the next row of the transposed matrix */ 00186 px += numRowsB; 00187 00188 /* Unpack and store the second element in the destination */ 00189 00190 #ifndef ARM_MATH_BIG_ENDIAN 00191 00192 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00193 00194 #else 00195 00196 *px = (q15_t) in; 00197 00198 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00199 00200 /* Update the pointer px to point to the next row of the transposed matrix */ 00201 px += numRowsB; 00202 00203 #else 00204 00205 /* Read one element from the row */ 00206 in = *pInB++; 00207 00208 /* Store one element in the destination */ 00209 *px = in; 00210 00211 /* Update the pointer px to point to the next row of the transposed matrix */ 00212 px += numRowsB; 00213 00214 /* Read one element from the row */ 00215 in = *pInB++; 00216 00217 /* Store one element in the destination */ 00218 *px = in; 00219 00220 /* Update the pointer px to point to the next row of the transposed matrix */ 00221 px += numRowsB; 00222 00223 /* Read one element from the row */ 00224 in = *pInB++; 00225 00226 /* Store one element in the destination */ 00227 *px = in; 00228 00229 /* Update the pointer px to point to the next row of the transposed matrix */ 00230 px += numRowsB; 00231 00232 /* Read one element from the row */ 00233 in = *pInB++; 00234 00235 /* Store one element in the destination */ 00236 *px = in; 00237 00238 /* Update the pointer px to point to the next row of the transposed matrix */ 00239 px += numRowsB; 00240 00241 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00242 00243 /* Decrement the column loop counter */ 00244 col--; 00245 } 00246 00247 /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. 00248 ** No loop unrolling is used. */ 00249 col = numColsB % 0x4u; 00250 00251 while(col > 0u) 00252 { 00253 /* Read and store the input element in the destination */ 00254 *px = *pInB++; 00255 00256 /* Update the pointer px to point to the next row of the transposed matrix */ 00257 px += numRowsB; 00258 00259 /* Decrement the column loop counter */ 00260 col--; 00261 } 00262 00263 i++; 00264 00265 /* Decrement the row loop counter */ 00266 row--; 00267 00268 } while(row > 0u); 00269 00270 /* Reset the variables for the usage in the following multiplication process */ 00271 row = numRowsA; 00272 i = 0u; 00273 px = pDst->pData; 00274 00275 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00276 /* row loop */ 00277 do 00278 { 00279 /* For every row wise process, the column loop counter is to be initiated */ 00280 col = numColsB; 00281 00282 /* For every row wise process, the pIn2 pointer is set 00283 ** to the starting address of the transposed pSrcB data */ 00284 pInB = pSrcBT; 00285 00286 /* column loop */ 00287 do 00288 { 00289 /* Set the variable sum, that acts as accumulator, to zero */ 00290 sum = 0; 00291 00292 /* Apply loop unrolling and compute 2 MACs simultaneously. */ 00293 colCnt = numColsA >> 2; 00294 00295 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ 00296 pInA = pSrcA->pData + i; 00297 00298 00299 /* matrix multiplication */ 00300 while(colCnt > 0u) 00301 { 00302 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00303 #ifndef UNALIGNED_SUPPORT_DISABLE 00304 00305 /* read real and imag values from pSrcA and pSrcB buffer */ 00306 pSourceA1 = *__SIMD32(pInA)++; 00307 pSourceB1 = *__SIMD32(pInB)++; 00308 00309 pSourceA2 = *__SIMD32(pInA)++; 00310 pSourceB2 = *__SIMD32(pInB)++; 00311 00312 /* Multiply and Accumlates */ 00313 sum = __SMLALD(pSourceA1, pSourceB1, sum); 00314 sum = __SMLALD(pSourceA2, pSourceB2, sum); 00315 00316 #else 00317 /* read real and imag values from pSrcA and pSrcB buffer */ 00318 inA1 = *pInA++; 00319 inB1 = *pInB++; 00320 inA2 = *pInA++; 00321 /* Multiply and Accumlates */ 00322 sum += inA1 * inB1; 00323 inB2 = *pInB++; 00324 00325 inA1 = *pInA++; 00326 inB1 = *pInB++; 00327 /* Multiply and Accumlates */ 00328 sum += inA2 * inB2; 00329 inA2 = *pInA++; 00330 inB2 = *pInB++; 00331 00332 /* Multiply and Accumlates */ 00333 sum += inA1 * inB1; 00334 sum += inA2 * inB2; 00335 00336 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00337 00338 /* Decrement the loop counter */ 00339 colCnt--; 00340 } 00341 00342 /* process remaining column samples */ 00343 colCnt = numColsA & 3u; 00344 00345 while(colCnt > 0u) 00346 { 00347 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00348 sum += *pInA++ * *pInB++; 00349 00350 /* Decrement the loop counter */ 00351 colCnt--; 00352 } 00353 00354 /* Saturate and store the result in the destination buffer */ 00355 *px = (q15_t) (__SSAT((sum >> 15), 16)); 00356 px++; 00357 00358 /* Decrement the column loop counter */ 00359 col--; 00360 00361 } while(col > 0u); 00362 00363 i = i + numColsA; 00364 00365 /* Decrement the row loop counter */ 00366 row--; 00367 00368 } while(row > 0u); 00369 00370 #else 00371 00372 /* Run the below code for Cortex-M0 */ 00373 00374 q15_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ 00375 q15_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ 00376 q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */ 00377 q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */ 00378 q15_t *pOut = pDst->pData; /* output data matrix pointer */ 00379 q15_t *px; /* Temporary output data matrix pointer */ 00380 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00381 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00382 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00383 uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */ 00384 arm_status status; /* status of matrix multiplication */ 00385 00386 #ifdef ARM_MATH_MATRIX_CHECK 00387 00388 /* Check for matrix mismatch condition */ 00389 if((pSrcA->numCols != pSrcB->numRows) || 00390 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00391 { 00392 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00393 status = ARM_MATH_SIZE_MISMATCH; 00394 } 00395 else 00396 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00397 00398 { 00399 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00400 /* row loop */ 00401 do 00402 { 00403 /* Output pointer is set to starting address of the row being processed */ 00404 px = pOut + i; 00405 00406 /* For every row wise process, the column loop counter is to be initiated */ 00407 col = numColsB; 00408 00409 /* For every row wise process, the pIn2 pointer is set 00410 ** to the starting address of the pSrcB data */ 00411 pIn2 = pSrcB->pData; 00412 00413 /* column loop */ 00414 do 00415 { 00416 /* Set the variable sum, that acts as accumulator, to zero */ 00417 sum = 0; 00418 00419 /* Initiate the pointer pIn1 to point to the starting address of pSrcA */ 00420 pIn1 = pInA; 00421 00422 /* Matrix A columns number of MAC operations are to be performed */ 00423 colCnt = numColsA; 00424 00425 /* matrix multiplication */ 00426 while(colCnt > 0u) 00427 { 00428 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00429 /* Perform the multiply-accumulates */ 00430 sum += (q31_t) * pIn1++ * *pIn2; 00431 pIn2 += numColsB; 00432 00433 /* Decrement the loop counter */ 00434 colCnt--; 00435 } 00436 00437 /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */ 00438 /* Saturate and store the result in the destination buffer */ 00439 *px++ = (q15_t) __SSAT((sum >> 15), 16); 00440 00441 /* Decrement the column loop counter */ 00442 col--; 00443 00444 /* Update the pointer pIn2 to point to the starting address of the next column */ 00445 pIn2 = pInB + (numColsB - col); 00446 00447 } while(col > 0u); 00448 00449 /* Update the pointer pSrcA to point to the starting address of the next row */ 00450 i = i + numColsB; 00451 pInA = pInA + numColsA; 00452 00453 /* Decrement the row loop counter */ 00454 row--; 00455 00456 } while(row > 0u); 00457 00458 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00459 /* set status as ARM_MATH_SUCCESS */ 00460 status = ARM_MATH_SUCCESS; 00461 } 00462 00463 /* Return to application */ 00464 return (status); 00465 } 00466 00467 /** 00468 * @} end of MatrixMult group 00469 */
Generated on Tue Jul 12 2022 12:36:56 by 1.7.2