CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers arm_mat_mult_fast_q31.c Source File

arm_mat_mult_fast_q31.c

00001 /* ----------------------------------------------------------------------    
00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
00003 *    
00004 * $Date:        17. January 2013 
00005 * $Revision:    V1.4.1
00006 *    
00007 * Project:      CMSIS DSP Library    
00008 * Title:        arm_mat_mult_fast_q31.c    
00009 *    
00010 * Description:   Q31 matrix multiplication (fast variant).    
00011 *    
00012 * Target Processor: Cortex-M4/Cortex-M3
00013 *  
00014 * Redistribution and use in source and binary forms, with or without 
00015 * modification, are permitted provided that the following conditions
00016 * are met:
00017 *   - Redistributions of source code must retain the above copyright
00018 *     notice, this list of conditions and the following disclaimer.
00019 *   - Redistributions in binary form must reproduce the above copyright
00020 *     notice, this list of conditions and the following disclaimer in
00021 *     the documentation and/or other materials provided with the 
00022 *     distribution.
00023 *   - Neither the name of ARM LIMITED nor the names of its contributors
00024 *     may be used to endorse or promote products derived from this
00025 *     software without specific prior written permission.
00026 *
00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00038 * POSSIBILITY OF SUCH DAMAGE.   
00039 * -------------------------------------------------------------------- */
00040 
00041 #include "arm_math.h"
00042 
00043 /**    
00044  * @ingroup groupMatrix    
00045  */
00046 
00047 /**    
00048  * @addtogroup MatrixMult    
00049  * @{    
00050  */
00051 
00052 /**    
00053  * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4    
00054  * @param[in]       *pSrcA points to the first input matrix structure    
00055  * @param[in]       *pSrcB points to the second input matrix structure    
00056  * @param[out]      *pDst points to output matrix structure    
00057  * @return          The function returns either    
00058  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.    
00059  *    
00060  * @details    
00061  * <b>Scaling and Overflow Behavior:</b>    
00062  *    
00063  * \par    
00064  * The difference between the function arm_mat_mult_q31() and this fast variant is that    
00065  * the fast variant use a 32-bit rather than a 64-bit accumulator.    
00066  * The result of each 1.31 x 1.31 multiplication is truncated to    
00067  * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30    
00068  * format. Finally, the accumulator is saturated and converted to a 1.31 result.    
00069  *    
00070  * \par    
00071  * The fast version has the same overflow behavior as the standard version but provides    
00072  * less precision since it discards the low 32 bits of each multiplication result.    
00073  * In order to avoid overflows completely the input signals must be scaled down.    
00074  * Scale down one of the input matrices by log2(numColsA) bits to    
00075  * avoid overflows, as a total of numColsA additions are computed internally for each    
00076  * output element.    
00077  *    
00078  * \par    
00079  * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function    
00080  * which uses 64-bit accumulation to provide higher precision.    
00081  */
00082 
00083 arm_status arm_mat_mult_fast_q31(
00084   const arm_matrix_instance_q31 * pSrcA,
00085   const arm_matrix_instance_q31 * pSrcB,
00086   arm_matrix_instance_q31 * pDst)
00087 {
00088   q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
00089   q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
00090   q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
00091 //  q31_t *pSrcB = pSrcB->pData;                    /* input data matrix pointer B */    
00092   q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
00093   q31_t *px;                                     /* Temporary output data matrix pointer */
00094   q31_t sum;                                     /* Accumulator */
00095   uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
00096   uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
00097   uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
00098   uint16_t col, i = 0u, j, row = numRowsA, colCnt;      /* loop counters */
00099   arm_status status;                             /* status of matrix multiplication */
00100   q31_t inA1, inA2, inA3, inA4, inB1, inB2, inB3, inB4;
00101 
00102 #ifdef ARM_MATH_MATRIX_CHECK
00103 
00104 
00105   /* Check for matrix mismatch condition */
00106   if((pSrcA->numCols != pSrcB->numRows) ||
00107      (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
00108   {
00109     /* Set status as ARM_MATH_SIZE_MISMATCH */
00110     status = ARM_MATH_SIZE_MISMATCH;
00111   }
00112   else
00113 #endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
00114 
00115   {
00116     /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
00117     /* row loop */
00118     do
00119     {
00120       /* Output pointer is set to starting address of the row being processed */
00121       px = pOut + i;
00122 
00123       /* For every row wise process, the column loop counter is to be initiated */
00124       col = numColsB;
00125 
00126       /* For every row wise process, the pIn2 pointer is set    
00127        ** to the starting address of the pSrcB data */
00128       pIn2 = pSrcB->pData;
00129 
00130       j = 0u;
00131 
00132       /* column loop */
00133       do
00134       {
00135         /* Set the variable sum, that acts as accumulator, to zero */
00136         sum = 0;
00137 
00138         /* Initiate the pointer pIn1 to point to the starting address of pInA */
00139         pIn1 = pInA;
00140 
00141         /* Apply loop unrolling and compute 4 MACs simultaneously. */
00142         colCnt = numColsA >> 2;
00143 
00144 
00145         /* matrix multiplication */
00146         while(colCnt > 0u)
00147         {
00148           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
00149           /* Perform the multiply-accumulates */
00150           inB1 = *pIn2;
00151           pIn2 += numColsB;
00152 
00153           inA1 = pIn1[0];
00154           inA2 = pIn1[1];
00155 
00156           inB2 = *pIn2;
00157           pIn2 += numColsB;
00158 
00159           inB3 = *pIn2;
00160           pIn2 += numColsB;
00161 
00162           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA1 * inB1)) >> 32);
00163           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA2 * inB2)) >> 32);
00164 
00165           inA3 = pIn1[2];
00166           inA4 = pIn1[3];
00167 
00168           inB4 = *pIn2;
00169           pIn2 += numColsB;
00170 
00171           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA3 * inB3)) >> 32);
00172           sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA4 * inB4)) >> 32);
00173 
00174           pIn1 += 4u;
00175 
00176           /* Decrement the loop counter */
00177           colCnt--;
00178         }
00179 
00180         /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.    
00181          ** No loop unrolling is used. */
00182         colCnt = numColsA % 0x4u;
00183 
00184         while(colCnt > 0u)
00185         {
00186           /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
00187           /* Perform the multiply-accumulates */
00188           sum = (q31_t) ((((q63_t) sum << 32) +
00189                           ((q63_t) * pIn1++ * (*pIn2))) >> 32);
00190           pIn2 += numColsB;
00191 
00192           /* Decrement the loop counter */
00193           colCnt--;
00194         }
00195 
00196         /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
00197         *px++ = sum << 1;
00198 
00199         /* Update the pointer pIn2 to point to the  starting address of the next column */
00200         j++;
00201         pIn2 = pSrcB->pData + j;
00202 
00203         /* Decrement the column loop counter */
00204         col--;
00205 
00206       } while(col > 0u);
00207 
00208       /* Update the pointer pInA to point to the  starting address of the next row */
00209       i = i + numColsB;
00210       pInA = pInA + numColsA;
00211 
00212       /* Decrement the row loop counter */
00213       row--;
00214 
00215     } while(row > 0u);
00216 
00217     /* set status as ARM_MATH_SUCCESS */
00218     status = ARM_MATH_SUCCESS;
00219   }
00220   /* Return to application */
00221   return (status);
00222 }
00223 
00224 /**    
00225  * @} end of MatrixMult group    
00226  */