CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_mat_mult_fast_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_mult_fast_q31.c 00009 * 00010 * Description: Q31 matrix multiplication (fast variant). 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupMatrix 00045 */ 00046 00047 /** 00048 * @addtogroup MatrixMult 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 00054 * @param[in] *pSrcA points to the first input matrix structure 00055 * @param[in] *pSrcB points to the second input matrix structure 00056 * @param[out] *pDst points to output matrix structure 00057 * @return The function returns either 00058 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. 00059 * 00060 * @details 00061 * <b>Scaling and Overflow Behavior:</b> 00062 * 00063 * \par 00064 * The difference between the function arm_mat_mult_q31() and this fast variant is that 00065 * the fast variant use a 32-bit rather than a 64-bit accumulator. 00066 * The result of each 1.31 x 1.31 multiplication is truncated to 00067 * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 00068 * format. Finally, the accumulator is saturated and converted to a 1.31 result. 00069 * 00070 * \par 00071 * The fast version has the same overflow behavior as the standard version but provides 00072 * less precision since it discards the low 32 bits of each multiplication result. 00073 * In order to avoid overflows completely the input signals must be scaled down. 00074 * Scale down one of the input matrices by log2(numColsA) bits to 00075 * avoid overflows, as a total of numColsA additions are computed internally for each 00076 * output element. 00077 * 00078 * \par 00079 * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function 00080 * which uses 64-bit accumulation to provide higher precision. 00081 */ 00082 00083 arm_status arm_mat_mult_fast_q31( 00084 const arm_matrix_instance_q31 * pSrcA, 00085 const arm_matrix_instance_q31 * pSrcB, 00086 arm_matrix_instance_q31 * pDst) 00087 { 00088 q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ 00089 q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ 00090 q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ 00091 // q31_t *pSrcB = pSrcB->pData; /* input data matrix pointer B */ 00092 q31_t *pOut = pDst->pData; /* output data matrix pointer */ 00093 q31_t *px; /* Temporary output data matrix pointer */ 00094 q31_t sum; /* Accumulator */ 00095 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00096 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00097 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00098 uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ 00099 arm_status status; /* status of matrix multiplication */ 00100 q31_t inA1, inA2, inA3, inA4, inB1, inB2, inB3, inB4; 00101 00102 #ifdef ARM_MATH_MATRIX_CHECK 00103 00104 00105 /* Check for matrix mismatch condition */ 00106 if((pSrcA->numCols != pSrcB->numRows) || 00107 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00108 { 00109 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00110 status = ARM_MATH_SIZE_MISMATCH; 00111 } 00112 else 00113 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00114 00115 { 00116 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00117 /* row loop */ 00118 do 00119 { 00120 /* Output pointer is set to starting address of the row being processed */ 00121 px = pOut + i; 00122 00123 /* For every row wise process, the column loop counter is to be initiated */ 00124 col = numColsB; 00125 00126 /* For every row wise process, the pIn2 pointer is set 00127 ** to the starting address of the pSrcB data */ 00128 pIn2 = pSrcB->pData; 00129 00130 j = 0u; 00131 00132 /* column loop */ 00133 do 00134 { 00135 /* Set the variable sum, that acts as accumulator, to zero */ 00136 sum = 0; 00137 00138 /* Initiate the pointer pIn1 to point to the starting address of pInA */ 00139 pIn1 = pInA; 00140 00141 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00142 colCnt = numColsA >> 2; 00143 00144 00145 /* matrix multiplication */ 00146 while(colCnt > 0u) 00147 { 00148 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00149 /* Perform the multiply-accumulates */ 00150 inB1 = *pIn2; 00151 pIn2 += numColsB; 00152 00153 inA1 = pIn1[0]; 00154 inA2 = pIn1[1]; 00155 00156 inB2 = *pIn2; 00157 pIn2 += numColsB; 00158 00159 inB3 = *pIn2; 00160 pIn2 += numColsB; 00161 00162 sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA1 * inB1)) >> 32); 00163 sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA2 * inB2)) >> 32); 00164 00165 inA3 = pIn1[2]; 00166 inA4 = pIn1[3]; 00167 00168 inB4 = *pIn2; 00169 pIn2 += numColsB; 00170 00171 sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA3 * inB3)) >> 32); 00172 sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) inA4 * inB4)) >> 32); 00173 00174 pIn1 += 4u; 00175 00176 /* Decrement the loop counter */ 00177 colCnt--; 00178 } 00179 00180 /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. 00181 ** No loop unrolling is used. */ 00182 colCnt = numColsA % 0x4u; 00183 00184 while(colCnt > 0u) 00185 { 00186 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00187 /* Perform the multiply-accumulates */ 00188 sum = (q31_t) ((((q63_t) sum << 32) + 00189 ((q63_t) * pIn1++ * (*pIn2))) >> 32); 00190 pIn2 += numColsB; 00191 00192 /* Decrement the loop counter */ 00193 colCnt--; 00194 } 00195 00196 /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ 00197 *px++ = sum << 1; 00198 00199 /* Update the pointer pIn2 to point to the starting address of the next column */ 00200 j++; 00201 pIn2 = pSrcB->pData + j; 00202 00203 /* Decrement the column loop counter */ 00204 col--; 00205 00206 } while(col > 0u); 00207 00208 /* Update the pointer pInA to point to the starting address of the next row */ 00209 i = i + numColsB; 00210 pInA = pInA + numColsA; 00211 00212 /* Decrement the row loop counter */ 00213 row--; 00214 00215 } while(row > 0u); 00216 00217 /* set status as ARM_MATH_SUCCESS */ 00218 status = ARM_MATH_SUCCESS; 00219 } 00220 /* Return to application */ 00221 return (status); 00222 } 00223 00224 /** 00225 * @} end of MatrixMult group 00226 */
Generated on Tue Jul 12 2022 12:36:56 by 1.7.2