CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_mat_mult_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_mult_f32.c 00009 * 00010 * Description: Floating-point matrix multiplication. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupMatrix 00045 */ 00046 00047 /** 00048 * @defgroup MatrixMult Matrix Multiplication 00049 * 00050 * Multiplies two matrices. 00051 * 00052 * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices" 00053 00054 * Matrix multiplication is only defined if the number of columns of the 00055 * first matrix equals the number of rows of the second matrix. 00056 * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results 00057 * in an <code>M x P</code> matrix. 00058 * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of 00059 * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output 00060 * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>. 00061 */ 00062 00063 00064 /** 00065 * @addtogroup MatrixMult 00066 * @{ 00067 */ 00068 00069 /** 00070 * @brief Floating-point matrix multiplication. 00071 * @param[in] *pSrcA points to the first input matrix structure 00072 * @param[in] *pSrcB points to the second input matrix structure 00073 * @param[out] *pDst points to output matrix structure 00074 * @return The function returns either 00075 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. 00076 */ 00077 00078 arm_status arm_mat_mult_f32( 00079 const arm_matrix_instance_f32 * pSrcA, 00080 const arm_matrix_instance_f32 * pSrcB, 00081 arm_matrix_instance_f32 * pDst) 00082 { 00083 float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ 00084 float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ 00085 float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ 00086 float32_t *pOut = pDst->pData; /* output data matrix pointer */ 00087 float32_t *px; /* Temporary output data matrix pointer */ 00088 float32_t sum; /* Accumulator */ 00089 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00090 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00091 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00092 00093 #ifndef ARM_MATH_CM0_FAMILY 00094 00095 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00096 00097 float32_t in1, in2, in3, in4; 00098 uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ 00099 arm_status status; /* status of matrix multiplication */ 00100 00101 #ifdef ARM_MATH_MATRIX_CHECK 00102 00103 00104 /* Check for matrix mismatch condition */ 00105 if((pSrcA->numCols != pSrcB->numRows) || 00106 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00107 { 00108 00109 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00110 status = ARM_MATH_SIZE_MISMATCH; 00111 } 00112 else 00113 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00114 00115 { 00116 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00117 /* row loop */ 00118 do 00119 { 00120 /* Output pointer is set to starting address of the row being processed */ 00121 px = pOut + i; 00122 00123 /* For every row wise process, the column loop counter is to be initiated */ 00124 col = numColsB; 00125 00126 /* For every row wise process, the pIn2 pointer is set 00127 ** to the starting address of the pSrcB data */ 00128 pIn2 = pSrcB->pData; 00129 00130 j = 0u; 00131 00132 /* column loop */ 00133 do 00134 { 00135 /* Set the variable sum, that acts as accumulator, to zero */ 00136 sum = 0.0f; 00137 00138 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ 00139 pIn1 = pInA; 00140 00141 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00142 colCnt = numColsA >> 2u; 00143 00144 /* matrix multiplication */ 00145 while(colCnt > 0u) 00146 { 00147 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00148 in3 = *pIn2; 00149 pIn2 += numColsB; 00150 in1 = pIn1[0]; 00151 in2 = pIn1[1]; 00152 sum += in1 * in3; 00153 in4 = *pIn2; 00154 pIn2 += numColsB; 00155 sum += in2 * in4; 00156 00157 in3 = *pIn2; 00158 pIn2 += numColsB; 00159 in1 = pIn1[2]; 00160 in2 = pIn1[3]; 00161 sum += in1 * in3; 00162 in4 = *pIn2; 00163 pIn2 += numColsB; 00164 sum += in2 * in4; 00165 pIn1 += 4u; 00166 00167 /* Decrement the loop count */ 00168 colCnt--; 00169 } 00170 00171 /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. 00172 ** No loop unrolling is used. */ 00173 colCnt = numColsA % 0x4u; 00174 00175 while(colCnt > 0u) 00176 { 00177 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00178 sum += *pIn1++ * (*pIn2); 00179 pIn2 += numColsB; 00180 00181 /* Decrement the loop counter */ 00182 colCnt--; 00183 } 00184 00185 /* Store the result in the destination buffer */ 00186 *px++ = sum; 00187 00188 /* Update the pointer pIn2 to point to the starting address of the next column */ 00189 j++; 00190 pIn2 = pSrcB->pData + j; 00191 00192 /* Decrement the column loop counter */ 00193 col--; 00194 00195 } while(col > 0u); 00196 00197 #else 00198 00199 /* Run the below code for Cortex-M0 */ 00200 00201 float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ 00202 uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */ 00203 arm_status status; /* status of matrix multiplication */ 00204 00205 #ifdef ARM_MATH_MATRIX_CHECK 00206 00207 /* Check for matrix mismatch condition */ 00208 if((pSrcA->numCols != pSrcB->numRows) || 00209 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00210 { 00211 00212 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00213 status = ARM_MATH_SIZE_MISMATCH; 00214 } 00215 else 00216 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00217 00218 { 00219 /* The following loop performs the dot-product of each row in pInA with each column in pInB */ 00220 /* row loop */ 00221 do 00222 { 00223 /* Output pointer is set to starting address of the row being processed */ 00224 px = pOut + i; 00225 00226 /* For every row wise process, the column loop counter is to be initiated */ 00227 col = numColsB; 00228 00229 /* For every row wise process, the pIn2 pointer is set 00230 ** to the starting address of the pSrcB data */ 00231 pIn2 = pSrcB->pData; 00232 00233 /* column loop */ 00234 do 00235 { 00236 /* Set the variable sum, that acts as accumulator, to zero */ 00237 sum = 0.0f; 00238 00239 /* Initialize the pointer pIn1 to point to the starting address of the row being processed */ 00240 pIn1 = pInA; 00241 00242 /* Matrix A columns number of MAC operations are to be performed */ 00243 colCnt = numColsA; 00244 00245 while(colCnt > 0u) 00246 { 00247 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00248 sum += *pIn1++ * (*pIn2); 00249 pIn2 += numColsB; 00250 00251 /* Decrement the loop counter */ 00252 colCnt--; 00253 } 00254 00255 /* Store the result in the destination buffer */ 00256 *px++ = sum; 00257 00258 /* Decrement the column loop counter */ 00259 col--; 00260 00261 /* Update the pointer pIn2 to point to the starting address of the next column */ 00262 pIn2 = pInB + (numColsB - col); 00263 00264 } while(col > 0u); 00265 00266 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00267 00268 /* Update the pointer pInA to point to the starting address of the next row */ 00269 i = i + numColsB; 00270 pInA = pInA + numColsA; 00271 00272 /* Decrement the row loop counter */ 00273 row--; 00274 00275 } while(row > 0u); 00276 /* Set status as ARM_MATH_SUCCESS */ 00277 status = ARM_MATH_SUCCESS; 00278 } 00279 00280 /* Return to application */ 00281 return (status); 00282 } 00283 00284 /** 00285 * @} end of MatrixMult group 00286 */
Generated on Tue Jul 12 2022 12:36:56 by 1.7.2