CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_lms_norm_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_lms_norm_f32.c 00009 * 00010 * Description: Processing function for the floating-point Normalised LMS. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @defgroup LMS_NORM Normalized LMS Filters 00049 * 00050 * This set of functions implements a commonly used adaptive filter. 00051 * It is related to the Least Mean Square (LMS) adaptive filter and includes an additional normalization 00052 * factor which increases the adaptation rate of the filter. 00053 * The CMSIS DSP Library contains normalized LMS filter functions that operate on Q15, Q31, and floating-point data types. 00054 * 00055 * A normalized least mean square (NLMS) filter consists of two components as shown below. 00056 * The first component is a standard transversal or FIR filter. 00057 * The second component is a coefficient update mechanism. 00058 * The NLMS filter has two input signals. 00059 * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter. 00060 * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input. 00061 * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input. 00062 * This "error signal" tends towards zero as the filter adapts. 00063 * The NLMS processing functions accept the input and reference input signals and generate the filter output and error signal. 00064 * \image html LMS.gif "Internal structure of the NLMS adaptive filter" 00065 * 00066 * The functions operate on blocks of data and each call to the function processes 00067 * <code>blockSize</code> samples through the filter. 00068 * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal, 00069 * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal. 00070 * All arrays contain <code>blockSize</code> values. 00071 * 00072 * The functions operate on a block-by-block basis. 00073 * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis. 00074 * The convergence of the LMS filter is slower compared to the normalized LMS algorithm. 00075 * 00076 * \par Algorithm: 00077 * The output signal <code>y[n]</code> is computed by a standard FIR filter: 00078 * <pre> 00079 * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1] 00080 * </pre> 00081 * 00082 * \par 00083 * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output: 00084 * <pre> 00085 * e[n] = d[n] - y[n]. 00086 * </pre> 00087 * 00088 * \par 00089 * After each sample of the error signal is computed the instanteous energy of the filter state variables is calculated: 00090 * <pre> 00091 * E = x[n]^2 + x[n-1]^2 + ... + x[n-numTaps+1]^2. 00092 * </pre> 00093 * The filter coefficients <code>b[k]</code> are then updated on a sample-by-sample basis: 00094 * <pre> 00095 * b[k] = b[k] + e[n] * (mu/E) * x[n-k], for k=0, 1, ..., numTaps-1 00096 * </pre> 00097 * where <code>mu</code> is the step size and controls the rate of coefficient convergence. 00098 *\par 00099 * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>. 00100 * Coefficients are stored in time reversed order. 00101 * \par 00102 * <pre> 00103 * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]} 00104 * </pre> 00105 * \par 00106 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>. 00107 * Samples in the state buffer are stored in the order: 00108 * \par 00109 * <pre> 00110 * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]} 00111 * </pre> 00112 * \par 00113 * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples. 00114 * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters, 00115 * to be avoided and yields a significant speed improvement. 00116 * The state variables are updated after each block of data is processed. 00117 * \par Instance Structure 00118 * The coefficients and state variables for a filter are stored together in an instance data structure. 00119 * A separate instance structure must be defined for each filter and 00120 * coefficient and state arrays cannot be shared among instances. 00121 * There are separate instance structure declarations for each of the 3 supported data types. 00122 * 00123 * \par Initialization Functions 00124 * There is also an associated initialization function for each data type. 00125 * The initialization function performs the following operations: 00126 * - Sets the values of the internal structure fields. 00127 * - Zeros out the values in the state buffer. 00128 * To do this manually without calling the init function, assign the follow subfields of the instance structure: 00129 * numTaps, pCoeffs, mu, energy, x0, pState. Also set all of the values in pState to zero. 00130 * For Q7, Q15, and Q31 the following fields must also be initialized; 00131 * recipTable, postShift 00132 * 00133 * \par 00134 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. 00135 * \par Fixed-Point Behavior: 00136 * Care must be taken when using the Q15 and Q31 versions of the normalised LMS filter. 00137 * The following issues must be considered: 00138 * - Scaling of coefficients 00139 * - Overflow and saturation 00140 * 00141 * \par Scaling of Coefficients: 00142 * Filter coefficients are represented as fractional values and 00143 * coefficients are restricted to lie in the range <code>[-1 +1)</code>. 00144 * The fixed-point functions have an additional scaling parameter <code>postShift</code>. 00145 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits. 00146 * This essentially scales the filter coefficients by <code>2^postShift</code> and 00147 * allows the filter coefficients to exceed the range <code>[+1 -1)</code>. 00148 * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled. 00149 * 00150 * \par Overflow and Saturation: 00151 * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are 00152 * described separately as part of the function specific documentation below. 00153 */ 00154 00155 00156 /** 00157 * @addtogroup LMS_NORM 00158 * @{ 00159 */ 00160 00161 00162 /** 00163 * @brief Processing function for floating-point normalized LMS filter. 00164 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure. 00165 * @param[in] *pSrc points to the block of input data. 00166 * @param[in] *pRef points to the block of reference data. 00167 * @param[out] *pOut points to the block of output data. 00168 * @param[out] *pErr points to the block of error data. 00169 * @param[in] blockSize number of samples to process. 00170 * @return none. 00171 */ 00172 00173 void arm_lms_norm_f32( 00174 arm_lms_norm_instance_f32 * S, 00175 float32_t * pSrc, 00176 float32_t * pRef, 00177 float32_t * pOut, 00178 float32_t * pErr, 00179 uint32_t blockSize) 00180 { 00181 float32_t *pState = S->pState; /* State pointer */ 00182 float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00183 float32_t *pStateCurnt; /* Points to the current sample of the state */ 00184 float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */ 00185 float32_t mu = S->mu; /* Adaptive factor */ 00186 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ 00187 uint32_t tapCnt, blkCnt; /* Loop counters */ 00188 float32_t energy; /* Energy of the input */ 00189 float32_t sum, e, d; /* accumulator, error, reference data sample */ 00190 float32_t w, x0, in; /* weight factor, temporary variable to hold input sample and state */ 00191 00192 /* Initializations of error, difference, Coefficient update */ 00193 e = 0.0f; 00194 d = 0.0f; 00195 w = 0.0f; 00196 00197 energy = S->energy; 00198 x0 = S->x0; 00199 00200 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ 00201 /* pStateCurnt points to the location where the new input data should be written */ 00202 pStateCurnt = &(S->pState[(numTaps - 1u)]); 00203 00204 /* Loop over blockSize number of values */ 00205 blkCnt = blockSize; 00206 00207 00208 #ifndef ARM_MATH_CM0_FAMILY 00209 00210 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00211 00212 while(blkCnt > 0u) 00213 { 00214 /* Copy the new input sample into the state buffer */ 00215 *pStateCurnt++ = *pSrc; 00216 00217 /* Initialize pState pointer */ 00218 px = pState; 00219 00220 /* Initialize coeff pointer */ 00221 pb = (pCoeffs); 00222 00223 /* Read the sample from input buffer */ 00224 in = *pSrc++; 00225 00226 /* Update the energy calculation */ 00227 energy -= x0 * x0; 00228 energy += in * in; 00229 00230 /* Set the accumulator to zero */ 00231 sum = 0.0f; 00232 00233 /* Loop unrolling. Process 4 taps at a time. */ 00234 tapCnt = numTaps >> 2; 00235 00236 while(tapCnt > 0u) 00237 { 00238 /* Perform the multiply-accumulate */ 00239 sum += (*px++) * (*pb++); 00240 sum += (*px++) * (*pb++); 00241 sum += (*px++) * (*pb++); 00242 sum += (*px++) * (*pb++); 00243 00244 /* Decrement the loop counter */ 00245 tapCnt--; 00246 } 00247 00248 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00249 tapCnt = numTaps % 0x4u; 00250 00251 while(tapCnt > 0u) 00252 { 00253 /* Perform the multiply-accumulate */ 00254 sum += (*px++) * (*pb++); 00255 00256 /* Decrement the loop counter */ 00257 tapCnt--; 00258 } 00259 00260 /* The result in the accumulator, store in the destination buffer. */ 00261 *pOut++ = sum; 00262 00263 /* Compute and store error */ 00264 d = (float32_t) (*pRef++); 00265 e = d - sum; 00266 *pErr++ = e; 00267 00268 /* Calculation of Weighting factor for updating filter coefficients */ 00269 /* epsilon value 0.000000119209289f */ 00270 w = (e * mu) / (energy + 0.000000119209289f); 00271 00272 /* Initialize pState pointer */ 00273 px = pState; 00274 00275 /* Initialize coeff pointer */ 00276 pb = (pCoeffs); 00277 00278 /* Loop unrolling. Process 4 taps at a time. */ 00279 tapCnt = numTaps >> 2; 00280 00281 /* Update filter coefficients */ 00282 while(tapCnt > 0u) 00283 { 00284 /* Perform the multiply-accumulate */ 00285 *pb += w * (*px++); 00286 pb++; 00287 00288 *pb += w * (*px++); 00289 pb++; 00290 00291 *pb += w * (*px++); 00292 pb++; 00293 00294 *pb += w * (*px++); 00295 pb++; 00296 00297 00298 /* Decrement the loop counter */ 00299 tapCnt--; 00300 } 00301 00302 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00303 tapCnt = numTaps % 0x4u; 00304 00305 while(tapCnt > 0u) 00306 { 00307 /* Perform the multiply-accumulate */ 00308 *pb += w * (*px++); 00309 pb++; 00310 00311 /* Decrement the loop counter */ 00312 tapCnt--; 00313 } 00314 00315 x0 = *pState; 00316 00317 /* Advance state pointer by 1 for the next sample */ 00318 pState = pState + 1; 00319 00320 /* Decrement the loop counter */ 00321 blkCnt--; 00322 } 00323 00324 S->energy = energy; 00325 S->x0 = x0; 00326 00327 /* Processing is complete. Now copy the last numTaps - 1 samples to the 00328 satrt of the state buffer. This prepares the state buffer for the 00329 next function call. */ 00330 00331 /* Points to the start of the pState buffer */ 00332 pStateCurnt = S->pState; 00333 00334 /* Loop unrolling for (numTaps - 1u)/4 samples copy */ 00335 tapCnt = (numTaps - 1u) >> 2u; 00336 00337 /* copy data */ 00338 while(tapCnt > 0u) 00339 { 00340 *pStateCurnt++ = *pState++; 00341 *pStateCurnt++ = *pState++; 00342 *pStateCurnt++ = *pState++; 00343 *pStateCurnt++ = *pState++; 00344 00345 /* Decrement the loop counter */ 00346 tapCnt--; 00347 } 00348 00349 /* Calculate remaining number of copies */ 00350 tapCnt = (numTaps - 1u) % 0x4u; 00351 00352 /* Copy the remaining q31_t data */ 00353 while(tapCnt > 0u) 00354 { 00355 *pStateCurnt++ = *pState++; 00356 00357 /* Decrement the loop counter */ 00358 tapCnt--; 00359 } 00360 00361 #else 00362 00363 /* Run the below code for Cortex-M0 */ 00364 00365 while(blkCnt > 0u) 00366 { 00367 /* Copy the new input sample into the state buffer */ 00368 *pStateCurnt++ = *pSrc; 00369 00370 /* Initialize pState pointer */ 00371 px = pState; 00372 00373 /* Initialize pCoeffs pointer */ 00374 pb = pCoeffs; 00375 00376 /* Read the sample from input buffer */ 00377 in = *pSrc++; 00378 00379 /* Update the energy calculation */ 00380 energy -= x0 * x0; 00381 energy += in * in; 00382 00383 /* Set the accumulator to zero */ 00384 sum = 0.0f; 00385 00386 /* Loop over numTaps number of values */ 00387 tapCnt = numTaps; 00388 00389 while(tapCnt > 0u) 00390 { 00391 /* Perform the multiply-accumulate */ 00392 sum += (*px++) * (*pb++); 00393 00394 /* Decrement the loop counter */ 00395 tapCnt--; 00396 } 00397 00398 /* The result in the accumulator is stored in the destination buffer. */ 00399 *pOut++ = sum; 00400 00401 /* Compute and store error */ 00402 d = (float32_t) (*pRef++); 00403 e = d - sum; 00404 *pErr++ = e; 00405 00406 /* Calculation of Weighting factor for updating filter coefficients */ 00407 /* epsilon value 0.000000119209289f */ 00408 w = (e * mu) / (energy + 0.000000119209289f); 00409 00410 /* Initialize pState pointer */ 00411 px = pState; 00412 00413 /* Initialize pCcoeffs pointer */ 00414 pb = pCoeffs; 00415 00416 /* Loop over numTaps number of values */ 00417 tapCnt = numTaps; 00418 00419 while(tapCnt > 0u) 00420 { 00421 /* Perform the multiply-accumulate */ 00422 *pb += w * (*px++); 00423 pb++; 00424 00425 /* Decrement the loop counter */ 00426 tapCnt--; 00427 } 00428 00429 x0 = *pState; 00430 00431 /* Advance state pointer by 1 for the next sample */ 00432 pState = pState + 1; 00433 00434 /* Decrement the loop counter */ 00435 blkCnt--; 00436 } 00437 00438 S->energy = energy; 00439 S->x0 = x0; 00440 00441 /* Processing is complete. Now copy the last numTaps - 1 samples to the 00442 satrt of the state buffer. This prepares the state buffer for the 00443 next function call. */ 00444 00445 /* Points to the start of the pState buffer */ 00446 pStateCurnt = S->pState; 00447 00448 /* Copy (numTaps - 1u) samples */ 00449 tapCnt = (numTaps - 1u); 00450 00451 /* Copy the remaining q31_t data */ 00452 while(tapCnt > 0u) 00453 { 00454 *pStateCurnt++ = *pState++; 00455 00456 /* Decrement the loop counter */ 00457 tapCnt--; 00458 } 00459 00460 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00461 00462 } 00463 00464 /** 00465 * @} end of LMS_NORM group 00466 */
Generated on Tue Jul 12 2022 12:36:56 by 1.7.2