CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_fir_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_q31.c 00009 * 00010 * Description: Q31 FIR filter processing function. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR 00049 * @{ 00050 */ 00051 00052 /** 00053 * @param[in] *S points to an instance of the Q31 FIR filter structure. 00054 * @param[in] *pSrc points to the block of input data. 00055 * @param[out] *pDst points to the block of output data. 00056 * @param[in] blockSize number of samples to process per call. 00057 * @return none. 00058 * 00059 * @details 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * \par 00062 * The function is implemented using an internal 64-bit accumulator. 00063 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00064 * Thus, if the accumulator result overflows it wraps around rather than clip. 00065 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits. 00066 * After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. 00067 * 00068 * \par 00069 * Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4. 00070 */ 00071 00072 void arm_fir_q31( 00073 const arm_fir_instance_q31 * S, 00074 q31_t * pSrc, 00075 q31_t * pDst, 00076 uint32_t blockSize) 00077 { 00078 q31_t *pState = S->pState; /* State pointer */ 00079 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00080 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00081 00082 00083 #ifndef ARM_MATH_CM0_FAMILY 00084 00085 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00086 00087 q31_t x0, x1, x2; /* Temporary variables to hold state */ 00088 q31_t c0; /* Temporary variable to hold coefficient value */ 00089 q31_t *px; /* Temporary pointer for state */ 00090 q31_t *pb; /* Temporary pointer for coefficient buffer */ 00091 q63_t acc0, acc1, acc2; /* Accumulators */ 00092 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ 00093 uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */ 00094 00095 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ 00096 /* pStateCurnt points to the location where the new input data should be written */ 00097 pStateCurnt = &(S->pState[(numTaps - 1u)]); 00098 00099 /* Apply loop unrolling and compute 4 output values simultaneously. 00100 * The variables acc0 ... acc3 hold output values that are being computed: 00101 * 00102 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] 00103 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] 00104 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] 00105 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] 00106 */ 00107 blkCnt = blockSize / 3; 00108 blockSize = blockSize - (3 * blkCnt); 00109 00110 tapCnt = numTaps / 3; 00111 tapCntN3 = numTaps - (3 * tapCnt); 00112 00113 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00114 ** a second loop below computes the remaining 1 to 3 samples. */ 00115 while(blkCnt > 0u) 00116 { 00117 /* Copy three new input samples into the state buffer */ 00118 *pStateCurnt++ = *pSrc++; 00119 *pStateCurnt++ = *pSrc++; 00120 *pStateCurnt++ = *pSrc++; 00121 00122 /* Set all accumulators to zero */ 00123 acc0 = 0; 00124 acc1 = 0; 00125 acc2 = 0; 00126 00127 /* Initialize state pointer */ 00128 px = pState; 00129 00130 /* Initialize coefficient pointer */ 00131 pb = pCoeffs; 00132 00133 /* Read the first two samples from the state buffer: 00134 * x[n-numTaps], x[n-numTaps-1] */ 00135 x0 = *(px++); 00136 x1 = *(px++); 00137 00138 /* Loop unrolling. Process 3 taps at a time. */ 00139 i = tapCnt; 00140 00141 while(i > 0u) 00142 { 00143 /* Read the b[numTaps] coefficient */ 00144 c0 = *pb; 00145 00146 /* Read x[n-numTaps-2] sample */ 00147 x2 = *(px++); 00148 00149 /* Perform the multiply-accumulates */ 00150 acc0 += ((q63_t) x0 * c0); 00151 acc1 += ((q63_t) x1 * c0); 00152 acc2 += ((q63_t) x2 * c0); 00153 00154 /* Read the coefficient and state */ 00155 c0 = *(pb + 1u); 00156 x0 = *(px++); 00157 00158 /* Perform the multiply-accumulates */ 00159 acc0 += ((q63_t) x1 * c0); 00160 acc1 += ((q63_t) x2 * c0); 00161 acc2 += ((q63_t) x0 * c0); 00162 00163 /* Read the coefficient and state */ 00164 c0 = *(pb + 2u); 00165 x1 = *(px++); 00166 00167 /* update coefficient pointer */ 00168 pb += 3u; 00169 00170 /* Perform the multiply-accumulates */ 00171 acc0 += ((q63_t) x2 * c0); 00172 acc1 += ((q63_t) x0 * c0); 00173 acc2 += ((q63_t) x1 * c0); 00174 00175 /* Decrement the loop counter */ 00176 i--; 00177 } 00178 00179 /* If the filter length is not a multiple of 3, compute the remaining filter taps */ 00180 00181 i = tapCntN3; 00182 00183 while(i > 0u) 00184 { 00185 /* Read coefficients */ 00186 c0 = *(pb++); 00187 00188 /* Fetch 1 state variable */ 00189 x2 = *(px++); 00190 00191 /* Perform the multiply-accumulates */ 00192 acc0 += ((q63_t) x0 * c0); 00193 acc1 += ((q63_t) x1 * c0); 00194 acc2 += ((q63_t) x2 * c0); 00195 00196 /* Reuse the present sample states for next sample */ 00197 x0 = x1; 00198 x1 = x2; 00199 00200 /* Decrement the loop counter */ 00201 i--; 00202 } 00203 00204 /* Advance the state pointer by 3 to process the next group of 3 samples */ 00205 pState = pState + 3; 00206 00207 /* The results in the 3 accumulators are in 2.30 format. Convert to 1.31 00208 ** Then store the 3 outputs in the destination buffer. */ 00209 *pDst++ = (q31_t) (acc0 >> 31u); 00210 *pDst++ = (q31_t) (acc1 >> 31u); 00211 *pDst++ = (q31_t) (acc2 >> 31u); 00212 00213 /* Decrement the samples loop counter */ 00214 blkCnt--; 00215 } 00216 00217 /* If the blockSize is not a multiple of 3, compute any remaining output samples here. 00218 ** No loop unrolling is used. */ 00219 00220 while(blockSize > 0u) 00221 { 00222 /* Copy one sample at a time into state buffer */ 00223 *pStateCurnt++ = *pSrc++; 00224 00225 /* Set the accumulator to zero */ 00226 acc0 = 0; 00227 00228 /* Initialize state pointer */ 00229 px = pState; 00230 00231 /* Initialize Coefficient pointer */ 00232 pb = (pCoeffs); 00233 00234 i = numTaps; 00235 00236 /* Perform the multiply-accumulates */ 00237 do 00238 { 00239 acc0 += (q63_t) * (px++) * (*(pb++)); 00240 i--; 00241 } while(i > 0u); 00242 00243 /* The result is in 2.62 format. Convert to 1.31 00244 ** Then store the output in the destination buffer. */ 00245 *pDst++ = (q31_t) (acc0 >> 31u); 00246 00247 /* Advance state pointer by 1 for the next sample */ 00248 pState = pState + 1; 00249 00250 /* Decrement the samples loop counter */ 00251 blockSize--; 00252 } 00253 00254 /* Processing is complete. 00255 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00256 ** This prepares the state buffer for the next function call. */ 00257 00258 /* Points to the start of the state buffer */ 00259 pStateCurnt = S->pState; 00260 00261 tapCnt = (numTaps - 1u) >> 2u; 00262 00263 /* copy data */ 00264 while(tapCnt > 0u) 00265 { 00266 *pStateCurnt++ = *pState++; 00267 *pStateCurnt++ = *pState++; 00268 *pStateCurnt++ = *pState++; 00269 *pStateCurnt++ = *pState++; 00270 00271 /* Decrement the loop counter */ 00272 tapCnt--; 00273 } 00274 00275 /* Calculate remaining number of copies */ 00276 tapCnt = (numTaps - 1u) % 0x4u; 00277 00278 /* Copy the remaining q31_t data */ 00279 while(tapCnt > 0u) 00280 { 00281 *pStateCurnt++ = *pState++; 00282 00283 /* Decrement the loop counter */ 00284 tapCnt--; 00285 } 00286 00287 #else 00288 00289 /* Run the below code for Cortex-M0 */ 00290 00291 q31_t *px; /* Temporary pointer for state */ 00292 q31_t *pb; /* Temporary pointer for coefficient buffer */ 00293 q63_t acc; /* Accumulator */ 00294 uint32_t numTaps = S->numTaps; /* Length of the filter */ 00295 uint32_t i, tapCnt, blkCnt; /* Loop counters */ 00296 00297 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00298 /* pStateCurnt points to the location where the new input data should be written */ 00299 pStateCurnt = &(S->pState[(numTaps - 1u)]); 00300 00301 /* Initialize blkCnt with blockSize */ 00302 blkCnt = blockSize; 00303 00304 while(blkCnt > 0u) 00305 { 00306 /* Copy one sample at a time into state buffer */ 00307 *pStateCurnt++ = *pSrc++; 00308 00309 /* Set the accumulator to zero */ 00310 acc = 0; 00311 00312 /* Initialize state pointer */ 00313 px = pState; 00314 00315 /* Initialize Coefficient pointer */ 00316 pb = pCoeffs; 00317 00318 i = numTaps; 00319 00320 /* Perform the multiply-accumulates */ 00321 do 00322 { 00323 /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */ 00324 acc += (q63_t) * px++ * *pb++; 00325 i--; 00326 } while(i > 0u); 00327 00328 /* The result is in 2.62 format. Convert to 1.31 00329 ** Then store the output in the destination buffer. */ 00330 *pDst++ = (q31_t) (acc >> 31u); 00331 00332 /* Advance state pointer by 1 for the next sample */ 00333 pState = pState + 1; 00334 00335 /* Decrement the samples loop counter */ 00336 blkCnt--; 00337 } 00338 00339 /* Processing is complete. 00340 ** Now copy the last numTaps - 1 samples to the starting of the state buffer. 00341 ** This prepares the state buffer for the next function call. */ 00342 00343 /* Points to the start of the state buffer */ 00344 pStateCurnt = S->pState; 00345 00346 /* Copy numTaps number of values */ 00347 tapCnt = numTaps - 1u; 00348 00349 /* Copy the data */ 00350 while(tapCnt > 0u) 00351 { 00352 *pStateCurnt++ = *pState++; 00353 00354 /* Decrement the loop counter */ 00355 tapCnt--; 00356 } 00357 00358 00359 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00360 00361 } 00362 00363 /** 00364 * @} end of FIR group 00365 */
Generated on Tue Jul 12 2022 12:36:55 by 1.7.2