CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_fir_interpolate_q31.c
00001 /*----------------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_interpolate_q31.c 00009 * 00010 * Description: Q31 FIR interpolation. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * ---------------------------------------------------------------------------*/ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR_Interpolate 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Processing function for the Q31 FIR interpolator. 00054 * @param[in] *S points to an instance of the Q31 FIR interpolator structure. 00055 * @param[in] *pSrc points to the block of input data. 00056 * @param[out] *pDst points to the block of output data. 00057 * @param[in] blockSize number of input samples to process per call. 00058 * @return none. 00059 * 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * \par 00062 * The function is implemented using an internal 64-bit accumulator. 00063 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00064 * Thus, if the accumulator result overflows it wraps around rather than clip. 00065 * In order to avoid overflows completely the input signal must be scaled down by <code>1/(numTaps/L)</code>. 00066 * since <code>numTaps/L</code> additions occur per output sample. 00067 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. 00068 */ 00069 00070 #ifndef ARM_MATH_CM0_FAMILY 00071 00072 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00073 00074 void arm_fir_interpolate_q31( 00075 const arm_fir_interpolate_instance_q31 * S, 00076 q31_t * pSrc, 00077 q31_t * pDst, 00078 uint32_t blockSize) 00079 { 00080 q31_t *pState = S->pState; /* State pointer */ 00081 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00082 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00083 q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */ 00084 q63_t sum0; /* Accumulators */ 00085 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00086 uint32_t i, blkCnt, j; /* Loop counters */ 00087 uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */ 00088 00089 uint32_t blkCntN2; 00090 q63_t acc0, acc1; 00091 q31_t x1; 00092 00093 /* S->pState buffer contains previous frame (phaseLen - 1) samples */ 00094 /* pStateCurnt points to the location where the new input data should be written */ 00095 pStateCurnt = S->pState + ((q31_t) phaseLen - 1); 00096 00097 /* Initialise blkCnt */ 00098 blkCnt = blockSize / 2; 00099 blkCntN2 = blockSize - (2 * blkCnt); 00100 00101 /* Samples loop unrolled by 2 */ 00102 while(blkCnt > 0u) 00103 { 00104 /* Copy new input sample into the state buffer */ 00105 *pStateCurnt++ = *pSrc++; 00106 *pStateCurnt++ = *pSrc++; 00107 00108 /* Address modifier index of coefficient buffer */ 00109 j = 1u; 00110 00111 /* Loop over the Interpolation factor. */ 00112 i = (S->L); 00113 00114 while(i > 0u) 00115 { 00116 /* Set accumulator to zero */ 00117 acc0 = 0; 00118 acc1 = 0; 00119 00120 /* Initialize state pointer */ 00121 ptr1 = pState; 00122 00123 /* Initialize coefficient pointer */ 00124 ptr2 = pCoeffs + (S->L - j); 00125 00126 /* Loop over the polyPhase length. Unroll by a factor of 4. 00127 ** Repeat until we've computed numTaps-(4*S->L) coefficients. */ 00128 tapCnt = phaseLen >> 2u; 00129 00130 x0 = *(ptr1++); 00131 00132 while(tapCnt > 0u) 00133 { 00134 00135 /* Read the input sample */ 00136 x1 = *(ptr1++); 00137 00138 /* Read the coefficient */ 00139 c0 = *(ptr2); 00140 00141 /* Perform the multiply-accumulate */ 00142 acc0 += (q63_t) x0 *c0; 00143 acc1 += (q63_t) x1 *c0; 00144 00145 00146 /* Read the coefficient */ 00147 c0 = *(ptr2 + S->L); 00148 00149 /* Read the input sample */ 00150 x0 = *(ptr1++); 00151 00152 /* Perform the multiply-accumulate */ 00153 acc0 += (q63_t) x1 *c0; 00154 acc1 += (q63_t) x0 *c0; 00155 00156 00157 /* Read the coefficient */ 00158 c0 = *(ptr2 + S->L * 2); 00159 00160 /* Read the input sample */ 00161 x1 = *(ptr1++); 00162 00163 /* Perform the multiply-accumulate */ 00164 acc0 += (q63_t) x0 *c0; 00165 acc1 += (q63_t) x1 *c0; 00166 00167 /* Read the coefficient */ 00168 c0 = *(ptr2 + S->L * 3); 00169 00170 /* Read the input sample */ 00171 x0 = *(ptr1++); 00172 00173 /* Perform the multiply-accumulate */ 00174 acc0 += (q63_t) x1 *c0; 00175 acc1 += (q63_t) x0 *c0; 00176 00177 00178 /* Upsampling is done by stuffing L-1 zeros between each sample. 00179 * So instead of multiplying zeros with coefficients, 00180 * Increment the coefficient pointer by interpolation factor times. */ 00181 ptr2 += 4 * S->L; 00182 00183 /* Decrement the loop counter */ 00184 tapCnt--; 00185 } 00186 00187 /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */ 00188 tapCnt = phaseLen % 0x4u; 00189 00190 while(tapCnt > 0u) 00191 { 00192 00193 /* Read the input sample */ 00194 x1 = *(ptr1++); 00195 00196 /* Read the coefficient */ 00197 c0 = *(ptr2); 00198 00199 /* Perform the multiply-accumulate */ 00200 acc0 += (q63_t) x0 *c0; 00201 acc1 += (q63_t) x1 *c0; 00202 00203 /* Increment the coefficient pointer by interpolation factor times. */ 00204 ptr2 += S->L; 00205 00206 /* update states for next sample processing */ 00207 x0 = x1; 00208 00209 /* Decrement the loop counter */ 00210 tapCnt--; 00211 } 00212 00213 /* The result is in the accumulator, store in the destination buffer. */ 00214 *pDst = (q31_t) (acc0 >> 31); 00215 *(pDst + S->L) = (q31_t) (acc1 >> 31); 00216 00217 00218 pDst++; 00219 00220 /* Increment the address modifier index of coefficient buffer */ 00221 j++; 00222 00223 /* Decrement the loop counter */ 00224 i--; 00225 } 00226 00227 /* Advance the state pointer by 1 00228 * to process the next group of interpolation factor number samples */ 00229 pState = pState + 2; 00230 00231 pDst += S->L; 00232 00233 /* Decrement the loop counter */ 00234 blkCnt--; 00235 } 00236 00237 /* If the blockSize is not a multiple of 2, compute any remaining output samples here. 00238 ** No loop unrolling is used. */ 00239 blkCnt = blkCntN2; 00240 00241 /* Loop over the blockSize. */ 00242 while(blkCnt > 0u) 00243 { 00244 /* Copy new input sample into the state buffer */ 00245 *pStateCurnt++ = *pSrc++; 00246 00247 /* Address modifier index of coefficient buffer */ 00248 j = 1u; 00249 00250 /* Loop over the Interpolation factor. */ 00251 i = S->L; 00252 while(i > 0u) 00253 { 00254 /* Set accumulator to zero */ 00255 sum0 = 0; 00256 00257 /* Initialize state pointer */ 00258 ptr1 = pState; 00259 00260 /* Initialize coefficient pointer */ 00261 ptr2 = pCoeffs + (S->L - j); 00262 00263 /* Loop over the polyPhase length. Unroll by a factor of 4. 00264 ** Repeat until we've computed numTaps-(4*S->L) coefficients. */ 00265 tapCnt = phaseLen >> 2; 00266 while(tapCnt > 0u) 00267 { 00268 00269 /* Read the coefficient */ 00270 c0 = *(ptr2); 00271 00272 /* Upsampling is done by stuffing L-1 zeros between each sample. 00273 * So instead of multiplying zeros with coefficients, 00274 * Increment the coefficient pointer by interpolation factor times. */ 00275 ptr2 += S->L; 00276 00277 /* Read the input sample */ 00278 x0 = *(ptr1++); 00279 00280 /* Perform the multiply-accumulate */ 00281 sum0 += (q63_t) x0 *c0; 00282 00283 /* Read the coefficient */ 00284 c0 = *(ptr2); 00285 00286 /* Increment the coefficient pointer by interpolation factor times. */ 00287 ptr2 += S->L; 00288 00289 /* Read the input sample */ 00290 x0 = *(ptr1++); 00291 00292 /* Perform the multiply-accumulate */ 00293 sum0 += (q63_t) x0 *c0; 00294 00295 /* Read the coefficient */ 00296 c0 = *(ptr2); 00297 00298 /* Increment the coefficient pointer by interpolation factor times. */ 00299 ptr2 += S->L; 00300 00301 /* Read the input sample */ 00302 x0 = *(ptr1++); 00303 00304 /* Perform the multiply-accumulate */ 00305 sum0 += (q63_t) x0 *c0; 00306 00307 /* Read the coefficient */ 00308 c0 = *(ptr2); 00309 00310 /* Increment the coefficient pointer by interpolation factor times. */ 00311 ptr2 += S->L; 00312 00313 /* Read the input sample */ 00314 x0 = *(ptr1++); 00315 00316 /* Perform the multiply-accumulate */ 00317 sum0 += (q63_t) x0 *c0; 00318 00319 /* Decrement the loop counter */ 00320 tapCnt--; 00321 } 00322 00323 /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */ 00324 tapCnt = phaseLen & 0x3u; 00325 00326 while(tapCnt > 0u) 00327 { 00328 /* Read the coefficient */ 00329 c0 = *(ptr2); 00330 00331 /* Increment the coefficient pointer by interpolation factor times. */ 00332 ptr2 += S->L; 00333 00334 /* Read the input sample */ 00335 x0 = *(ptr1++); 00336 00337 /* Perform the multiply-accumulate */ 00338 sum0 += (q63_t) x0 *c0; 00339 00340 /* Decrement the loop counter */ 00341 tapCnt--; 00342 } 00343 00344 /* The result is in the accumulator, store in the destination buffer. */ 00345 *pDst++ = (q31_t) (sum0 >> 31); 00346 00347 /* Increment the address modifier index of coefficient buffer */ 00348 j++; 00349 00350 /* Decrement the loop counter */ 00351 i--; 00352 } 00353 00354 /* Advance the state pointer by 1 00355 * to process the next group of interpolation factor number samples */ 00356 pState = pState + 1; 00357 00358 /* Decrement the loop counter */ 00359 blkCnt--; 00360 } 00361 00362 /* Processing is complete. 00363 ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer. 00364 ** This prepares the state buffer for the next function call. */ 00365 00366 /* Points to the start of the state buffer */ 00367 pStateCurnt = S->pState; 00368 00369 tapCnt = (phaseLen - 1u) >> 2u; 00370 00371 /* copy data */ 00372 while(tapCnt > 0u) 00373 { 00374 *pStateCurnt++ = *pState++; 00375 *pStateCurnt++ = *pState++; 00376 *pStateCurnt++ = *pState++; 00377 *pStateCurnt++ = *pState++; 00378 00379 /* Decrement the loop counter */ 00380 tapCnt--; 00381 } 00382 00383 tapCnt = (phaseLen - 1u) % 0x04u; 00384 00385 /* copy data */ 00386 while(tapCnt > 0u) 00387 { 00388 *pStateCurnt++ = *pState++; 00389 00390 /* Decrement the loop counter */ 00391 tapCnt--; 00392 } 00393 00394 } 00395 00396 00397 #else 00398 00399 void arm_fir_interpolate_q31( 00400 const arm_fir_interpolate_instance_q31 * S, 00401 q31_t * pSrc, 00402 q31_t * pDst, 00403 uint32_t blockSize) 00404 { 00405 q31_t *pState = S->pState; /* State pointer */ 00406 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00407 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00408 q31_t *ptr1, *ptr2; /* Temporary pointers for state and coefficient buffers */ 00409 00410 /* Run the below code for Cortex-M0 */ 00411 00412 q63_t sum; /* Accumulator */ 00413 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00414 uint32_t i, blkCnt; /* Loop counters */ 00415 uint16_t phaseLen = S->phaseLength, tapCnt; /* Length of each polyphase filter component */ 00416 00417 00418 /* S->pState buffer contains previous frame (phaseLen - 1) samples */ 00419 /* pStateCurnt points to the location where the new input data should be written */ 00420 pStateCurnt = S->pState + ((q31_t) phaseLen - 1); 00421 00422 /* Total number of intput samples */ 00423 blkCnt = blockSize; 00424 00425 /* Loop over the blockSize. */ 00426 while(blkCnt > 0u) 00427 { 00428 /* Copy new input sample into the state buffer */ 00429 *pStateCurnt++ = *pSrc++; 00430 00431 /* Loop over the Interpolation factor. */ 00432 i = S->L; 00433 00434 while(i > 0u) 00435 { 00436 /* Set accumulator to zero */ 00437 sum = 0; 00438 00439 /* Initialize state pointer */ 00440 ptr1 = pState; 00441 00442 /* Initialize coefficient pointer */ 00443 ptr2 = pCoeffs + (i - 1u); 00444 00445 tapCnt = phaseLen; 00446 00447 while(tapCnt > 0u) 00448 { 00449 /* Read the coefficient */ 00450 c0 = *(ptr2); 00451 00452 /* Increment the coefficient pointer by interpolation factor times. */ 00453 ptr2 += S->L; 00454 00455 /* Read the input sample */ 00456 x0 = *ptr1++; 00457 00458 /* Perform the multiply-accumulate */ 00459 sum += (q63_t) x0 *c0; 00460 00461 /* Decrement the loop counter */ 00462 tapCnt--; 00463 } 00464 00465 /* The result is in the accumulator, store in the destination buffer. */ 00466 *pDst++ = (q31_t) (sum >> 31); 00467 00468 /* Decrement the loop counter */ 00469 i--; 00470 } 00471 00472 /* Advance the state pointer by 1 00473 * to process the next group of interpolation factor number samples */ 00474 pState = pState + 1; 00475 00476 /* Decrement the loop counter */ 00477 blkCnt--; 00478 } 00479 00480 /* Processing is complete. 00481 ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer. 00482 ** This prepares the state buffer for the next function call. */ 00483 00484 /* Points to the start of the state buffer */ 00485 pStateCurnt = S->pState; 00486 00487 tapCnt = phaseLen - 1u; 00488 00489 /* copy data */ 00490 while(tapCnt > 0u) 00491 { 00492 *pStateCurnt++ = *pState++; 00493 00494 /* Decrement the loop counter */ 00495 tapCnt--; 00496 } 00497 00498 } 00499 00500 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00501 00502 /** 00503 * @} end of FIR_Interpolate group 00504 */
Generated on Tue Jul 12 2022 12:36:55 by 1.7.2