CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_fir_fast_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_fast_q31.c 00009 * 00010 * Description: Processing function for the Q31 Fast FIR filter. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR 00049 * @{ 00050 */ 00051 00052 /** 00053 * @param[in] *S points to an instance of the Q31 structure. 00054 * @param[in] *pSrc points to the block of input data. 00055 * @param[out] *pDst points to the block output data. 00056 * @param[in] blockSize number of samples to process per call. 00057 * @return none. 00058 * 00059 * <b>Scaling and Overflow Behavior:</b> 00060 * 00061 * \par 00062 * This function is optimized for speed at the expense of fixed-point precision and overflow protection. 00063 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. 00064 * These intermediate results are added to a 2.30 accumulator. 00065 * Finally, the accumulator is saturated and converted to a 1.31 result. 00066 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. 00067 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits. 00068 * 00069 * \par 00070 * Refer to the function <code>arm_fir_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. Both the slow and the fast versions use the same instance structure. 00071 * Use the function <code>arm_fir_init_q31()</code> to initialize the filter structure. 00072 */ 00073 00074 IAR_ONLY_LOW_OPTIMIZATION_ENTER 00075 void arm_fir_fast_q31( 00076 const arm_fir_instance_q31 * S, 00077 q31_t * pSrc, 00078 q31_t * pDst, 00079 uint32_t blockSize) 00080 { 00081 q31_t *pState = S->pState; /* State pointer */ 00082 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00083 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00084 q31_t x0, x1, x2, x3; /* Temporary variables to hold state */ 00085 q31_t c0; /* Temporary variable to hold coefficient value */ 00086 q31_t *px; /* Temporary pointer for state */ 00087 q31_t *pb; /* Temporary pointer for coefficient buffer */ 00088 q31_t acc0, acc1, acc2, acc3; /* Accumulators */ 00089 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ 00090 uint32_t i, tapCnt, blkCnt; /* Loop counters */ 00091 00092 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ 00093 /* pStateCurnt points to the location where the new input data should be written */ 00094 pStateCurnt = &(S->pState[(numTaps - 1u)]); 00095 00096 /* Apply loop unrolling and compute 4 output values simultaneously. 00097 * The variables acc0 ... acc3 hold output values that are being computed: 00098 * 00099 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] 00100 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] 00101 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] 00102 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] 00103 */ 00104 blkCnt = blockSize >> 2; 00105 00106 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00107 ** a second loop below computes the remaining 1 to 3 samples. */ 00108 while(blkCnt > 0u) 00109 { 00110 /* Copy four new input samples into the state buffer */ 00111 *pStateCurnt++ = *pSrc++; 00112 *pStateCurnt++ = *pSrc++; 00113 *pStateCurnt++ = *pSrc++; 00114 *pStateCurnt++ = *pSrc++; 00115 00116 /* Set all accumulators to zero */ 00117 acc0 = 0; 00118 acc1 = 0; 00119 acc2 = 0; 00120 acc3 = 0; 00121 00122 /* Initialize state pointer */ 00123 px = pState; 00124 00125 /* Initialize coefficient pointer */ 00126 pb = pCoeffs; 00127 00128 /* Read the first three samples from the state buffer: 00129 * x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */ 00130 x0 = *(px++); 00131 x1 = *(px++); 00132 x2 = *(px++); 00133 00134 /* Loop unrolling. Process 4 taps at a time. */ 00135 tapCnt = numTaps >> 2; 00136 i = tapCnt; 00137 00138 while(i > 0u) 00139 { 00140 /* Read the b[numTaps] coefficient */ 00141 c0 = *(pb++); 00142 00143 /* Read x[n-numTaps-3] sample */ 00144 x3 = *(px++); 00145 00146 /* acc0 += b[numTaps] * x[n-numTaps] */ 00147 multAcc_32x32_keep32_R(acc0, x0, c0); 00148 00149 /* acc1 += b[numTaps] * x[n-numTaps-1] */ 00150 multAcc_32x32_keep32_R(acc1, x1, c0); 00151 00152 /* acc2 += b[numTaps] * x[n-numTaps-2] */ 00153 multAcc_32x32_keep32_R(acc2, x2, c0); 00154 00155 /* acc3 += b[numTaps] * x[n-numTaps-3] */ 00156 multAcc_32x32_keep32_R(acc3, x3, c0); 00157 00158 /* Read the b[numTaps-1] coefficient */ 00159 c0 = *(pb++); 00160 00161 /* Read x[n-numTaps-4] sample */ 00162 x0 = *(px++); 00163 00164 /* Perform the multiply-accumulates */ 00165 multAcc_32x32_keep32_R(acc0, x1, c0); 00166 multAcc_32x32_keep32_R(acc1, x2, c0); 00167 multAcc_32x32_keep32_R(acc2, x3, c0); 00168 multAcc_32x32_keep32_R(acc3, x0, c0); 00169 00170 /* Read the b[numTaps-2] coefficient */ 00171 c0 = *(pb++); 00172 00173 /* Read x[n-numTaps-5] sample */ 00174 x1 = *(px++); 00175 00176 /* Perform the multiply-accumulates */ 00177 multAcc_32x32_keep32_R(acc0, x2, c0); 00178 multAcc_32x32_keep32_R(acc1, x3, c0); 00179 multAcc_32x32_keep32_R(acc2, x0, c0); 00180 multAcc_32x32_keep32_R(acc3, x1, c0); 00181 00182 /* Read the b[numTaps-3] coefficients */ 00183 c0 = *(pb++); 00184 00185 /* Read x[n-numTaps-6] sample */ 00186 x2 = *(px++); 00187 00188 /* Perform the multiply-accumulates */ 00189 multAcc_32x32_keep32_R(acc0, x3, c0); 00190 multAcc_32x32_keep32_R(acc1, x0, c0); 00191 multAcc_32x32_keep32_R(acc2, x1, c0); 00192 multAcc_32x32_keep32_R(acc3, x2, c0); 00193 i--; 00194 } 00195 00196 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00197 00198 i = numTaps - (tapCnt * 4u); 00199 while(i > 0u) 00200 { 00201 /* Read coefficients */ 00202 c0 = *(pb++); 00203 00204 /* Fetch 1 state variable */ 00205 x3 = *(px++); 00206 00207 /* Perform the multiply-accumulates */ 00208 multAcc_32x32_keep32_R(acc0, x0, c0); 00209 multAcc_32x32_keep32_R(acc1, x1, c0); 00210 multAcc_32x32_keep32_R(acc2, x2, c0); 00211 multAcc_32x32_keep32_R(acc3, x3, c0); 00212 00213 /* Reuse the present sample states for next sample */ 00214 x0 = x1; 00215 x1 = x2; 00216 x2 = x3; 00217 00218 /* Decrement the loop counter */ 00219 i--; 00220 } 00221 00222 /* Advance the state pointer by 4 to process the next group of 4 samples */ 00223 pState = pState + 4; 00224 00225 /* The results in the 4 accumulators are in 2.30 format. Convert to 1.31 00226 ** Then store the 4 outputs in the destination buffer. */ 00227 *pDst++ = (q31_t) (acc0 << 1); 00228 *pDst++ = (q31_t) (acc1 << 1); 00229 *pDst++ = (q31_t) (acc2 << 1); 00230 *pDst++ = (q31_t) (acc3 << 1); 00231 00232 /* Decrement the samples loop counter */ 00233 blkCnt--; 00234 } 00235 00236 00237 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00238 ** No loop unrolling is used. */ 00239 blkCnt = blockSize % 4u; 00240 00241 while(blkCnt > 0u) 00242 { 00243 /* Copy one sample at a time into state buffer */ 00244 *pStateCurnt++ = *pSrc++; 00245 00246 /* Set the accumulator to zero */ 00247 acc0 = 0; 00248 00249 /* Initialize state pointer */ 00250 px = pState; 00251 00252 /* Initialize Coefficient pointer */ 00253 pb = (pCoeffs); 00254 00255 i = numTaps; 00256 00257 /* Perform the multiply-accumulates */ 00258 do 00259 { 00260 multAcc_32x32_keep32_R(acc0, (*px++), (*(pb++))); 00261 i--; 00262 } while(i > 0u); 00263 00264 /* The result is in 2.30 format. Convert to 1.31 00265 ** Then store the output in the destination buffer. */ 00266 *pDst++ = (q31_t) (acc0 << 1); 00267 00268 /* Advance state pointer by 1 for the next sample */ 00269 pState = pState + 1; 00270 00271 /* Decrement the samples loop counter */ 00272 blkCnt--; 00273 } 00274 00275 /* Processing is complete. 00276 ** Now copy the last numTaps - 1 samples to the start of the state buffer. 00277 ** This prepares the state buffer for the next function call. */ 00278 00279 /* Points to the start of the state buffer */ 00280 pStateCurnt = S->pState; 00281 00282 /* Calculate remaining number of copies */ 00283 tapCnt = (numTaps - 1u); 00284 00285 /* Copy the remaining q31_t data */ 00286 while(tapCnt > 0u) 00287 { 00288 *pStateCurnt++ = *pState++; 00289 00290 /* Decrement the loop counter */ 00291 tapCnt--; 00292 } 00293 00294 00295 } 00296 IAR_ONLY_LOW_OPTIMIZATION_EXIT 00297 /** 00298 * @} end of FIR group 00299 */
Generated on Tue Jul 12 2022 12:36:55 by 1.7.2