CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_fir_decimate_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_decimate_q31.c 00009 * 00010 * Description: Q31 FIR Decimator. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR_decimate 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Processing function for the Q31 FIR decimator. 00054 * @param[in] *S points to an instance of the Q31 FIR decimator structure. 00055 * @param[in] *pSrc points to the block of input data. 00056 * @param[out] *pDst points to the block of output data 00057 * @param[in] blockSize number of input samples to process per call. 00058 * @return none 00059 * 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * \par 00062 * The function is implemented using an internal 64-bit accumulator. 00063 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00064 * Thus, if the accumulator result overflows it wraps around rather than clip. 00065 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2). 00066 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. 00067 * 00068 * \par 00069 * Refer to the function <code>arm_fir_decimate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. 00070 */ 00071 00072 void arm_fir_decimate_q31( 00073 const arm_fir_decimate_instance_q31 * S, 00074 q31_t * pSrc, 00075 q31_t * pDst, 00076 uint32_t blockSize) 00077 { 00078 q31_t *pState = S->pState; /* State pointer */ 00079 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00080 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00081 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00082 q31_t *px; /* Temporary pointers for state buffer */ 00083 q31_t *pb; /* Temporary pointers for coefficient buffer */ 00084 q63_t sum0; /* Accumulator */ 00085 uint32_t numTaps = S->numTaps; /* Number of taps */ 00086 uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00087 00088 00089 #ifndef ARM_MATH_CM0_FAMILY 00090 00091 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00092 00093 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00094 /* pStateCurnt points to the location where the new input data should be written */ 00095 pStateCurnt = S->pState + (numTaps - 1u); 00096 00097 /* Total number of output samples to be computed */ 00098 blkCnt = outBlockSize; 00099 00100 while(blkCnt > 0u) 00101 { 00102 /* Copy decimation factor number of new input samples into the state buffer */ 00103 i = S->M; 00104 00105 do 00106 { 00107 *pStateCurnt++ = *pSrc++; 00108 00109 } while(--i); 00110 00111 /* Set accumulator to zero */ 00112 sum0 = 0; 00113 00114 /* Initialize state pointer */ 00115 px = pState; 00116 00117 /* Initialize coeff pointer */ 00118 pb = pCoeffs; 00119 00120 /* Loop unrolling. Process 4 taps at a time. */ 00121 tapCnt = numTaps >> 2; 00122 00123 /* Loop over the number of taps. Unroll by a factor of 4. 00124 ** Repeat until we've computed numTaps-4 coefficients. */ 00125 while(tapCnt > 0u) 00126 { 00127 /* Read the b[numTaps-1] coefficient */ 00128 c0 = *(pb++); 00129 00130 /* Read x[n-numTaps-1] sample */ 00131 x0 = *(px++); 00132 00133 /* Perform the multiply-accumulate */ 00134 sum0 += (q63_t) x0 *c0; 00135 00136 /* Read the b[numTaps-2] coefficient */ 00137 c0 = *(pb++); 00138 00139 /* Read x[n-numTaps-2] sample */ 00140 x0 = *(px++); 00141 00142 /* Perform the multiply-accumulate */ 00143 sum0 += (q63_t) x0 *c0; 00144 00145 /* Read the b[numTaps-3] coefficient */ 00146 c0 = *(pb++); 00147 00148 /* Read x[n-numTaps-3] sample */ 00149 x0 = *(px++); 00150 00151 /* Perform the multiply-accumulate */ 00152 sum0 += (q63_t) x0 *c0; 00153 00154 /* Read the b[numTaps-4] coefficient */ 00155 c0 = *(pb++); 00156 00157 /* Read x[n-numTaps-4] sample */ 00158 x0 = *(px++); 00159 00160 /* Perform the multiply-accumulate */ 00161 sum0 += (q63_t) x0 *c0; 00162 00163 /* Decrement the loop counter */ 00164 tapCnt--; 00165 } 00166 00167 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00168 tapCnt = numTaps % 0x4u; 00169 00170 while(tapCnt > 0u) 00171 { 00172 /* Read coefficients */ 00173 c0 = *(pb++); 00174 00175 /* Fetch 1 state variable */ 00176 x0 = *(px++); 00177 00178 /* Perform the multiply-accumulate */ 00179 sum0 += (q63_t) x0 *c0; 00180 00181 /* Decrement the loop counter */ 00182 tapCnt--; 00183 } 00184 00185 /* Advance the state pointer by the decimation factor 00186 * to process the next group of decimation factor number samples */ 00187 pState = pState + S->M; 00188 00189 /* The result is in the accumulator, store in the destination buffer. */ 00190 *pDst++ = (q31_t) (sum0 >> 31); 00191 00192 /* Decrement the loop counter */ 00193 blkCnt--; 00194 } 00195 00196 /* Processing is complete. 00197 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00198 ** This prepares the state buffer for the next function call. */ 00199 00200 /* Points to the start of the state buffer */ 00201 pStateCurnt = S->pState; 00202 00203 i = (numTaps - 1u) >> 2u; 00204 00205 /* copy data */ 00206 while(i > 0u) 00207 { 00208 *pStateCurnt++ = *pState++; 00209 *pStateCurnt++ = *pState++; 00210 *pStateCurnt++ = *pState++; 00211 *pStateCurnt++ = *pState++; 00212 00213 /* Decrement the loop counter */ 00214 i--; 00215 } 00216 00217 i = (numTaps - 1u) % 0x04u; 00218 00219 /* copy data */ 00220 while(i > 0u) 00221 { 00222 *pStateCurnt++ = *pState++; 00223 00224 /* Decrement the loop counter */ 00225 i--; 00226 } 00227 00228 #else 00229 00230 /* Run the below code for Cortex-M0 */ 00231 00232 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00233 /* pStateCurnt points to the location where the new input data should be written */ 00234 pStateCurnt = S->pState + (numTaps - 1u); 00235 00236 /* Total number of output samples to be computed */ 00237 blkCnt = outBlockSize; 00238 00239 while(blkCnt > 0u) 00240 { 00241 /* Copy decimation factor number of new input samples into the state buffer */ 00242 i = S->M; 00243 00244 do 00245 { 00246 *pStateCurnt++ = *pSrc++; 00247 00248 } while(--i); 00249 00250 /* Set accumulator to zero */ 00251 sum0 = 0; 00252 00253 /* Initialize state pointer */ 00254 px = pState; 00255 00256 /* Initialize coeff pointer */ 00257 pb = pCoeffs; 00258 00259 tapCnt = numTaps; 00260 00261 while(tapCnt > 0u) 00262 { 00263 /* Read coefficients */ 00264 c0 = *pb++; 00265 00266 /* Fetch 1 state variable */ 00267 x0 = *px++; 00268 00269 /* Perform the multiply-accumulate */ 00270 sum0 += (q63_t) x0 *c0; 00271 00272 /* Decrement the loop counter */ 00273 tapCnt--; 00274 } 00275 00276 /* Advance the state pointer by the decimation factor 00277 * to process the next group of decimation factor number samples */ 00278 pState = pState + S->M; 00279 00280 /* The result is in the accumulator, store in the destination buffer. */ 00281 *pDst++ = (q31_t) (sum0 >> 31); 00282 00283 /* Decrement the loop counter */ 00284 blkCnt--; 00285 } 00286 00287 /* Processing is complete. 00288 ** Now copy the last numTaps - 1 samples to the start of the state buffer. 00289 ** This prepares the state buffer for the next function call. */ 00290 00291 /* Points to the start of the state buffer */ 00292 pStateCurnt = S->pState; 00293 00294 i = numTaps - 1u; 00295 00296 /* copy data */ 00297 while(i > 0u) 00298 { 00299 *pStateCurnt++ = *pState++; 00300 00301 /* Decrement the loop counter */ 00302 i--; 00303 } 00304 00305 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00306 00307 } 00308 00309 /** 00310 * @} end of FIR_decimate group 00311 */
Generated on Tue Jul 12 2022 12:36:55 by 1.7.2