CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_fir_decimate_fast_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_decimate_fast_q31.c 00009 * 00010 * Description: Fast Q31 FIR Decimator. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR_decimate 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. 00054 * @param[in] *S points to an instance of the Q31 FIR decimator structure. 00055 * @param[in] *pSrc points to the block of input data. 00056 * @param[out] *pDst points to the block of output data 00057 * @param[in] blockSize number of input samples to process per call. 00058 * @return none 00059 * 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * 00062 * \par 00063 * This function is optimized for speed at the expense of fixed-point precision and overflow protection. 00064 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. 00065 * These intermediate results are added to a 2.30 accumulator. 00066 * Finally, the accumulator is saturated and converted to a 1.31 result. 00067 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. 00068 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2). 00069 * 00070 * \par 00071 * Refer to the function <code>arm_fir_decimate_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. 00072 * Both the slow and the fast versions use the same instance structure. 00073 * Use the function <code>arm_fir_decimate_init_q31()</code> to initialize the filter structure. 00074 */ 00075 00076 void arm_fir_decimate_fast_q31( 00077 arm_fir_decimate_instance_q31 * S, 00078 q31_t * pSrc, 00079 q31_t * pDst, 00080 uint32_t blockSize) 00081 { 00082 q31_t *pState = S->pState; /* State pointer */ 00083 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00084 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00085 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00086 q31_t *px; /* Temporary pointers for state buffer */ 00087 q31_t *pb; /* Temporary pointers for coefficient buffer */ 00088 q31_t sum0; /* Accumulator */ 00089 uint32_t numTaps = S->numTaps; /* Number of taps */ 00090 uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00091 uint32_t blkCntN2; 00092 q31_t x1; 00093 q31_t acc0, acc1; 00094 q31_t *px0, *px1; 00095 00096 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00097 /* pStateCurnt points to the location where the new input data should be written */ 00098 pStateCurnt = S->pState + (numTaps - 1u); 00099 00100 /* Total number of output samples to be computed */ 00101 00102 blkCnt = outBlockSize / 2; 00103 blkCntN2 = outBlockSize - (2 * blkCnt); 00104 00105 while(blkCnt > 0u) 00106 { 00107 /* Copy decimation factor number of new input samples into the state buffer */ 00108 i = 2 * S->M; 00109 00110 do 00111 { 00112 *pStateCurnt++ = *pSrc++; 00113 00114 } while(--i); 00115 00116 /* Set accumulator to zero */ 00117 acc0 = 0; 00118 acc1 = 0; 00119 00120 /* Initialize state pointer */ 00121 px0 = pState; 00122 px1 = pState + S->M; 00123 00124 /* Initialize coeff pointer */ 00125 pb = pCoeffs; 00126 00127 /* Loop unrolling. Process 4 taps at a time. */ 00128 tapCnt = numTaps >> 2; 00129 00130 /* Loop over the number of taps. Unroll by a factor of 4. 00131 ** Repeat until we've computed numTaps-4 coefficients. */ 00132 while(tapCnt > 0u) 00133 { 00134 /* Read the b[numTaps-1] coefficient */ 00135 c0 = *(pb); 00136 00137 /* Read x[n-numTaps-1] for sample 0 sample 1 */ 00138 x0 = *(px0); 00139 x1 = *(px1); 00140 00141 /* Perform the multiply-accumulate */ 00142 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); 00143 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); 00144 00145 /* Read the b[numTaps-2] coefficient */ 00146 c0 = *(pb + 1u); 00147 00148 /* Read x[n-numTaps-2] for sample 0 sample 1 */ 00149 x0 = *(px0 + 1u); 00150 x1 = *(px1 + 1u); 00151 00152 /* Perform the multiply-accumulate */ 00153 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); 00154 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); 00155 00156 /* Read the b[numTaps-3] coefficient */ 00157 c0 = *(pb + 2u); 00158 00159 /* Read x[n-numTaps-3] for sample 0 sample 1 */ 00160 x0 = *(px0 + 2u); 00161 x1 = *(px1 + 2u); 00162 pb += 4u; 00163 00164 /* Perform the multiply-accumulate */ 00165 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); 00166 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); 00167 00168 /* Read the b[numTaps-4] coefficient */ 00169 c0 = *(pb - 1u); 00170 00171 /* Read x[n-numTaps-4] for sample 0 sample 1 */ 00172 x0 = *(px0 + 3u); 00173 x1 = *(px1 + 3u); 00174 00175 00176 /* Perform the multiply-accumulate */ 00177 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); 00178 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); 00179 00180 /* update state pointers */ 00181 px0 += 4u; 00182 px1 += 4u; 00183 00184 /* Decrement the loop counter */ 00185 tapCnt--; 00186 } 00187 00188 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00189 tapCnt = numTaps % 0x4u; 00190 00191 while(tapCnt > 0u) 00192 { 00193 /* Read coefficients */ 00194 c0 = *(pb++); 00195 00196 /* Fetch 1 state variable */ 00197 x0 = *(px0++); 00198 x1 = *(px1++); 00199 00200 /* Perform the multiply-accumulate */ 00201 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); 00202 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); 00203 00204 /* Decrement the loop counter */ 00205 tapCnt--; 00206 } 00207 00208 /* Advance the state pointer by the decimation factor 00209 * to process the next group of decimation factor number samples */ 00210 pState = pState + S->M * 2; 00211 00212 /* The result is in the accumulator, store in the destination buffer. */ 00213 *pDst++ = (q31_t) (acc0 << 1); 00214 *pDst++ = (q31_t) (acc1 << 1); 00215 00216 /* Decrement the loop counter */ 00217 blkCnt--; 00218 } 00219 00220 while(blkCntN2 > 0u) 00221 { 00222 /* Copy decimation factor number of new input samples into the state buffer */ 00223 i = S->M; 00224 00225 do 00226 { 00227 *pStateCurnt++ = *pSrc++; 00228 00229 } while(--i); 00230 00231 /* Set accumulator to zero */ 00232 sum0 = 0; 00233 00234 /* Initialize state pointer */ 00235 px = pState; 00236 00237 /* Initialize coeff pointer */ 00238 pb = pCoeffs; 00239 00240 /* Loop unrolling. Process 4 taps at a time. */ 00241 tapCnt = numTaps >> 2; 00242 00243 /* Loop over the number of taps. Unroll by a factor of 4. 00244 ** Repeat until we've computed numTaps-4 coefficients. */ 00245 while(tapCnt > 0u) 00246 { 00247 /* Read the b[numTaps-1] coefficient */ 00248 c0 = *(pb++); 00249 00250 /* Read x[n-numTaps-1] sample */ 00251 x0 = *(px++); 00252 00253 /* Perform the multiply-accumulate */ 00254 sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); 00255 00256 /* Read the b[numTaps-2] coefficient */ 00257 c0 = *(pb++); 00258 00259 /* Read x[n-numTaps-2] sample */ 00260 x0 = *(px++); 00261 00262 /* Perform the multiply-accumulate */ 00263 sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); 00264 00265 /* Read the b[numTaps-3] coefficient */ 00266 c0 = *(pb++); 00267 00268 /* Read x[n-numTaps-3] sample */ 00269 x0 = *(px++); 00270 00271 /* Perform the multiply-accumulate */ 00272 sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); 00273 00274 /* Read the b[numTaps-4] coefficient */ 00275 c0 = *(pb++); 00276 00277 /* Read x[n-numTaps-4] sample */ 00278 x0 = *(px++); 00279 00280 /* Perform the multiply-accumulate */ 00281 sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); 00282 00283 /* Decrement the loop counter */ 00284 tapCnt--; 00285 } 00286 00287 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00288 tapCnt = numTaps % 0x4u; 00289 00290 while(tapCnt > 0u) 00291 { 00292 /* Read coefficients */ 00293 c0 = *(pb++); 00294 00295 /* Fetch 1 state variable */ 00296 x0 = *(px++); 00297 00298 /* Perform the multiply-accumulate */ 00299 sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); 00300 00301 /* Decrement the loop counter */ 00302 tapCnt--; 00303 } 00304 00305 /* Advance the state pointer by the decimation factor 00306 * to process the next group of decimation factor number samples */ 00307 pState = pState + S->M; 00308 00309 /* The result is in the accumulator, store in the destination buffer. */ 00310 *pDst++ = (q31_t) (sum0 << 1); 00311 00312 /* Decrement the loop counter */ 00313 blkCntN2--; 00314 } 00315 00316 /* Processing is complete. 00317 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00318 ** This prepares the state buffer for the next function call. */ 00319 00320 /* Points to the start of the state buffer */ 00321 pStateCurnt = S->pState; 00322 00323 i = (numTaps - 1u) >> 2u; 00324 00325 /* copy data */ 00326 while(i > 0u) 00327 { 00328 *pStateCurnt++ = *pState++; 00329 *pStateCurnt++ = *pState++; 00330 *pStateCurnt++ = *pState++; 00331 *pStateCurnt++ = *pState++; 00332 00333 /* Decrement the loop counter */ 00334 i--; 00335 } 00336 00337 i = (numTaps - 1u) % 0x04u; 00338 00339 /* copy data */ 00340 while(i > 0u) 00341 { 00342 *pStateCurnt++ = *pState++; 00343 00344 /* Decrement the loop counter */ 00345 i--; 00346 } 00347 } 00348 00349 /** 00350 * @} end of FIR_decimate group 00351 */
Generated on Tue Jul 12 2022 12:36:55 by 1.7.2