CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_fir_decimate_fast_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_decimate_fast_q15.c 00009 * 00010 * Description: Fast Q15 FIR Decimator. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR_decimate 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. 00054 * @param[in] *S points to an instance of the Q15 FIR decimator structure. 00055 * @param[in] *pSrc points to the block of input data. 00056 * @param[out] *pDst points to the block of output data 00057 * @param[in] blockSize number of input samples to process per call. 00058 * @return none 00059 * 00060 * \par Restrictions 00061 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE 00062 * In this case input, output, state buffers should be aligned by 32-bit 00063 * 00064 * <b>Scaling and Overflow Behavior:</b> 00065 * \par 00066 * This fast version uses a 32-bit accumulator with 2.30 format. 00067 * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00068 * Thus, if the accumulator result overflows it wraps around and distorts the result. 00069 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (log2 is read as log to the base 2). 00070 * The 2.30 accumulator is then truncated to 2.15 format and saturated to yield the 1.15 result. 00071 * 00072 * \par 00073 * Refer to the function <code>arm_fir_decimate_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. 00074 * Both the slow and the fast versions use the same instance structure. 00075 * Use the function <code>arm_fir_decimate_init_q15()</code> to initialize the filter structure. 00076 */ 00077 00078 #ifndef UNALIGNED_SUPPORT_DISABLE 00079 00080 void arm_fir_decimate_fast_q15( 00081 const arm_fir_decimate_instance_q15 * S, 00082 q15_t * pSrc, 00083 q15_t * pDst, 00084 uint32_t blockSize) 00085 { 00086 q15_t *pState = S->pState; /* State pointer */ 00087 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00088 q15_t *pStateCurnt; /* Points to the current sample of the state */ 00089 q15_t *px; /* Temporary pointer for state buffer */ 00090 q15_t *pb; /* Temporary pointer coefficient buffer */ 00091 q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */ 00092 q31_t sum0; /* Accumulators */ 00093 q31_t acc0, acc1; 00094 q15_t *px0, *px1; 00095 uint32_t blkCntN3; 00096 uint32_t numTaps = S->numTaps; /* Number of taps */ 00097 uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00098 00099 00100 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00101 /* pStateCurnt points to the location where the new input data should be written */ 00102 pStateCurnt = S->pState + (numTaps - 1u); 00103 00104 00105 /* Total number of output samples to be computed */ 00106 blkCnt = outBlockSize / 2; 00107 blkCntN3 = outBlockSize - (2 * blkCnt); 00108 00109 00110 while(blkCnt > 0u) 00111 { 00112 /* Copy decimation factor number of new input samples into the state buffer */ 00113 i = 2 * S->M; 00114 00115 do 00116 { 00117 *pStateCurnt++ = *pSrc++; 00118 00119 } while(--i); 00120 00121 /* Set accumulator to zero */ 00122 acc0 = 0; 00123 acc1 = 0; 00124 00125 /* Initialize state pointer */ 00126 px0 = pState; 00127 00128 px1 = pState + S->M; 00129 00130 00131 /* Initialize coeff pointer */ 00132 pb = pCoeffs; 00133 00134 /* Loop unrolling. Process 4 taps at a time. */ 00135 tapCnt = numTaps >> 2; 00136 00137 /* Loop over the number of taps. Unroll by a factor of 4. 00138 ** Repeat until we've computed numTaps-4 coefficients. */ 00139 while(tapCnt > 0u) 00140 { 00141 /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ 00142 c0 = *__SIMD32(pb)++; 00143 00144 /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ 00145 x0 = *__SIMD32(px0)++; 00146 00147 x1 = *__SIMD32(px1)++; 00148 00149 /* Perform the multiply-accumulate */ 00150 acc0 = __SMLAD(x0, c0, acc0); 00151 00152 acc1 = __SMLAD(x1, c0, acc1); 00153 00154 /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ 00155 c0 = *__SIMD32(pb)++; 00156 00157 /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ 00158 x0 = *__SIMD32(px0)++; 00159 00160 x1 = *__SIMD32(px1)++; 00161 00162 /* Perform the multiply-accumulate */ 00163 acc0 = __SMLAD(x0, c0, acc0); 00164 00165 acc1 = __SMLAD(x1, c0, acc1); 00166 00167 /* Decrement the loop counter */ 00168 tapCnt--; 00169 } 00170 00171 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00172 tapCnt = numTaps % 0x4u; 00173 00174 while(tapCnt > 0u) 00175 { 00176 /* Read coefficients */ 00177 c0 = *pb++; 00178 00179 /* Fetch 1 state variable */ 00180 x0 = *px0++; 00181 00182 x1 = *px1++; 00183 00184 /* Perform the multiply-accumulate */ 00185 acc0 = __SMLAD(x0, c0, acc0); 00186 acc1 = __SMLAD(x1, c0, acc1); 00187 00188 /* Decrement the loop counter */ 00189 tapCnt--; 00190 } 00191 00192 /* Advance the state pointer by the decimation factor 00193 * to process the next group of decimation factor number samples */ 00194 pState = pState + S->M * 2; 00195 00196 /* Store filter output, smlad returns the values in 2.14 format */ 00197 /* so downsacle by 15 to get output in 1.15 */ 00198 *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); 00199 *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16)); 00200 00201 /* Decrement the loop counter */ 00202 blkCnt--; 00203 } 00204 00205 00206 00207 while(blkCntN3 > 0u) 00208 { 00209 /* Copy decimation factor number of new input samples into the state buffer */ 00210 i = S->M; 00211 00212 do 00213 { 00214 *pStateCurnt++ = *pSrc++; 00215 00216 } while(--i); 00217 00218 /*Set sum to zero */ 00219 sum0 = 0; 00220 00221 /* Initialize state pointer */ 00222 px = pState; 00223 00224 /* Initialize coeff pointer */ 00225 pb = pCoeffs; 00226 00227 /* Loop unrolling. Process 4 taps at a time. */ 00228 tapCnt = numTaps >> 2; 00229 00230 /* Loop over the number of taps. Unroll by a factor of 4. 00231 ** Repeat until we've computed numTaps-4 coefficients. */ 00232 while(tapCnt > 0u) 00233 { 00234 /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ 00235 c0 = *__SIMD32(pb)++; 00236 00237 /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ 00238 x0 = *__SIMD32(px)++; 00239 00240 /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ 00241 c1 = *__SIMD32(pb)++; 00242 00243 /* Perform the multiply-accumulate */ 00244 sum0 = __SMLAD(x0, c0, sum0); 00245 00246 /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ 00247 x0 = *__SIMD32(px)++; 00248 00249 /* Perform the multiply-accumulate */ 00250 sum0 = __SMLAD(x0, c1, sum0); 00251 00252 /* Decrement the loop counter */ 00253 tapCnt--; 00254 } 00255 00256 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00257 tapCnt = numTaps % 0x4u; 00258 00259 while(tapCnt > 0u) 00260 { 00261 /* Read coefficients */ 00262 c0 = *pb++; 00263 00264 /* Fetch 1 state variable */ 00265 x0 = *px++; 00266 00267 /* Perform the multiply-accumulate */ 00268 sum0 = __SMLAD(x0, c0, sum0); 00269 00270 /* Decrement the loop counter */ 00271 tapCnt--; 00272 } 00273 00274 /* Advance the state pointer by the decimation factor 00275 * to process the next group of decimation factor number samples */ 00276 pState = pState + S->M; 00277 00278 /* Store filter output, smlad returns the values in 2.14 format */ 00279 /* so downsacle by 15 to get output in 1.15 */ 00280 *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); 00281 00282 /* Decrement the loop counter */ 00283 blkCntN3--; 00284 } 00285 00286 /* Processing is complete. 00287 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00288 ** This prepares the state buffer for the next function call. */ 00289 00290 /* Points to the start of the state buffer */ 00291 pStateCurnt = S->pState; 00292 00293 i = (numTaps - 1u) >> 2u; 00294 00295 /* copy data */ 00296 while(i > 0u) 00297 { 00298 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; 00299 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; 00300 00301 /* Decrement the loop counter */ 00302 i--; 00303 } 00304 00305 i = (numTaps - 1u) % 0x04u; 00306 00307 /* copy data */ 00308 while(i > 0u) 00309 { 00310 *pStateCurnt++ = *pState++; 00311 00312 /* Decrement the loop counter */ 00313 i--; 00314 } 00315 } 00316 00317 #else 00318 00319 00320 void arm_fir_decimate_fast_q15( 00321 const arm_fir_decimate_instance_q15 * S, 00322 q15_t * pSrc, 00323 q15_t * pDst, 00324 uint32_t blockSize) 00325 { 00326 q15_t *pState = S->pState; /* State pointer */ 00327 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00328 q15_t *pStateCurnt; /* Points to the current sample of the state */ 00329 q15_t *px; /* Temporary pointer for state buffer */ 00330 q15_t *pb; /* Temporary pointer coefficient buffer */ 00331 q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */ 00332 q31_t sum0; /* Accumulators */ 00333 q31_t acc0, acc1; 00334 q15_t *px0, *px1; 00335 uint32_t blkCntN3; 00336 uint32_t numTaps = S->numTaps; /* Number of taps */ 00337 uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00338 00339 00340 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00341 /* pStateCurnt points to the location where the new input data should be written */ 00342 pStateCurnt = S->pState + (numTaps - 1u); 00343 00344 00345 /* Total number of output samples to be computed */ 00346 blkCnt = outBlockSize / 2; 00347 blkCntN3 = outBlockSize - (2 * blkCnt); 00348 00349 while(blkCnt > 0u) 00350 { 00351 /* Copy decimation factor number of new input samples into the state buffer */ 00352 i = 2 * S->M; 00353 00354 do 00355 { 00356 *pStateCurnt++ = *pSrc++; 00357 00358 } while(--i); 00359 00360 /* Set accumulator to zero */ 00361 acc0 = 0; 00362 acc1 = 0; 00363 00364 /* Initialize state pointer */ 00365 px0 = pState; 00366 00367 px1 = pState + S->M; 00368 00369 00370 /* Initialize coeff pointer */ 00371 pb = pCoeffs; 00372 00373 /* Loop unrolling. Process 4 taps at a time. */ 00374 tapCnt = numTaps >> 2; 00375 00376 /* Loop over the number of taps. Unroll by a factor of 4. 00377 ** Repeat until we've computed numTaps-4 coefficients. */ 00378 while(tapCnt > 0u) 00379 { 00380 /* Read the Read b[numTaps-1] coefficients */ 00381 c0 = *pb++; 00382 00383 /* Read x[n-numTaps-1] for sample 0 and for sample 1 */ 00384 x0 = *px0++; 00385 x1 = *px1++; 00386 00387 /* Perform the multiply-accumulate */ 00388 acc0 += x0 * c0; 00389 acc1 += x1 * c0; 00390 00391 /* Read the b[numTaps-2] coefficient */ 00392 c0 = *pb++; 00393 00394 /* Read x[n-numTaps-2] for sample 0 and sample 1 */ 00395 x0 = *px0++; 00396 x1 = *px1++; 00397 00398 /* Perform the multiply-accumulate */ 00399 acc0 += x0 * c0; 00400 acc1 += x1 * c0; 00401 00402 /* Read the b[numTaps-3] coefficients */ 00403 c0 = *pb++; 00404 00405 /* Read x[n-numTaps-3] for sample 0 and sample 1 */ 00406 x0 = *px0++; 00407 x1 = *px1++; 00408 00409 /* Perform the multiply-accumulate */ 00410 acc0 += x0 * c0; 00411 acc1 += x1 * c0; 00412 00413 /* Read the b[numTaps-4] coefficient */ 00414 c0 = *pb++; 00415 00416 /* Read x[n-numTaps-4] for sample 0 and sample 1 */ 00417 x0 = *px0++; 00418 x1 = *px1++; 00419 00420 /* Perform the multiply-accumulate */ 00421 acc0 += x0 * c0; 00422 acc1 += x1 * c0; 00423 00424 /* Decrement the loop counter */ 00425 tapCnt--; 00426 } 00427 00428 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00429 tapCnt = numTaps % 0x4u; 00430 00431 while(tapCnt > 0u) 00432 { 00433 /* Read coefficients */ 00434 c0 = *pb++; 00435 00436 /* Fetch 1 state variable */ 00437 x0 = *px0++; 00438 x1 = *px1++; 00439 00440 /* Perform the multiply-accumulate */ 00441 acc0 += x0 * c0; 00442 acc1 += x1 * c0; 00443 00444 /* Decrement the loop counter */ 00445 tapCnt--; 00446 } 00447 00448 /* Advance the state pointer by the decimation factor 00449 * to process the next group of decimation factor number samples */ 00450 pState = pState + S->M * 2; 00451 00452 /* Store filter output, smlad returns the values in 2.14 format */ 00453 /* so downsacle by 15 to get output in 1.15 */ 00454 00455 *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); 00456 *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16)); 00457 00458 00459 /* Decrement the loop counter */ 00460 blkCnt--; 00461 } 00462 00463 while(blkCntN3 > 0u) 00464 { 00465 /* Copy decimation factor number of new input samples into the state buffer */ 00466 i = S->M; 00467 00468 do 00469 { 00470 *pStateCurnt++ = *pSrc++; 00471 00472 } while(--i); 00473 00474 /*Set sum to zero */ 00475 sum0 = 0; 00476 00477 /* Initialize state pointer */ 00478 px = pState; 00479 00480 /* Initialize coeff pointer */ 00481 pb = pCoeffs; 00482 00483 /* Loop unrolling. Process 4 taps at a time. */ 00484 tapCnt = numTaps >> 2; 00485 00486 /* Loop over the number of taps. Unroll by a factor of 4. 00487 ** Repeat until we've computed numTaps-4 coefficients. */ 00488 while(tapCnt > 0u) 00489 { 00490 /* Read the Read b[numTaps-1] coefficients */ 00491 c0 = *pb++; 00492 00493 /* Read x[n-numTaps-1] and sample */ 00494 x0 = *px++; 00495 00496 /* Perform the multiply-accumulate */ 00497 sum0 += x0 * c0; 00498 00499 /* Read the b[numTaps-2] coefficient */ 00500 c0 = *pb++; 00501 00502 /* Read x[n-numTaps-2] and sample */ 00503 x0 = *px++; 00504 00505 /* Perform the multiply-accumulate */ 00506 sum0 += x0 * c0; 00507 00508 /* Read the b[numTaps-3] coefficients */ 00509 c0 = *pb++; 00510 00511 /* Read x[n-numTaps-3] sample */ 00512 x0 = *px++; 00513 00514 /* Perform the multiply-accumulate */ 00515 sum0 += x0 * c0; 00516 00517 /* Read the b[numTaps-4] coefficient */ 00518 c0 = *pb++; 00519 00520 /* Read x[n-numTaps-4] sample */ 00521 x0 = *px++; 00522 00523 /* Perform the multiply-accumulate */ 00524 sum0 += x0 * c0; 00525 00526 /* Decrement the loop counter */ 00527 tapCnt--; 00528 } 00529 00530 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00531 tapCnt = numTaps % 0x4u; 00532 00533 while(tapCnt > 0u) 00534 { 00535 /* Read coefficients */ 00536 c0 = *pb++; 00537 00538 /* Fetch 1 state variable */ 00539 x0 = *px++; 00540 00541 /* Perform the multiply-accumulate */ 00542 sum0 += x0 * c0; 00543 00544 /* Decrement the loop counter */ 00545 tapCnt--; 00546 } 00547 00548 /* Advance the state pointer by the decimation factor 00549 * to process the next group of decimation factor number samples */ 00550 pState = pState + S->M; 00551 00552 /* Store filter output, smlad returns the values in 2.14 format */ 00553 /* so downsacle by 15 to get output in 1.15 */ 00554 *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); 00555 00556 /* Decrement the loop counter */ 00557 blkCntN3--; 00558 } 00559 00560 /* Processing is complete. 00561 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00562 ** This prepares the state buffer for the next function call. */ 00563 00564 /* Points to the start of the state buffer */ 00565 pStateCurnt = S->pState; 00566 00567 i = (numTaps - 1u) >> 2u; 00568 00569 /* copy data */ 00570 while(i > 0u) 00571 { 00572 *pStateCurnt++ = *pState++; 00573 *pStateCurnt++ = *pState++; 00574 *pStateCurnt++ = *pState++; 00575 *pStateCurnt++ = *pState++; 00576 00577 /* Decrement the loop counter */ 00578 i--; 00579 } 00580 00581 i = (numTaps - 1u) % 0x04u; 00582 00583 /* copy data */ 00584 while(i > 0u) 00585 { 00586 *pStateCurnt++ = *pState++; 00587 00588 /* Decrement the loop counter */ 00589 i--; 00590 } 00591 } 00592 00593 00594 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00595 00596 /** 00597 * @} end of FIR_decimate group 00598 */
Generated on Tue Jul 12 2022 12:36:55 by 1.7.2