CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers arm_conv_q31.c Source File

arm_conv_q31.c

00001 /* ----------------------------------------------------------------------    
00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.    
00003 *    
00004 * $Date:        17. January 2013
00005 * $Revision:    V1.4.1
00006 *    
00007 * Project:      CMSIS DSP Library    
00008 * Title:        arm_conv_q31.c    
00009 *    
00010 * Description:  Convolution of Q31 sequences.  
00011 *    
00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
00013 *  
00014 * Redistribution and use in source and binary forms, with or without 
00015 * modification, are permitted provided that the following conditions
00016 * are met:
00017 *   - Redistributions of source code must retain the above copyright
00018 *     notice, this list of conditions and the following disclaimer.
00019 *   - Redistributions in binary form must reproduce the above copyright
00020 *     notice, this list of conditions and the following disclaimer in
00021 *     the documentation and/or other materials provided with the 
00022 *     distribution.
00023 *   - Neither the name of ARM LIMITED nor the names of its contributors
00024 *     may be used to endorse or promote products derived from this
00025 *     software without specific prior written permission.
00026 *
00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00038 * POSSIBILITY OF SUCH DAMAGE.  
00039 * -------------------------------------------------------------------- */
00040 
00041 #include "arm_math.h"
00042 
00043 /**    
00044  * @ingroup groupFilters    
00045  */
00046 
00047 /**    
00048  * @addtogroup Conv    
00049  * @{    
00050  */
00051 
00052 /**    
00053  * @brief Convolution of Q31 sequences.    
00054  * @param[in] *pSrcA points to the first input sequence.    
00055  * @param[in] srcALen length of the first input sequence.    
00056  * @param[in] *pSrcB points to the second input sequence.    
00057  * @param[in] srcBLen length of the second input sequence.    
00058  * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.    
00059  * @return none.    
00060  *    
00061  * @details    
00062  * <b>Scaling and Overflow Behavior:</b>    
00063  *    
00064  * \par    
00065  * The function is implemented using an internal 64-bit accumulator.    
00066  * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.    
00067  * There is no saturation on intermediate additions.    
00068  * Thus, if the accumulator overflows it wraps around and distorts the result.    
00069  * The input signals should be scaled down to avoid intermediate overflows.    
00070  * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,    
00071  * as maximum of min(srcALen, srcBLen) number of additions are carried internally.    
00072  * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.    
00073  *    
00074  * \par    
00075  * See <code>arm_conv_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.    
00076  */
00077 
00078 void arm_conv_q31(
00079   q31_t * pSrcA,
00080   uint32_t srcALen,
00081   q31_t * pSrcB,
00082   uint32_t srcBLen,
00083   q31_t * pDst)
00084 {
00085 
00086 
00087 #ifndef ARM_MATH_CM0_FAMILY
00088 
00089   /* Run the below code for Cortex-M4 and Cortex-M3 */
00090 
00091   q31_t *pIn1;                                   /* inputA pointer */
00092   q31_t *pIn2;                                   /* inputB pointer */
00093   q31_t *pOut = pDst;                            /* output pointer */
00094   q31_t *px;                                     /* Intermediate inputA pointer  */
00095   q31_t *py;                                     /* Intermediate inputB pointer  */
00096   q31_t *pSrc1, *pSrc2;                          /* Intermediate pointers */
00097   q63_t sum;                                     /* Accumulator */
00098   q63_t acc0, acc1, acc2;                        /* Accumulator */
00099   q31_t x0, x1, x2, c0;                          /* Temporary variables to hold state and coefficient values */
00100   uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3;     /* loop counter */
00101 
00102   /* The algorithm implementation is based on the lengths of the inputs. */
00103   /* srcB is always made to slide across srcA. */
00104   /* So srcBLen is always considered as shorter or equal to srcALen */
00105   if(srcALen >= srcBLen)
00106   {
00107     /* Initialization of inputA pointer */
00108     pIn1 = pSrcA;
00109 
00110     /* Initialization of inputB pointer */
00111     pIn2 = pSrcB;
00112   }
00113   else
00114   {
00115     /* Initialization of inputA pointer */
00116     pIn1 = (q31_t *) pSrcB;
00117 
00118     /* Initialization of inputB pointer */
00119     pIn2 = (q31_t *) pSrcA;
00120 
00121     /* srcBLen is always considered as shorter or equal to srcALen */
00122     j = srcBLen;
00123     srcBLen = srcALen;
00124     srcALen = j;
00125   }
00126 
00127   /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
00128   /* The function is internally    
00129    * divided into three stages according to the number of multiplications that has to be    
00130    * taken place between inputA samples and inputB samples. In the first stage of the    
00131    * algorithm, the multiplications increase by one for every iteration.    
00132    * In the second stage of the algorithm, srcBLen number of multiplications are done.    
00133    * In the third stage of the algorithm, the multiplications decrease by one    
00134    * for every iteration. */
00135 
00136   /* The algorithm is implemented in three stages.    
00137      The loop counters of each stage is initiated here. */
00138   blockSize1 = srcBLen - 1u;
00139   blockSize2 = srcALen - (srcBLen - 1u);
00140   blockSize3 = blockSize1;
00141 
00142   /* --------------------------    
00143    * Initializations of stage1    
00144    * -------------------------*/
00145 
00146   /* sum = x[0] * y[0]    
00147    * sum = x[0] * y[1] + x[1] * y[0]    
00148    * ....    
00149    * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]    
00150    */
00151 
00152   /* In this stage the MAC operations are increased by 1 for every iteration.    
00153      The count variable holds the number of MAC operations performed */
00154   count = 1u;
00155 
00156   /* Working pointer of inputA */
00157   px = pIn1;
00158 
00159   /* Working pointer of inputB */
00160   py = pIn2;
00161 
00162 
00163   /* ------------------------    
00164    * Stage1 process    
00165    * ----------------------*/
00166 
00167   /* The first stage starts here */
00168   while(blockSize1 > 0u)
00169   {
00170     /* Accumulator is made zero for every iteration */
00171     sum = 0;
00172 
00173     /* Apply loop unrolling and compute 4 MACs simultaneously. */
00174     k = count >> 2u;
00175 
00176     /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
00177      ** a second loop below computes MACs for the remaining 1 to 3 samples. */
00178     while(k > 0u)
00179     {
00180       /* x[0] * y[srcBLen - 1] */
00181       sum += (q63_t) * px++ * (*py--);
00182       /* x[1] * y[srcBLen - 2] */
00183       sum += (q63_t) * px++ * (*py--);
00184       /* x[2] * y[srcBLen - 3] */
00185       sum += (q63_t) * px++ * (*py--);
00186       /* x[3] * y[srcBLen - 4] */
00187       sum += (q63_t) * px++ * (*py--);
00188 
00189       /* Decrement the loop counter */
00190       k--;
00191     }
00192 
00193     /* If the count is not a multiple of 4, compute any remaining MACs here.    
00194      ** No loop unrolling is used. */
00195     k = count % 0x4u;
00196 
00197     while(k > 0u)
00198     {
00199       /* Perform the multiply-accumulate */
00200       sum += (q63_t) * px++ * (*py--);
00201 
00202       /* Decrement the loop counter */
00203       k--;
00204     }
00205 
00206     /* Store the result in the accumulator in the destination buffer. */
00207     *pOut++ = (q31_t) (sum >> 31);
00208 
00209     /* Update the inputA and inputB pointers for next MAC calculation */
00210     py = pIn2 + count;
00211     px = pIn1;
00212 
00213     /* Increment the MAC count */
00214     count++;
00215 
00216     /* Decrement the loop counter */
00217     blockSize1--;
00218   }
00219 
00220   /* --------------------------    
00221    * Initializations of stage2    
00222    * ------------------------*/
00223 
00224   /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]    
00225    * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]    
00226    * ....    
00227    * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]    
00228    */
00229 
00230   /* Working pointer of inputA */
00231   px = pIn1;
00232 
00233   /* Working pointer of inputB */
00234   pSrc2 = pIn2 + (srcBLen - 1u);
00235   py = pSrc2;
00236 
00237   /* count is index by which the pointer pIn1 to be incremented */
00238   count = 0u;
00239 
00240   /* -------------------    
00241    * Stage2 process    
00242    * ------------------*/
00243 
00244   /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.    
00245    * So, to loop unroll over blockSize2,    
00246    * srcBLen should be greater than or equal to 4 */
00247   if(srcBLen >= 4u)
00248   {
00249     /* Loop unroll by 3 */
00250     blkCnt = blockSize2 / 3;
00251 
00252     while(blkCnt > 0u)
00253     {
00254       /* Set all accumulators to zero */
00255       acc0 = 0;
00256       acc1 = 0;
00257       acc2 = 0;
00258 
00259       /* read x[0], x[1], x[2] samples */
00260       x0 = *(px++);
00261       x1 = *(px++);
00262 
00263       /* Apply loop unrolling and compute 3 MACs simultaneously. */
00264       k = srcBLen / 3;
00265 
00266       /* First part of the processing with loop unrolling.  Compute 3 MACs at a time.        
00267        ** a second loop below computes MACs for the remaining 1 to 2 samples. */
00268       do
00269       {
00270         /* Read y[srcBLen - 1] sample */
00271         c0 = *(py);
00272 
00273         /* Read x[3] sample */
00274         x2 = *(px);
00275 
00276         /* Perform the multiply-accumulates */
00277         /* acc0 +=  x[0] * y[srcBLen - 1] */
00278         acc0 += ((q63_t) x0 * c0);
00279         /* acc1 +=  x[1] * y[srcBLen - 1] */
00280         acc1 += ((q63_t) x1 * c0);
00281         /* acc2 +=  x[2] * y[srcBLen - 1] */
00282         acc2 += ((q63_t) x2 * c0);
00283 
00284         /* Read y[srcBLen - 2] sample */
00285         c0 = *(py - 1u);
00286 
00287         /* Read x[4] sample */
00288         x0 = *(px + 1u);
00289 
00290         /* Perform the multiply-accumulate */
00291         /* acc0 +=  x[1] * y[srcBLen - 2] */
00292         acc0 += ((q63_t) x1 * c0);
00293         /* acc1 +=  x[2] * y[srcBLen - 2] */
00294         acc1 += ((q63_t) x2 * c0);
00295         /* acc2 +=  x[3] * y[srcBLen - 2] */
00296         acc2 += ((q63_t) x0 * c0);
00297 
00298         /* Read y[srcBLen - 3] sample */
00299         c0 = *(py - 2u);
00300 
00301         /* Read x[5] sample */
00302         x1 = *(px + 2u);
00303 
00304         /* Perform the multiply-accumulates */
00305         /* acc0 +=  x[2] * y[srcBLen - 3] */
00306         acc0 += ((q63_t) x2 * c0);
00307         /* acc1 +=  x[3] * y[srcBLen - 2] */
00308         acc1 += ((q63_t) x0 * c0);
00309         /* acc2 +=  x[4] * y[srcBLen - 2] */
00310         acc2 += ((q63_t) x1 * c0);
00311 
00312         /* update scratch pointers */
00313         px += 3u;
00314         py -= 3u;
00315 
00316       } while(--k);
00317 
00318       /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.        
00319        ** No loop unrolling is used. */
00320       k = srcBLen - (3 * (srcBLen / 3));
00321 
00322       while(k > 0u)
00323       {
00324         /* Read y[srcBLen - 5] sample */
00325         c0 = *(py--);
00326 
00327         /* Read x[7] sample */
00328         x2 = *(px++);
00329 
00330         /* Perform the multiply-accumulates */
00331         /* acc0 +=  x[4] * y[srcBLen - 5] */
00332         acc0 += ((q63_t) x0 * c0);
00333         /* acc1 +=  x[5] * y[srcBLen - 5] */
00334         acc1 += ((q63_t) x1 * c0);
00335         /* acc2 +=  x[6] * y[srcBLen - 5] */
00336         acc2 += ((q63_t) x2 * c0);
00337 
00338         /* Reuse the present samples for the next MAC */
00339         x0 = x1;
00340         x1 = x2;
00341 
00342         /* Decrement the loop counter */
00343         k--;
00344       }
00345 
00346       /* Store the results in the accumulators in the destination buffer. */
00347       *pOut++ = (q31_t) (acc0 >> 31);
00348       *pOut++ = (q31_t) (acc1 >> 31);
00349       *pOut++ = (q31_t) (acc2 >> 31);
00350 
00351       /* Increment the pointer pIn1 index, count by 3 */
00352       count += 3u;
00353 
00354       /* Update the inputA and inputB pointers for next MAC calculation */
00355       px = pIn1 + count;
00356       py = pSrc2;
00357 
00358       /* Decrement the loop counter */
00359       blkCnt--;
00360     }
00361 
00362     /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.        
00363      ** No loop unrolling is used. */
00364     blkCnt = blockSize2 - 3 * (blockSize2 / 3);
00365 
00366     while(blkCnt > 0u)
00367     {
00368       /* Accumulator is made zero for every iteration */
00369       sum = 0;
00370 
00371       /* Apply loop unrolling and compute 4 MACs simultaneously. */
00372       k = srcBLen >> 2u;
00373 
00374       /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
00375        ** a second loop below computes MACs for the remaining 1 to 3 samples. */
00376       while(k > 0u)
00377       {
00378         /* Perform the multiply-accumulates */
00379         sum += (q63_t) * px++ * (*py--);
00380         sum += (q63_t) * px++ * (*py--);
00381         sum += (q63_t) * px++ * (*py--);
00382         sum += (q63_t) * px++ * (*py--);
00383 
00384         /* Decrement the loop counter */
00385         k--;
00386       }
00387 
00388       /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.    
00389        ** No loop unrolling is used. */
00390       k = srcBLen % 0x4u;
00391 
00392       while(k > 0u)
00393       {
00394         /* Perform the multiply-accumulate */
00395         sum += (q63_t) * px++ * (*py--);
00396 
00397         /* Decrement the loop counter */
00398         k--;
00399       }
00400 
00401       /* Store the result in the accumulator in the destination buffer. */
00402       *pOut++ = (q31_t) (sum >> 31);
00403 
00404       /* Increment the MAC count */
00405       count++;
00406 
00407       /* Update the inputA and inputB pointers for next MAC calculation */
00408       px = pIn1 + count;
00409       py = pSrc2;
00410 
00411       /* Decrement the loop counter */
00412       blkCnt--;
00413     }
00414   }
00415   else
00416   {
00417     /* If the srcBLen is not a multiple of 4,    
00418      * the blockSize2 loop cannot be unrolled by 4 */
00419     blkCnt = blockSize2;
00420 
00421     while(blkCnt > 0u)
00422     {
00423       /* Accumulator is made zero for every iteration */
00424       sum = 0;
00425 
00426       /* srcBLen number of MACS should be performed */
00427       k = srcBLen;
00428 
00429       while(k > 0u)
00430       {
00431         /* Perform the multiply-accumulate */
00432         sum += (q63_t) * px++ * (*py--);
00433 
00434         /* Decrement the loop counter */
00435         k--;
00436       }
00437 
00438       /* Store the result in the accumulator in the destination buffer. */
00439       *pOut++ = (q31_t) (sum >> 31);
00440 
00441       /* Increment the MAC count */
00442       count++;
00443 
00444       /* Update the inputA and inputB pointers for next MAC calculation */
00445       px = pIn1 + count;
00446       py = pSrc2;
00447 
00448       /* Decrement the loop counter */
00449       blkCnt--;
00450     }
00451   }
00452 
00453 
00454   /* --------------------------    
00455    * Initializations of stage3    
00456    * -------------------------*/
00457 
00458   /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]    
00459    * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]    
00460    * ....    
00461    * sum +=  x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]    
00462    * sum +=  x[srcALen-1] * y[srcBLen-1]    
00463    */
00464 
00465   /* In this stage the MAC operations are decreased by 1 for every iteration.    
00466      The blockSize3 variable holds the number of MAC operations performed */
00467 
00468   /* Working pointer of inputA */
00469   pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
00470   px = pSrc1;
00471 
00472   /* Working pointer of inputB */
00473   pSrc2 = pIn2 + (srcBLen - 1u);
00474   py = pSrc2;
00475 
00476   /* -------------------    
00477    * Stage3 process    
00478    * ------------------*/
00479 
00480   while(blockSize3 > 0u)
00481   {
00482     /* Accumulator is made zero for every iteration */
00483     sum = 0;
00484 
00485     /* Apply loop unrolling and compute 4 MACs simultaneously. */
00486     k = blockSize3 >> 2u;
00487 
00488     /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
00489      ** a second loop below computes MACs for the remaining 1 to 3 samples. */
00490     while(k > 0u)
00491     {
00492       /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
00493       sum += (q63_t) * px++ * (*py--);
00494       /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
00495       sum += (q63_t) * px++ * (*py--);
00496       /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
00497       sum += (q63_t) * px++ * (*py--);
00498       /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
00499       sum += (q63_t) * px++ * (*py--);
00500 
00501       /* Decrement the loop counter */
00502       k--;
00503     }
00504 
00505     /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.    
00506      ** No loop unrolling is used. */
00507     k = blockSize3 % 0x4u;
00508 
00509     while(k > 0u)
00510     {
00511       /* Perform the multiply-accumulate */
00512       sum += (q63_t) * px++ * (*py--);
00513 
00514       /* Decrement the loop counter */
00515       k--;
00516     }
00517 
00518     /* Store the result in the accumulator in the destination buffer. */
00519     *pOut++ = (q31_t) (sum >> 31);
00520 
00521     /* Update the inputA and inputB pointers for next MAC calculation */
00522     px = ++pSrc1;
00523     py = pSrc2;
00524 
00525     /* Decrement the loop counter */
00526     blockSize3--;
00527   }
00528 
00529 #else
00530 
00531   /* Run the below code for Cortex-M0 */
00532 
00533   q31_t *pIn1 = pSrcA;                           /* input pointer */
00534   q31_t *pIn2 = pSrcB;                           /* coefficient pointer */
00535   q63_t sum;                                     /* Accumulator */
00536   uint32_t i, j;                                 /* loop counter */
00537 
00538   /* Loop to calculate output of convolution for output length number of times */
00539   for (i = 0; i < (srcALen + srcBLen - 1); i++)
00540   {
00541     /* Initialize sum with zero to carry on MAC operations */
00542     sum = 0;
00543 
00544     /* Loop to perform MAC operations according to convolution equation */
00545     for (j = 0; j <= i; j++)
00546     {
00547       /* Check the array limitations */
00548       if(((i - j) < srcBLen) && (j < srcALen))
00549       {
00550         /* z[i] += x[i-j] * y[j] */
00551         sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
00552       }
00553     }
00554 
00555     /* Store the output in the destination buffer */
00556     pDst[i] = (q31_t) (sum >> 31u);
00557   }
00558 
00559 #endif /*     #ifndef ARM_MATH_CM0_FAMILY */
00560 
00561 }
00562 
00563 /**    
00564  * @} end of Conv group    
00565  */