CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
arm_cmplx_mag_squared_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2013 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 17. January 2013 00005 * $Revision: V1.4.1 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_cmplx_mag_squared_f32.c 00009 * 00010 * Description: Floating-point complex magnitude squared. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * ---------------------------------------------------------------------------- */ 00040 #include "arm_math.h" 00041 00042 /** 00043 * @ingroup groupCmplxMath 00044 */ 00045 00046 /** 00047 * @defgroup cmplx_mag_squared Complex Magnitude Squared 00048 * 00049 * Computes the magnitude squared of the elements of a complex data vector. 00050 * 00051 * The <code>pSrc</code> points to the source data and 00052 * <code>pDst</code> points to the where the result should be written. 00053 * <code>numSamples</code> specifies the number of complex samples 00054 * in the input array and the data is stored in an interleaved fashion 00055 * (real, imag, real, imag, ...). 00056 * The input array has a total of <code>2*numSamples</code> values; 00057 * the output array has a total of <code>numSamples</code> values. 00058 * 00059 * The underlying algorithm is used: 00060 * 00061 * <pre> 00062 * for(n=0; n<numSamples; n++) { 00063 * pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2; 00064 * } 00065 * </pre> 00066 * 00067 * There are separate functions for floating-point, Q15, and Q31 data types. 00068 */ 00069 00070 /** 00071 * @addtogroup cmplx_mag_squared 00072 * @{ 00073 */ 00074 00075 00076 /** 00077 * @brief Floating-point complex magnitude squared 00078 * @param[in] *pSrc points to the complex input vector 00079 * @param[out] *pDst points to the real output vector 00080 * @param[in] numSamples number of complex samples in the input vector 00081 * @return none. 00082 */ 00083 00084 void arm_cmplx_mag_squared_f32( 00085 float32_t * pSrc, 00086 float32_t * pDst, 00087 uint32_t numSamples) 00088 { 00089 float32_t real, imag; /* Temporary variables to store real and imaginary values */ 00090 uint32_t blkCnt; /* loop counter */ 00091 00092 #ifndef ARM_MATH_CM0_FAMILY 00093 float32_t real1, real2, real3, real4; /* Temporary variables to hold real values */ 00094 float32_t imag1, imag2, imag3, imag4; /* Temporary variables to hold imaginary values */ 00095 float32_t mul1, mul2, mul3, mul4; /* Temporary variables */ 00096 float32_t mul5, mul6, mul7, mul8; /* Temporary variables */ 00097 float32_t out1, out2, out3, out4; /* Temporary variables to hold output values */ 00098 00099 /*loop Unrolling */ 00100 blkCnt = numSamples >> 2u; 00101 00102 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00103 ** a second loop below computes the remaining 1 to 3 samples. */ 00104 while(blkCnt > 0u) 00105 { 00106 /* C[0] = (A[0] * A[0] + A[1] * A[1]) */ 00107 /* read real input sample from source buffer */ 00108 real1 = pSrc[0]; 00109 /* read imaginary input sample from source buffer */ 00110 imag1 = pSrc[1]; 00111 00112 /* calculate power of real value */ 00113 mul1 = real1 * real1; 00114 00115 /* read real input sample from source buffer */ 00116 real2 = pSrc[2]; 00117 00118 /* calculate power of imaginary value */ 00119 mul2 = imag1 * imag1; 00120 00121 /* read imaginary input sample from source buffer */ 00122 imag2 = pSrc[3]; 00123 00124 /* calculate power of real value */ 00125 mul3 = real2 * real2; 00126 00127 /* read real input sample from source buffer */ 00128 real3 = pSrc[4]; 00129 00130 /* calculate power of imaginary value */ 00131 mul4 = imag2 * imag2; 00132 00133 /* read imaginary input sample from source buffer */ 00134 imag3 = pSrc[5]; 00135 00136 /* calculate power of real value */ 00137 mul5 = real3 * real3; 00138 /* calculate power of imaginary value */ 00139 mul6 = imag3 * imag3; 00140 00141 /* read real input sample from source buffer */ 00142 real4 = pSrc[6]; 00143 00144 /* accumulate real and imaginary powers */ 00145 out1 = mul1 + mul2; 00146 00147 /* read imaginary input sample from source buffer */ 00148 imag4 = pSrc[7]; 00149 00150 /* accumulate real and imaginary powers */ 00151 out2 = mul3 + mul4; 00152 00153 /* calculate power of real value */ 00154 mul7 = real4 * real4; 00155 /* calculate power of imaginary value */ 00156 mul8 = imag4 * imag4; 00157 00158 /* store output to destination */ 00159 pDst[0] = out1; 00160 00161 /* accumulate real and imaginary powers */ 00162 out3 = mul5 + mul6; 00163 00164 /* store output to destination */ 00165 pDst[1] = out2; 00166 00167 /* accumulate real and imaginary powers */ 00168 out4 = mul7 + mul8; 00169 00170 /* store output to destination */ 00171 pDst[2] = out3; 00172 00173 /* increment destination pointer by 8 to process next samples */ 00174 pSrc += 8u; 00175 00176 /* store output to destination */ 00177 pDst[3] = out4; 00178 00179 /* increment destination pointer by 4 to process next samples */ 00180 pDst += 4u; 00181 00182 /* Decrement the loop counter */ 00183 blkCnt--; 00184 } 00185 00186 /* If the numSamples is not a multiple of 4, compute any remaining output samples here. 00187 ** No loop unrolling is used. */ 00188 blkCnt = numSamples % 0x4u; 00189 00190 #else 00191 00192 /* Run the below code for Cortex-M0 */ 00193 00194 blkCnt = numSamples; 00195 00196 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00197 00198 while(blkCnt > 0u) 00199 { 00200 /* C[0] = (A[0] * A[0] + A[1] * A[1]) */ 00201 real = *pSrc++; 00202 imag = *pSrc++; 00203 00204 /* out = (real * real) + (imag * imag) */ 00205 /* store the result in the destination buffer. */ 00206 *pDst++ = (real * real) + (imag * imag); 00207 00208 /* Decrement the loop counter */ 00209 blkCnt--; 00210 } 00211 } 00212 00213 /** 00214 * @} end of cmplx_mag_squared group 00215 */
Generated on Tue Jul 12 2022 12:36:54 by 1.7.2